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Abstract. This paper studies the relative efficiency of variations of a
tableau method for Boolean circuit satisfiability checking. The considered
method is a non-clausal generalisation of the Davis-Putnam-Logemann-
Loveland (DPLL) procedure to Boolean circuits. The variations are ob-
tained by restricting the use of the cut (splitting) rule in several natural
ways. It is shown that the more restricted variations cannot polynomi-
ally simulate the less restricted ones. For each pair of methods T , T ′,
an infinite family {Cn} of circuits is devised for which T has polynomial
size proofs while in T ′ the minimal proofs are of exponential size w.r.t.
n, implying exponential separation of T and T ′ w.r.t. n.

The results also apply to DPLL for formulas in conjunctive normal
form obtained from Boolean circuits by using Tseitin’s translation. Thus
DPLL with the considered cut restrictions, such as allowing splitting only
on the variables corresponding to the input gates, cannot polynomially
simulate DPLL with unrestricted splitting.

1 Introduction

The propositional satisfiability problem (Sat) of determining whether a given
propositional formula has a truth assignment under which it evaluates to true
is an archetypical NP-complete problem, see e.g. [26]. Because of its universal
nature, a variety of important problems, e.g., in the areas of planning [19, 20],
model checking of finite state systems [5, 4], testing [22], and hardware verifica-
tion [3], can be reduced to Sat. Due to this, there is a high demand for more
feasible ways of solving Sat instances, ranging from industrial applications to
pure research. Various methods for solving Sat instances have been developed
(see [14] and [32] for surveys) and applied successfully to many interesting do-
mains.

Recognising the factors that affect the difficulty of satisfiability checking,
i.e. the time needed to determine whether an instance is satisfiable or not, is
crucial when developing more efficient methods for the task. The basis of most
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state-of-the-art Sat checkers today is the Davis-Putnam-Logemann-Loveland
procedure (DPLL) [10, 9]. The efficiency of a typical DPLL based Sat check-
ing system depends on

– the applied search space pruning techniques, e.g., non-branching deduction
rules, non-chronological backtracking (see e.g. [23]), and conflict-driven learn-
ing (see e.g. [31]), and on

– the splitting rule, i.e., on which Boolean variables to apply the explicit cut
that induces branching, and what kind of heuristics is this decision based
on.

For measuring the efficiency of Sat checking methods there are several alter-
natives. One can compare Sat checkers by experimental evaluation, i.e., investi-
gate how long it takes for checkers to solve different types of instances. Another
approach is worst-case analysis of Sat checking algorithms (see e.g. [8]), i.e.,
giving analytic proofs of upper bounds on the running times of algorithms w.r.t.
the instance size. A third approach, the one taken in this work, is to investigate
how large the minimal-size proofs (refutations) are for different families of for-
mulas. This measure is called proof complexity, see e.g. [2]. Proof complexity is
of our interest as it allows one to differentiate heuristic performance from the
proof rules in a method and to consider how small proofs can be established
assuming optimal heuristic behaviour.

Relative efficiency of proof systems can be measured using the notion of
polynomial simulation. If a proof method T can polynomially simulate another
method T ′, then T is considered to be at least as efficient as T ′. Showing that T ′

cannot polynomially simulate T gives a way of establishing that T is substantially
stronger than T ′. This is because the lack of polynomial simulation means that
moving from T to T ′ cannot be done with only a polynomial loss of efficiency,
i.e., there are proofs in T which do not have any polynomial size counter-part in
T ′.

Currently most successful DPLL-based Sat checkers assume that the input
formulas are in conjunctive normal form (CNF). The reason for this is that it
is simpler to develop efficient data structures and algorithms for CNF than for
arbitrary formulas. On the other hand, using CNF makes efficient modelling of
an application cumbersome. Fortunately, propositional formulas can be trans-
formed in polynomial time into CNF while preserving the satisfiability of the
instance, see e.g. [27]. Therefore one usually employs a more general formula
representation in modelling and then transforms the formula into CNF. How-
ever, such a polynomial time translation introduces auxiliary variables which
can have an exponential effect on the performance of a typical Sat checker in
the worst-case.

In addition, by translating other representations to CNF one often hides
information about the structure of the original problem. One way of representing
propositional formulas in a more general, structure-preserving way is to use
Boolean circuits, see e.g. [26]. Basically, Boolean circuits are acyclic directed
graphs in which the nodes—representing sub-formulas of the instance—are called
gates, and the edges represent dependencies between the gates. Boolean circuits



are interesting because they allow for a compact and natural representation that
can be simplified by sharing common subexpressions, while preserving natural
structures and concepts of the domain. Boolean circuits can be translated into
CNF using a standard translation often referred to as Tseitin’s translation [30].
This translation introduces a new variable for each gate in the circuit, resulting
in a linear size CNF.

In this work we are interested in solving Boolean circuit satisfiability prob-
lems using an approach that exploits the highly successful DPLL type tech-
niques but works directly on circuits. One approach is to translate the circuit to
CNF and use the clausal DPLL method as the basis but add extra information
from the circuit to enhance the performance of the method. See e.g. [13, 24] for
interesting work in this direction. Another approach is to develop a generali-
sation of the DPLL method that works directly on the circuit structure. This
direction has been pursued, e.g., in [18, 21, 11, 29]. Here we study the latter ap-
proach and use as the basis of the work a simplified version of a tableau method
for Boolean circuit satisfiability checking that works directly with circuits [18]
(see [17] for an implementation of the method). The method is a non-clausal
generalisation of DPLL to Boolean circuits which does not include learning or
non-chronological backtracking techniques (see [29] for recent work on incorpo-
rating these techniques to a generalised DPLL). The method is closely related
to standard tableau techniques [6] but works directly on a circuit (rather than
formula) representation. Moreover, it employs a direct cut rule combined with
deterministic (non-branching) deduction rules making it similar to the tableau
system KE [7]. More information on the advantages of using a direct cut rule
compared to typical cut free tableaux can be found in [6, 7, 25].

In this work we focus on the splitting/cut rule of the tableau method for
Boolean circuits, the research problem being:

How do restrictions on the use of the cut rule affect proof complexity in
Boolean circuit satisfiability checking based on tableaux?

For instance, one may think that it is a good idea to restrict the cuts to the input
gates only as they determine the values of all other gates. Therefore, the search
space for a circuit with K gates and N input gates, K ≥ N , would be 2N instead
of 2K . This approach is proposed, for example, in [28, 12, 13]. However, our results
show that this kind of a restricted cut rule cannot polynomially simulate the
unrestricted cut rule. In particular, we show that there is an infinite family {Cn}
of circuits which have polynomial size proofs using the unrestricted cut rule but
for which minimal proofs are of exponential size w.r.t. n if cuts are restricted to
input gates only. In addition to the input gate restricted cuts, we study several
other natural restrictions that are based on the structure of the circuit and the
state of the search. Examples of such dynamic restrictions are “top-down” cuts
that can be applied only on the children of the gates with a determined value
in the current state of the search and “bottom-up” cuts that can be applied on
input gates and on the parents of the already determined gates. Our results show
that none of the considered restricted variations can polynomially simulate the



unrestricted cut rule. Furthermore, we devise families of circuits for which the
size of the proofs using different cut rules differs exponentially, i.e. for rules R1

and R2 we construct an infinite family {Cn} of circuits which have polynomial
size proofs using R2 but for which minimal proofs are of exponential size in n
using R1, implying exponential separation of R1 and R2 w.r.t. n.

The main results in this paper directly apply to DPLL based Sat checkers
without conflict-driven learning for CNF formulas obtained from Boolean cir-
cuits by using Tseitin’s translation. This is because the rules of the introduced
tableau method match those of DPLL under CNF clauses produced by Tseitin’s
translation.

The rest of this work is organised as follows. Basic concepts of Boolean cir-
cuits are introduced in Section 2. The tableau method and its locality based
variations are described in Section 3. The concepts of proof complexity and
polynomial simulation are explained in Section 4. In addition, Section 4 estab-
lishes some basic results concerning these concepts and the tableau method. The
main results of this work with proofs are presented in Section 5. The relevance
of the results to the DPLL method is established in Section 6. Finally, Section 7
concludes and gives some future research directions based on this work.

2 Boolean Circuits

Informally, a Boolean circuit (see e.g. [26]) is an acyclic directed graph in which
the nodes are called gates. The gates can be divided into three categories: (i) a
unique output gate with incoming edges but no outgoing edges, (ii) intermediate
gates with both incoming and outgoing edges, and (iii) input gates with outgoing
edges but no incoming edges. A Boolean function is associated to the output gate
and each intermediate gate.

Formally, we present a Boolean circuit C with the set of gates V as a set
of equations of the form v = f(v1, . . . , vk), where v, v1, . . . , vk ∈ V and f is a
Boolean function. It is required that (i) each v ∈ V has at most one equation,
(ii) the equations are non-recursive, and (iii) exactly one gate (i.e. the output
gate) does not appear on the right hand side of any equation. We define the size
of a Boolean circuit to be the number of gates and edges in the circuit. For a
Boolean circuit C, we denote the set of gates appearing in C by V (C).
Example 1. Graphically, the Boolean circuit

{v = and(e, f, g, h), e = or(a, b), f = or(b, c), g = or(a, d),
h = or(c, d), c = not(a), d = not(b)}

is shown in Figure 1. In this circuit, a and b are input gates, c, d, e, f, g and h
intermediate gates, and v is the output gate.

A truth assignment for a Boolean circuit C is a function τ : V (C) → {true, false}.
Assignment τ is consistent if τ(v) = f(τ(v1), . . . , τ(vk)) holds for each equation
v = f(v1, . . . , vk) in C. A consistent truth assignment that assigns true to the
output gate of a circuit is a satisfying truth assignment for the circuit. If there
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Fig. 1. A Boolean circuit.

is a satisfying truth assignment for a circuit, the circuit is satisfiable. Otherwise
the circuit is unsatisfiable.

Here, we are interested in Circuit Sat, the satisfaction problem for Boolean
circuits, in which we are given a Boolean circuit and asked whether the circuit
is satisfiable. The Circuit Sat problem is obviously NP-complete and closely
related to Sat.

In the following we consider the class of Boolean circuits in which the follow-
ing three types of Boolean functions are allowed.

– not(v) = true if and only if v is false,
– or(v1, . . . , vk) = true if and only if at least one vi, 1 ≤ i ≤ k, k ≥ 2, is true,

and
– and(v1, . . . , vk) = true if and only if all vi, 1 ≤ i ≤ k, k ≥ 2, are true.

Notice that it is straightforward to extend this class with additional Boolean
functions such as xor and equivalence (see e.g. [18]).

Consider a propositional formula in conjunctive normal form, i.e. a set ϕ =
{C1, . . . , Ck} of clauses of the form

Ci = (vi,1 ∨ · · · ∨ vi,mi ∨ ¬wi,1 ∨ · · · ∨ ¬wi,ni).

The canonical Boolean circuit representation of ϕ is

C(ϕ) = {v = and(o1, . . . , ok)} ∪
{oi = or(avi,1 , . . . , av1,mi

, bwi,1 , . . . , bwi,ni
) | 1 ≤ i ≤ k} ∪

{bwi,j = not(awi,j ) | 1 ≤ i ≤ k, 1 ≤ j ≤ ni},

where v is the output gate of C(ϕ). It is straightforward to establish that the
CNF formula ϕ is satisfiable if and only if the Boolean circuit C(ϕ) is satisfiable.

Example 2. In Figure 1 the canonical Boolean circuit representation C(UNSATa,b)
is shown for

UNSATa,b
def= {(a ∨ b), (a ∨ ¬b), (¬a ∨ b), (¬a ∨ ¬b)}.



3 A Tableau Method

We study a tableau method for Boolean circuit satisfiability checking we call
BC. The method consists of the rules shown in Figure 2. It is a simplified
version of the tableau system introduced in [18].1 The method is a non-clausal
generalisation of DPLL to Boolean circuits: the explicit cut rule (a) in BC
corresponds to the splitting rule in DPLL, and the rules (b)-(h) correspond to
unit clause propagation, i.e., standard Boolean constraint propagation.

v ∈ V
Tv Fv

(a) The explicit cut rule

v = not(v1)
Fv1

Tv

v = not(v1)
Tv1

Fv

v = not(v1)
Fv

Tv1

v = not(v1)
Tv

Fv1

(b) “Up” rules for not (c) “Down” rules for not

v = or(v1, . . . , vk)
Fv1, . . . ,Fvk

Fv

v = or(v1, . . . , vk)
Tvi, i ∈ {1, . . . , k}

Tv

v = or(v1, . . . , vk)
Fv

Fv1, . . . ,Fvk

(d) “Up” rules for or (e) “Down” rule for or

v = and(v1, . . . , vk)
Tv1, . . . ,Tvk

Tv

v = and(v1, . . . , vk)
Fvi, i ∈ {1, . . . , k}

Fv

v = and(v1, . . . , vk)
Tv

Tv1, . . . ,Tvk

(f) “Up” rules for and (g) “Down” rule for and

v = or(v1, . . . , vk)
Fv1, . . . ,Fvj−1,Fvj+1, . . .Fvk

Tv

Tvj

v = and(v1, . . . , vk)
Tv1, . . . ,Tvj−1,Tvj+1, . . .Tvk

Fv

Fvj

(h) “Last undetermined child” rules for or and and

Fig. 2. Tableau method BC for Boolean circuits.

Given a Boolean circuit C, a BC-tableau for C is a binary tree such that the
root node of the tree consists of the equations in C and additionally the entry
Tv, where v is the output gate of C. The other nodes in the tree are entries of the
form Tv or Fv, where v ∈ V (C), generated by extending the tableau using the
rules in Figure 2 in the following standard way [6]. Given a tableau rule and a
branch in the tableau such that the prerequisites of the rule hold in the branch,
the tableau can be extended by adding new nodes to the end of the branch as

1 The method introduced in [18] provides additionally, e.g., rules for xor and equiva-
lence gates as well as circuit simplification rules.



specified by the rule. If the rule is (a), then entries Tv and Fv are added as the
left and right child in the end of the branch. For the other rules, the consequents
of the rule are added to the end of the branch (as a linear subtree in case of
multiple consequents).

A branch in the tableau is contradictory if it contains both Fv and Tv entries
for a gate v ∈ V (C). Otherwise, the branch is open. A branch is complete if it is
contradictory, or if there is a Fv or a Tv entry for each v ∈ V (C) in the branch
and the branch is closed under the rules (b)–(h). A tableau is finished if all the
branches of the tableau are complete. A tableau is closed if all of its branches are
contradictory. A closed BC-tableau for a circuit is called a BC-refutation for
the circuit. For each v ∈ V (C), we say that the entry Tv (Fv) can be deduced in
a branch if the entry Tv (Fv) can be generated by applying rules (b)–(h) only.

Example 3. For the circuit shown in Figure 1, a BC-refutation is shown in Figure
3. For instance, in the refutation the entry Fc (15) is deduced from the entries
c = not(a) and Ta, while Ta (13) is generated by applying the cut rule.

1. v = and(e, f, g, h)
2. e = or(a, b)
3. f = or(b, c)
4. g = or(a, d)
5. h = or(c, d)
6. c = not(a)
7. d = not(b)
8. Tv

9. Te (1, 8)
10. Tf (1, 8)
11. Tg (1, 8)
12. Th (1, 8)

13. Ta (Cut)
15. Fc (6, 13)
16. Tb (3, 10, 15)
17. Fd (7, 16)
18. Fh (5, 15, 17)
19. × (12, 18)

14. Fa (Cut)
20. Tb (2, 9, 14)
21. Td (4, 11, 14)
22. Fd (7, 20)
23. × (21, 22)

Fig. 3. A BC-refutation for C(UNSATa,b).

We study variations of BC in which the application of the explicit cut rule is
restricted to certain types of gates. The idea is to study the effects of restrictions
which are based on the circuit structure. A natural starting point is a system
where cuts are restricted to input gates only. A dynamic generalisation of this
idea is to allow bottom-up cuts, i.e., to start from the input gates and permit



the use of the cut rule in a tableau branch for a gate only when an entry for one
of its children in the circuit has been deduced in the branch. A dual approach
is to start from the entry of the output gate and allow top-down cuts. It is also
possible to combine these approaches. The considered variations of BC are thus
the following.

– BCi: Application of explicit cut is restricted to input gates (input cuts).
– BCbu: Application of explicit cut in a branch is restricted to input cuts and

gates v for which there is a Tv′ or a Fv′ entry in the branch for some child
v′ of v in the circuit (bottom-up cuts).

– BCtd: Application of explicit cut in a branch is restricted to the output gate
and gates v for which there is a Tv′ or a Fv′ entry in the branch for some
parent v′ of v in the circuit (top-down cuts).

– BCi+td: Application of explicit cut is restricted to input and top-down cuts.
– BCbu+td: Application of explicit cut is restricted to bottom-up and top-down

cuts.

By soundness we mean that the existence of a closed tableau for a given
circuit implies that the circuit is unsatisfiable, and by completeness that there
is a closed tableau for any unsatisfiable circuit.

The following soundness theorem follows straightforwardly from the observa-
tion that the deduction rules (b)–(h) preserve satisfiability, i.e., if the premises
of a rule are consistent for a truth assignment, then so is the conclusion.

Theorem 1. BCi, BCtd, BCi+td, BCbu, BCbu+td, and BC are sound proof
systems for Boolean circuits.

The following completeness theorem is obvious by the cut rule. Input cuts
with the deduction rules (b)–(h) are sufficient in order to obtain a complete
branch. Moreover, input cuts can be simulated with top-down cuts in a straight-
forward manner.

Theorem 2. BCi, BCtd, BCi+td, BCbu, BCbu+td, and BC are complete
proof systems for Boolean circuits.

4 Propositional Proof Complexity and Simulation

Generally, a propositional proof is a certificate for the unsatisfiability of a propo-
sitional expression (e.g., of a propositional formula or Boolean circuit). A propo-
sitional proof system (see e.g. [2]) for a class of propositional expressions E is
then a polynomial-time computable predicate T such that for all expressions
α ∈ E it holds that α is unsatisfiable if and only if there is a proof P for α such
that T (α, P ). If such a P exists, it is a T -proof for α.

For instance, resolution is a propositional proof system that produces proofs
for the unsatisfiability (i.e. refutations) of propositional formulas in conjunctive
normal form. Similarly, BC is a propositional proof system for the unsatisfiability
of Boolean circuits.



Let T be a proof system. The proof complexity (or complexity in short) of a
propositional expression α in T is the size of a minimal T -proof for α. The size of
a resolution refutation is defined in the standard way as the number of resolution
steps in the refutation sequence. We define the size of a BC-refutation as the
number of nodes in the closed tableau. For example, the size of the BC-refutation
shown in Figure 3 is 14.

We use the notion of polynomial simulation to study the relative efficiency of
proof systems. For any two proof systems T and T ′, we say that T polynomially
simulates T ′, denoted by T º T ′, if there is a polynomial q such that, for any α,
if there is a T ′-proof for α of size n, then there is a T -proof for α of size at most
q(n). Hence, T º T ′ indicates that the proof system T is at least as strong as
T ′ (up to a polynomial loss of efficiency). The relation º is transitive. If T º T ′

holds but T ′ º T does not, we write T Â T ′. If neither T º T ′ nor T ′ º T holds,
we write T # T ′.

We denote by ºχ the restricted form of polynomial simulation, in which
T ºχ T ′ holds if there is a polynomial q such that, for any α ∈ χ, if there is
a T ′-proof for α of size n, then there is a T -proof for α of size at most q(n). If
both T ºχ T ′ and T ′ ºχ T hold, we write T ≡χ T ′.

An obvious ordering of BC and its restricted variations based on the polyno-
mial simulation relation, resulting from the restricted nature of the variations,
is shown in Figure 4.

BCbu

º º
BC º BCbu+td BCi

º º
BCi+td

º
BCtd

Fig. 4. An obvious ordering of BC and its variations based on the polynomial simula-
tion relation.

It turns out that all the considered variations of the BC method are equiv-
alent under the polynomial simulation relation when the set of propositional
expressions considered is restricted to the set of canonical Boolean circuit rep-
resentations of sets of clauses. For the following, let Φ be the family of all sets
of clauses, and C(Φ) = {C(ϕ) | ϕ ∈ Φ}.
Theorem 3. BC ≡C(Φ) BCi.

To see this, notice that for any set of clauses ϕ, using the “down” rule for and
we can deduce Tg for all or gates g in C(ϕ). Thus we can assume that there is a
minimal-size refutation for C(ϕ) in which the and rule is applied to deduce the
entries concerning the or gates that are needed to achieve the closed tableau.



Then it is straightforward to see that we can limit the application of the cut rule
to input gates. This shows BCi ºC(Φ) BC, while BC ºC(Φ) BCi holds trivially.

By further noticing that for any circuit in the family C(Φ) input cuts can
be polynomially simulated with top-down cuts in a straightforward manner, we
have the following corollary.

Corollary 1. BC ≡C(Φ) T for all T ∈ {BCi,BCtd,BCi+td,BCbu}.
The following theorem states that, for the canonical Boolean circuit repre-

sentation of a set of clauses, BC-proofs can be simulated by tree-like resolution.
This is fairly straightforward to establish from a well-known construction for
reading a tree-like resolution refutation from a DPLL refutation, see e.g. [1].

Theorem 4. There is a polynomial p such that for any set of clauses ϕ, if
there is a BC-refutation for C(ϕ) of size n, then there is a tree-like resolution
refutation for ϕ of size p(n).

Again, by the restricted nature of the variants of the BC method, we have the
following corollary.

Corollary 2. For each T ∈ {BCi,BCtd,BCi+td,BCbu,BCbu+td} it holds that
there is a polynomial p such that for any set of clauses ϕ, if there is a T -refutation
for C(ϕ) of size n, then there is a tree-like resolution refutation for ϕ of size p(n).

We note that tree-like resolution (and thus DPLL) and BC are equally efficient
proof systems in the sense that (i) given a set of clauses ϕ, BC on C(ϕ) can
polynomially simulate tree-like resolution on ϕ and, moreover, (ii) given a circuit
C and the set of clauses ϕC obtained from C using Tseitin’s translation, DPLL
and thus tree-like resolution on ϕC can polynomially simulate BC on C. The
latter fact is discussed in more detail in Section 6 in which it is shown that the
rules of BC match those of DPLL.

5 Relative Efficiency of Restricted Cuts

The main results of this paper are summarised in Figure 5 showing that there
is no two-way polynomial simulation between the variations of the BC method.
The results shed new light on the strength of proof systems of this kind, where the
strength of the system is measured as the size of the minimal proofs producible
for a given proposition. The results show that it is possible to increase the
strength of a system significantly by extending the use of the cut rule in a
controlled local manner w.r.t. the circuit structure. For example, moving from
input cuts to bottom-up cuts can make a substantial difference in the sense that
input cuts cannot polynomially simulate bottom-up cuts. If top-down cuts are
additionally allowed, a similar substantial increase in the strength of the system
is obtained. However, general cuts are still substantially stronger than any of the
restricted variations considered. It should be noticed that the results obviously
hold for circuits with additional Boolean functions if the set of rules involving
and, or, and not gates remains unchanged. Furthermore, the results imply that



the restrictions on the splitting rule in DPLL have the same effect on the proof
complexity of CNF formulas obtained from Boolean circuits by using Tseitin’s
translation as will be discussed in Section 6.

The rest of this section is devoted to proofs of these results. The proofs rely
on certain circuit families which are constructed from building blocks such as a
Boolean circuit representation of the pigeon-hole principle. First we define the
building blocks we call gadgets and then give the proofs of the main theorems 6–
14. Combining these theorems, the resulting ordering of BC and its restricted
variations based on the polynomial simulation relation, shown in Figure 5, is
obtained by the transitivity of º.

5.1 Gadget Constructions

We begin by defining the PHPn+1
n , TDn, XORn, and UNSAT gadgets. They

are used in constructing families of circuits which are used in proving the main
theorems of this paper. Some lemmas involving properties of the gadgets are
given.

Pigeon-Hole Principle and the PHPn+1
n Gadget An example of a propo-

sitional formula with high proof complexity in many proof systems is the pigeon-
hole principle PHPm

n , see e.g. [16]. The pigeon-hole principle states that there
is no injective mapping from a finite m-element set into a finite n-element set if
m > n (that is, m pigeons cannot sit in less than m holes so that every pigeon
has its own hole). In the following we consider the case m = n + 1. As a set of
clauses, we have

PHPn+1
n

def=
⋃

1≤i≤n+1

{Pi} ∪
⋃

1≤i<i′≤n+1,1≤j≤n

{Hj
i,i′},

where the clauses Pi and Hj
i,i′ are defined as Pi

def=
∨n

j=1 xi,j and Hj
i,i′

def= (¬xi,j∨
¬xi′,j), and each xi,j is a Boolean variable with the interpretation “xi,j = true
if and only if the ith pigeon sits in the jth hole”. The Pi clauses state that each

BCbu

Â Â
BC Â BCbu+td # BCi

Â Â
BCi+td #

Â
BCtd

Fig. 5. Summary of the ordering of BC and its restricted variations based on the
polynomial simulation relation. The case BCbu # BCtd is omitted from the picture
for clarity.



pigeon has to sit in some hole, while clauses Hj
i,i′ state that no two pigeons can

sit in the same hole. The union of all the clauses Pi and Hj
i,i′ is obviously (by

the pigeon-hole principle) unsatisfiable.
The canonical Boolean circuit representation of PHPn+1

n is shown in part in
Figure 6(a). We call C(PHPn+1

n ) the PHPn+1
n gadget. Notice that as PHPn+1

n

is unsatisfiable, so is C(PHPn+1
n ). Formally the PHPn+1

n gadget is the set of

and

or or

xi,jxi’,j

i’,jl

i,i’
j

i

notnot

ph

i,jl

v

(a)

or

and and

orxn

x1
z 1 y1

xn

vn wn

vn+1

and and

or

 1

yn

n

v

v1 w1

z n

wn+1

T

T

(b)

Fig. 6. (a) A part of the PHPn+1
n gadget in detail, (b) the structure of the TD gadget.

equations

C(PHPn+1
n ) = {v = and(p1, . . . , pn+1, h

1
1,2, . . . , h

n
n+1,n)} ∪

{pi = or(xi,1, . . . , xi,n) | 1 ≤ i ≤ n + 1} ∪
{hj

i,i′ = or(li,j , li′,j) | 1 ≤ i < i′ ≤ n + 1, 1 ≤ j ≤ n} ∪
{li,j = not(xi,j) | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n},

where h1
1,2, . . . , h

n
n+1,n stands for all hj

i,i′ , where 1 ≤ i < i′ ≤ n+1 and 1 ≤ j ≤ n.
By the results in [15] we have the following theorem.

Theorem 5. The size of the minimal resolution refutations for PHPn+1
n is ex-

ponential w.r.t. n.

Combining Theorem 4, Corollary 2, and Theorem 5, we have the following corol-
lary.

Corollary 3. For each T ∈ {BCi,BCtd,BCi+td,BCbu,BCbu+td,BC}, the
size of the minimal T -refutations for C(PHPn+1

n ) is exponential w.r.t. n.



We use the pigeon-hole principle formulas because they are well-known and the
family {PHPn+1

n } has some nice features: (i) the size of each PHPn+1
n CNF

instance is polynomial w.r.t. n, and (ii) the size of the minimal resolution refu-
tation for PHPn+1

n is exponential w.r.t. n. Notice that other hard CNF formula
families with similar properties could have been used instead.

The TD Gadget The structure of the TDn gadget is shown in Figure 6(b).
Formally the TDn gadget is the set of equations

TDn = {v = or(v1, w1)} ∪
{vi = and(xi, zi) | 1 ≤ i ≤ n} ∪
{wi = and(yi, zi) | 1 ≤ i ≤ n} ∪
{zi = or(vi+1, wi+1) | 1 ≤ i ≤ n}.

The following lemma on the TDn gadget will be useful in the proofs of our main
results. This lemma derives from the fact that in order to have an entry for gate
zn in every branch of a BCtd tableau, one has to apply the cut rule on vi or wi

for each 1 ≤ i ≤ n, which leads to having an exponential number of entries in
the tableau w.r.t. n.

Lemma 1. Every BCtd-tableau for TDn in which each branch has an entry for
the gate zn is of exponential size w.r.t. n.

Proof. The entry Tv implies Tv1 or Tw1, but we cannot deduce one or the
other. Thus we must apply the cut rule on either v1 or w1 in BCtd. Assume that
we cut on v1 (cutting on w1 is symmetric). Now consider the branch in which we
have Fv1. Due to v = or(v1, w1) we must have Tw1. Then from w1 = and(y1, z1)
we deduce Ty1 and Tz1 in the branch. In the branch where we have Tv1 using
the “down” rule for and we deduce Tx1 and Tz1. Nothing else can be deduced.
Inductively on i, in order to have an entry for the gate zi in every branch of the
tableau, the tableau must contain at least 2i branches, all of which remain open.
This is because we must for each i apply the cut rule on either vi or wi. This is
demonstrated in Figure 7. Thus every tableau in which there is an entry for the
gate zn in every branch of the tableau is of size at least in the order of 2n, that
is, 2|V (TDn)|/5.

The XOR Gadget The Boolean xor function xor(x, y) = (x ∧ ¬y) ∨ (¬x ∧ y)
evaluates to true if and only if exactly one of x, y is true. Based on the xor
function we can construct a Boolean circuit, as shown in Figure 8(a), for which it
holds that the output gate ai,j evaluates to true if and only if xor(ai+1,i+2, ai+1,j)
evaluates to true. When we use this circuit construct as a part of a circuit, we
represent it graphically as an “xor gate” ⊕.

Using the “xor gate” we construct a family of XORn gadgets as shown in
Figure 8(b), having n layers Xi, 1 ≤ i ≤ n, of xor gates. Formally, the XORn
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Fig. 8. (a) The Boolean function xor as a Boolean circuit, (b) The structure of the
XORn gadget.

gadget is the set of equations

XORn = {ai,j = or(bi,j , ci,j) | 0 ≤ i < n, 1 ≤ j ≤ i + 1} ∪
{bi,j = and(di,j , ai+1,j) | 0 ≤ i < n, 1 ≤ j ≤ i + 1} ∪
{ci,j = and(ei,j , ai+1,i+2) | 0 ≤ i < n} ∪
{di,j = not(ai+1,i+2) | 0 ≤ i < n} ∪
{ei,j = not(ai+1,j) | 0 ≤ i < n, 1 ≤ j ≤ i + 1}.

The following two lemmas on the XORn gadget will be useful in the proofs
of our main results. The lemmas derive from the property of the xor gate
that, disregarding gates bi,j , ci,j , di,j , ei,j , one cannot deduce an entry for one
of ai,j , ai+1,j , ai+1,i+2 without having an entry for both of the other two gates
in the branch. This leads to the observation that in order to reach the output



gate with bottom-up cuts or an input gate with top-down cuts one must apply
the cut rule a number of times linear in n, and thus to having an exponential
number of entries in the tableau w.r.t. n.

Lemma 2. Every BCbu-tableau for XORn in which each branch has an entry
for the gate a1,1 or a1,2 is of exponential size w.r.t. n.

Proof. We show by induction on n that every BCbu-tableau for XORn in which
each branch has an entry for the gate a1,1 or a1,2 is of size at least 2n.

For n = 1, we must use the cut rule first on a1,2 or a1,1. Thus the branch has
1 application of the cut rule and the whole tableau is at least of size 21.

Now assume that the lemma holds for n. Suppose that for XORn+1 there is
a BCbu-tableau of size less than 2n+1 in which there is in each branch an entry
for a1,1 or a1,2. In such a tableau, we must use the cut rule first on one of the
gates an+1,j , 1 ≤ j ≤ n + 2. Due to the xor-nature of the a gates and the use of
bottom-up cuts, no gate of form ak,l, k ≤ n, can have a deduced entry before we
have an entry for the gate an+1,n+2 (produced either (i) by a cut on an+1,n+2,
or (ii) by a cut on an undetermined gate bn,j or cn,j such that a cut was already
made on an+1,j , forcing an entry for an+1,n+2, too). Therefore, we can assume
that the first cut was actually made on an+1,n+2. Because of the assumption
that the size of the tableau is less than 2n+1, one of the sub-tableaux below this
cut has size less than 2n. In such a sub-tableau, if the gate an+1,n+2 has an entry
Fan+1,n+2, the gate an,m has an entry Fan,m (Tan,m) if and only if the gate
an+1,m has an entry Fan+1,m (Tan+1,m). Similarly, if the gate an+1,n+2 has an
entry Tan+1,n+2, the gate an,m has an entry Fan,m (Tan,m) if and only if the
gate an+1,m has an entry Tan+1,m (Fan+1,m). Therefore, if we have made a cut
on a gate an+1,m in the sub-tableau, we could have equivalently made a cut on
an,m. By replacing each such cut on an+1,m with a cut on an,m and removing
other entries on gates not appearing in XORn, we transform the sub-tableau
for XORn+1 to a BCbu-tableau for XORn having size less than 2n. But this
contradicts the induction hypothesis and thus both sub-tableaux must have size
at least 2n and the whole BCbu-tableau for XORn+1 is of size at least in the
order of 2n+1.

Lemma 3. Every BCtd-tableau for XORn in which each branch has an entry
for some gate an,i, 1 ≤ i ≤ n + 1, is of exponential size w.r.t. n.

Proof. As shown in Figures 9 and 10, in order to deduce an entry for ai+1,j or
ai+1,i+2 from an entry for ai,j , one has to apply the cut on one of the gates in
the xor gate. This causes branching, while no branches can be closed.

By branching on b0,1 (or symmetrically on c0,1), we can thus deduce entries
for both a1,1 and a1,2 in both branches. Thus in each branch we may continue
as in either of Figures 9 or 10. Notice that after branching we have an entry for
ai+1,i+2 in every branch. In addition to entries for all ai,j , where 1 ≤ j ≤ i + 1,
this is enough to deduce entries for all ai+1,j . Still, for every i, we must apply the
cut on some gate on level i to deduce entries for the gates ai+1,j , 1 ≤ j ≤ i + 2,
doubling the number of open branches for each i. Thus every tableau in which



1. Fai,j

2. Fbi,j

3. Fci,j

4. Tai+1,j (Cut)
6. Fdi,j (2, 4)
7. Tai+1,i+2 (6)
8. Fei,j (4)

5. Fai+1,j (Cut)
9. Tei,j (5)
10. Fai+1,i+2 (3, 9)
11. Tdi,j (10)

Fig. 9. A top-down sub-tableau for the xor circuit with an Fai,j entry.

1. Tai,j

2. Tbi,j (Cut)
4. Tdi,j (2)
5. Tai+1,j (2)
6. Fai+1,i+2 (4)
7. Fci,j (6)
8. Fei,j (5)

3. Fbi,j (Cut)
9. Tci,j (1, 3)
10. Tai+1,i+2 (9)
11. Tei,j (9)
12. Fai+1,j (11)
13. Fdi,j (10)

Fig. 10. A top-down sub-tableau for the xor circuit with a Tai,j entry.

there is in every branch an entry for some gate an,i, 1 ≤ i ≤ n + 1, is of size at

least in the order of 2n, that is, 2
√
|V (XORn)|.

5.2 BCbu vs BCi

We now show that BCi cannot polynomially simulate BCbu. The proof utilises
the UNSAT (i.e., the circuit shown in Figure 1) and PHPn+1

n gadgets.

Lemma 4. There is an infinite family {Cn} of circuits such that (i) the size of
Cn is O(n3), and (ii) there is a BCbu-refutation for Cn of constant size while
any minimal BCi-refutation for Cn is of size exponential in n.

Proof. Consider the family of circuits of the type shown in Figure 11(a). Any
circuit in the family is obviously unsatisfiable. For an arbitrary n, for BCbu we
can construct a constant size refutation as follows. First, deduce Te, Tf , Tg,
Th from Tv. Then apply (say, in the PHPn+1

n gadget on the left) the cut rule
first on one of the input gates xi,j , and deduce an entry for li,j . After this, apply
the cut rule on hj

i,i′ in both of the induced branches. Now we have induced four
branches in total, having in each branch a constant number of entries, and can
apply the cut rule on a in each branch. After having an entry on a, each branch
can be closed in a constant number of steps similarly to the refutation shown in
Figure 3. Thus the generated closed tableau is of constant size.



Notice that to generate a refutation we need to reach the UNSAT gadget,
i.e., it is impossible to generate a contradiction in all the branches of a tableau
without having an entry for some of the gates in the UNSAT gadget in the
tableau.

Now consider BCi. From Tv we can deduce Te, Tf , Tg, and Th, but nothing
else. As PHPn+1

n is unsatisfiable, it is impossible to deduce Ta or Tb with “up”
rules. Thus we can only have Fa and Fb entries in any branch. In addition, a
closed tableau can only be achieved after deducing an entry for gate a or gate
b. Thus we must have either Fa or Fb in every branch. But if we have Fa or Fb
in every branch, then we effectively have a BCi-refutation for C(PHPn+1

n ). By
Corollary 3, the size of such a refutation must be exponential in n.

Theorem 6. BCbu Â BCi.

Proof. Obviously, BCbu º BCi. By Lemma 4, there is a family {Cn} of circuits
for which BCbu has constant size refutations while the minimal BCi-refutations
are of exponential size w.r.t. the circuit index n. As the size of the circuit Cn is
O(n3), the minimal BCi-refutations are of size super-polynomial in the size of
the circuit. Based on these facts, BCi º BCbu cannot hold.

5.3 BCi+td vs BCi

We now proceed to show that BCi cannot polynomially simulate BCi+td. This
follows directly from the following lemma. In the proof, we re-use the ideas
employed in the proof of Lemma 4.

Lemma 5. There is an infinite family {Cn} of circuits such that (i) the size of
Cn is O(n3), and (ii) there is a BCi+td-refutation for Cn of constant size while
any minimal BCi-refutation for Cn is of exponential size w.r.t. n.

Proof. Consider again the family of circuits of the type shown in Figure 11(a).
We have that any circuit in the family is unsatisfiable. For BCi+td we can
construct a constant size refutation by first deducing Te, then applying the cut
rule on gate a, and then closing each branch similarly to the refutation shown
in Figure 3. For BCi, all BCi-refutations will be of exponential size w.r.t. n as
argued in the proof of Lemma 4.

Theorem 7. BCi+td Â BCi.

5.4 BCi+td vs BCtd

Next we show that BCtd cannot polynomially simulate BCi+td by establish-
ing the following lemma. The proof is based on a circuit constructed from two
UNSAT gadgets and a TDn gadget.

Lemma 6. There is an infinite family {Cn} of circuits such that (i) the size of
Cn is O(n), and (ii) there is a BCi+td-refutation for Cn of linear size while any
minimal BCtd-refutation for Cn is of exponential size w.r.t. n.
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Fig. 11. (a) Circuit for Theorems 6 and 7. (b) Circuit for Theorem 8.

Proof. Consider the family of circuits of the type shown in Figure 11(b). Any
circuit in this family is obviously unsatisfiable. For BCi+td we can construct
a refutation of linear size w.r.t. n as follows. First apply consecutively the cut
rule on gates a1, b1, a2, b2 in each branch. This induces 16 branches, a constant
number. We then have an entry for each of a1, b1, a2, b2 in every branch. Now
we can deduce an entry for vn+1 and wn+1 in each branch. As C(UNSATa,b) is
unsatisfiable, we can only deduce Fvn+1 and Fwn+1. This can clearly be done in
a constant number of steps. From the entries Fvn+1, Fwn+1 we can then deduce
Fzn, and then Fvn, Fwn. Proceeding recursively, we can thus deduce Fv in every
branch with a linear number of steps w.r.t. n.

Notice that to generate a refutation we need to reach the UNSAT gadgets,
as in the proof of Lemma 4. But by Lemma 1, before reaching the gate zn

top-down, we already must have generated a tableau with exponentially many
entries w.r.t. n. Every BCtd-refutation is thus of exponential size w.r.t. n for
this family of circuits.

Theorem 8. BCi+td Â BCtd.

5.5 BCbu+td vs BCi+td

In this subsection we show that BCi+td cannot polynomially simulate BCbu+td.
Using the ideas in the proof of Lemma 4, we construct a circuit from three
circuits similar to the one employed in the proofs of Lemmas 4 and 5, an XORn

gadget, and an expander sub-circuit that connects the former four. The expander
circuit is an example of a simple nontrivial circuit in which deduction can be
propagated through the circuit in a straightforward fashion. It is applied here so
that trivial simplification of the circuit is not possible. Lemma 3 is also applied.

Lemma 7. There is an infinite family {Cn} of circuits such that (i) the size of
Cn is O(n3), and (ii) there is a BCbu+td-refutation for Cn of size O(n2) while
any minimal BCi+td-refutation for Cn is of exponential size w.r.t. n.

Proof. Consider the family of circuits of the type shown in Figure 12. Any cir-
cuit in the family is unsatisfiable. For BCbu+td we can construct a refutation
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Fig. 12. Circuit for Theorem 9.

of polynomial size w.r.t. n as follows. First apply the bottom-up strategy intro-
duced in the proof of Lemma 4 to work through the PHPn+1

n gadgets and to
generate entries for the and gates a1, a2, a3, b1, b2, b3 in every branch. As in the
proof of Lemma 4, this can be done having a constant number of entries in the
tableau. Then it is straightforward to deduce entries for v1, v2, v3 in each branch.
Furthermore, as C(UNSATa,b) is unsatisfiable, we must then have Fv1,Fv2,Fv3

in every branch. Now in an arbitrary branch, it is straightforward to deduce the
entries Fan,j for all 1 ≤ j ≤ n + 1, generating only a number of entries in the
order of n2. Continuing on, generating only a number of entries in the order of
n2, deducing recursively Fai−1,j from Fai,j and Fai,i+1 we can at last deduce
Fv. As we have in total a constant number of branches and O(n2) entries in
each branch, we clearly have a BCbu+td-refutation of size O(n2).

Again, to generate a refutation we need to reach the UNSAT gadgets. With
input cuts, this results in a refutation of exponential size w.r.t. n, as argued in
the proof of Lemma 4. By Lemma 3, any top-down approach will also result in
a refutation of exponential size w.r.t. n.

Theorem 9. BCbu+td Â BCi+td.



5.6 BCbu+td vs BCbu

Next we show that BCbu cannot polynomially simulate BCbu+td. In addition
to ideas employed in the proof of Lemma 5, we use a circuit constructed from a
pair of XORn gadgets and an UNSAT gadget, and apply Lemma 2.

Lemma 8. There is an infinite family {Cn} of circuits such that (i) the size of
Cn is O(n2), and (ii) there is a BCbu+td-refutation for Cn of constant size while
any minimal BCbu-refutation for Cn is of exponential size w.r.t. n.

Proof. Consider the family of circuits of the type shown in Figure 13(a). As
C(UNSATa,b) is unsatisfiable, any circuit in this family is also unsatisfiable.

As already described in the proof of Lemma 5, for BCbu+td we can construct
a constant size refutation top-down by first deducing Te, then applying the cut
rule on gate a, and closing each branch similarly to the refutation shown in
Figure 3.

It is impossible to generate a refutation without reaching the UNSAT gadgets,
as in the previous proofs in which we had an UNSAT gadget as a part of the
circuit. By Lemma 2, in order to reach the UNSAT gadget, we must generate a
tableau with exponential number of branches w.r.t. n. Thus any BCbu-refutation
for any circuit in this family must be of exponential size w.r.t. n.

Theorem 10. BCbu+td Â BCbu.

5.7 BC vs BCbu+td

Now we proceed by showing that BCbu+td cannot polynomially simulate BC.
The proof uses n + 1 UNSAT gadgets and 2n + 3 XORn gadgets, and applies
Lemmas 2 and 3.

Lemma 9. There is an infinite family {Cn} of circuits such that (i) the size of
Cn is O(n3), and (ii) there is a BC-refutation for Cn of size O(n2) while any
minimal BCbu+td-refutation for Cn is of exponential size w.r.t. n.
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Fig. 13. (a) Circuit for Theorem 10. (b) Circuit for Theorem 11.
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Fig. 14. How to generate a polynomial size BC-refutation for the circuit shown in
Figure 13(b).

Proof. Consider the family of circuits of the type shown in Figure 13(b). For BC
we can construct a refutation of polynomial size w.r.t. n as follows. First apply
the cut rule on an,1. In the branch in which we have Tan,1, apply the cut rule
on a1. Similarly to the refutation in Figure 3, we can close both the branch in
which we have Ta1 and the one in which we have Fa1. In the branch in which
we have Fan,1, recursively on i, cut first on an,i and then in the branch in which
we have Tan,i, cut on ai and again close both of the induced branches. This idea
is shown in Figure 14. As the refutation in Figure 3 is of constant size, we end
up with a tableau of linear size w.r.t. n in which there is a single open branch
with the entries Fan,i for all 1 ≤ i ≤ n + 1. After this, generating only number
of entries in the order of n2, deducing recursively Fai−1,j from Fai,j and Fai,i+1

we can at last deduce Fv, thus generating a BC-refutation of size O(n2).
Again, to generate a refutation we need to reach the UNSAT gadgets. By

Lemma 2, any bottom-up approach will result in a refutation of exponential size
w.r.t. n. By Lemma 3, this applies also for any top-down approach. Thus any
BCbu+td-refutation will be of exponential size w.r.t. n for any circuit in this
family.

Theorem 11. BC Â BCbu+td.



5.8 BCi vs BCtd

We now turn to show that BCi and BCtd are incomparable under the polynomial
simulation relation. The proof draws heavily on the proofs of Lemmas 4 and 6.

Theorem 12. BCi # BCtd.

Proof. Consider again the family of circuits shown in Figure 11(a). In the proof
of Lemma 4 it is shown that all BCi-refutations for any circuit in this family are
of exponential size w.r.t. n. For an idea of how to generate a BCtd-refutation of
constant size we again refer the reader to the refutation shown in Figure 3.

On the other hand, consider the family {Cn} of circuits shown in Figure 11(b).
By the proof of Lemma 6 any minimal BCtd-refutation for Cn is of exponential
size w.r.t. n, while in the same proof it is described how to construct a linear
size refutation for Cn by applying the cut rule only on input gates.

5.9 BCbu vs BCtd

Using ideas from the proof of Lemma 8 and Theorem 12, we show that BCbu

and BCtd are incomparable under the polynomial simulation relation.

Theorem 13. BCbu # BCtd.

Proof. By Theorem 12 BCtd cannot polynomially simulate BCi. As BCbu º
BCi, BCtd cannot polynomially simulate BCbu either.

Consider the family {Cn} of circuits shown in Figure 13(a). It holds that
there is a BCtd-refutation of constant size for each Cn, while any minimal BCbu-
refutation is of exponential size w.r.t. n by the proof of Lemma 8.

5.10 BCbu vs BCi+td

As the last one of the main theorems of this work, we argue that BCbu and
BCi+td are incomparable under the polynomial simulation relation.

Theorem 14. BCbu # BCi+td.

Proof. By Theorem 13, BCbu cannot polynomially simulate BCtd. As BCi+td º
BCtd, BCbu cannot polynomially simulate BCi+td either.

On the other hand, consider the family {Cn} of circuits shown in Figure 15.
Notice that a circuit Cn consists of a TDn gadget from the input gates of
which hang two sub-circuits equivalent to the circuit in Figure 11(a). Combining
Lemma 1 and the reasoning presented in the proof of Lemma 4, we have that
every BCi+td-refutation for an arbitrary circuit in this family is of exponential
size w.r.t. n, as it is impossible to reach the UNSAT gadgets using top-down and
input cuts without generating an exponential number of entries in the tableau
w.r.t. n. For BCbu, we can generate a refutation of linear size w.r.t. n as follows.
It is discussed in the proof of Lemma 4 how one can apply the cut on gate a in
the circuit in Figure 11(a). What we can do here is to cut through the PHPn+1

n
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Fig. 15. Circuit for Theorem 14.

circuits similarly as in the proof of Lemma 4. Then we can apply the cut rule on
each gate a1, b1, a2, b2 in each branch. After this, it is straightforward to deduce
an entry for gates vn+1 and wn+1 in every branch. Due to the unsatisfiability
of C(UNSATa,b), with this bottom-up approach it is only possible to deduce
Fvn+1,Fwn+1. At this point we note that as the UNSAT gadget with PHPn+1

n

gadgets hanging from the input gates has a constant number of gates, we have so
far obviously generated a tableau with constant number of entries only. Having
Fvn+1,Fwn+1 in each branch, it is possible to deduce Fv by generating only a
linear number of entries w.r.t. n, as explained in the proof of Lemma 6. Thus
we can generate a BCbu-refutation of linear size w.r.t. n for any member of the
family of circuits considered.

6 Relevance to DPLL

Each Boolean circuit C can be translated into a propositional formula in CNF of
linear size w.r.t. the size of C so that the formula is satisfiable if and only if C is.
Tseitin’s translation [30] is a standard approach, introducing a new variable vg

for each gate g in C and capturing the functional dependencies in C by clauses.
The translation is summarised in Table 1. Clearly, it is linear in the number of
gates and edges in C. The output CNF formula is the union of the sets of clauses
produced by the translation. We now argue that the main results of this work
apply to DPLL (without learning or non-chronological backtracking) in the case
that the input is in CNF translated from a circuit using Tseitin’s translation.

We assume that the reader is familiar with the basic DPLL. A DPLL-
refutation can be abstractly seen as a tableau in which the entries are sets
of clauses obtained by unit propagation and splitting. A branch in a tableau is
contradictory if there are both of the unit clauses (a) and (¬a) in the branch
for some variable a. The rest of the terminology concerning DPLL-tableaux is
synonymous in an obvious way with that of BC-tableaux.



Table 1. Tseitin’s translation of a Boolean circuit to a set of clauses.

Boolean circuit clause set

g is the output gate {(vg)}
g = not(g1) {(vg ∨ vg1), (¬vg ∨ ¬vg1)}

g = or(g1, . . . gk) {(vg1 ∨ · · · ∨ vgk ∨ ¬vg)} ∪⋃k

i=1
{(vg ∨ ¬vgi)}

g = and(g1, . . . gk) {(¬vg1 ∨ · · · ∨ ¬vgk ∨ vg)} ∪⋃k

i=1
{(¬vg ∨ vgi)}

For the following, let ϕ be a set of clauses that is obtained from a Boolean
circuit using Tseitin’s translation. It holds that DPLL for ϕ can polynomially
simulate BC for the original circuit, and vice versa. In fact, any DPLL-refutation
can be interpreted as a BC-refutation, and vice versa. Especially, we argue that
unit clauses (vg) ((¬vg)) in a DPLL-refutation correspond exactly to entries Tg
(Fg) of the corresponding BC-refutation.

Obviously, the splitting rule in DPLL is equivalent to the cut rule in BC;
adding the unit clause (vg) ((¬vg)), is equivalent to extending a branch with Tg
(Fg) by applying the cut rule, and vice versa. It is also straightforward to see
that the unit propagation rule in DPLL and the deterministic tableau rules in
Figure 2(b)–(h) in BC have equivalent deduction power. To demonstrate this,
we consider the two following example cases.

Consider the last undetermined child rule for and gates. Assume a branch
in which (i) a gate g = and(g1, . . . , gk) is constrained to false by having the
entry Fg and (ii) all g1, . . . , gk−1 are constrained to true by having the entries
Tg1, . . . ,Tgk−1. One can now deduce Fgk by applying the rule. This deduction
step can be simulated in the corresponding DPLL-tableau branch because the
branch has unit clauses (¬vg), (vg1),. . . , and (vgk−1). Thus the clause (¬vg1∨· · ·∨
¬vgk

∨ vg) resulting from Tseitin’s translation of and gates can be transformed
into the unit clause (¬vgk

) by applying unit propagation.
On the other hand, assume that it is possible to generate the unit clause (¬vg)

in a branch of the DPLL-tableau by unit propagating on an original clause of
form (vg1 ∨ · · · ∨ vgk

∨ ¬vg). This means that the branch must contain the unit
clauses (¬vg1),. . . ,(¬vgk

). Thus the corresponding BC-tableau branch has the
entries Fg1,. . . ,Fgk and the entry Fg can be deduced by applying an “up” rule
on the gate g = or(g1, . . . gk) that was translated to have the clause (vg1 ∨ · · · ∨
vgk

∨ ¬vg) in the CNF formula.

7 Conclusion

This work addresses the question of how restrictions on the use of the cut rule af-
fect proof complexity in Boolean circuit satisfiability checking based on tableaux.
The tableau method in question consists of a complete and sound subset of the
rules in the method introduced in [18]. The results show that the methods ob-
tained by the cut restrictions considered (any combination of input, top-down,
and bottom-up cuts) cannot polynomially simulate the unrestricted method.
Moreover, for each pair of restricted methods, there exist a family of circuits



{Cn} for which the sizes of the minimal proofs differ exponentially w.r.t. n be-
tween the methods.

The introduced tableau method is a non-clausal generalisation of the Davis-
Putnam-Logemann-Loveland method for CNF formulas. The results show that
DPLL with locality based cut restrictions, such as splitting on the input gates
only, cannot polynomially simulate the DPLL method with an unrestricted split-
ting rule. This, in turn, contradicts a common belief based on empirical results
[28, 12] that for CNF formulas obtained from a circuit (or formula) representa-
tion, a significant gain in efficiency is obtained if splitting is restricted to variables
corresponding to input gates (or variables in the original formula).

The results suggest a number of interesting topics of further research. They
indicate that good cut heuristics, i.e. general methods for choosing gates on
which the cut rule is applied, can have significant impact on efficiency. The total
number of gates in a circuit can be enormous compared to the number of input
gates. Hence, restricting to input cuts seems to be a computationally attractive
alternative. However, our results show that allowing even slightly more general
cuts can lead to significant savings. The key research question is how to limit the
subset of gates on which to apply the cut, and how to choose a good cut among
the candidates so that the attractive computational properties are preserved. In
order to evaluate empirically the theoretical results of the paper such new cut
heuristics for Circuit Sat need to be developed and implemented. Secondly,
modern Sat solvers employ a number of search space pruning techniques, like
one-step lookahead, equivalence reasoning, cone-of-influence (see e.g. [18]) as well
as non-chronological backtracking and learning schemes (see e.g. [31, 23, 29]). An
interesting question is how proof complexity is affected by these techniques.
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