
A Compact Reformulation of Propositional
Satisfiability as Binary Constraint Satisfaction ?

Matti Järvisalo and Ilkka Niemelä

Laboratory for Theoretical Computer Science,
P.O. Box 5400, FI-02015 Helsinki University of Technology, Finland

matti.jarvisalo@hut.fi,ilkka.niemela@hut.fi

Abstract. A binary CSP encoding for the propositional satisfiability
problem (SAT) is introduced. To our knowledge, our encoding is the first
one that is linear in the number of variables, domain size and constraint
size w.r.t. the size of the SAT instance. Nevertheless, our encoding has the
same attractive properties as the well-known hidden variable encoding
when comparing the performance of (i) the Davis-Putnam procedure
with the Forward Checking and Maintaining Arc Consistency algorithms
on the encoding, and (ii) the local search methods WalkSAT and GSAT
with the Min Conflicts algorithm. Moreover, considering 2-SAT, it is
shown that a generalisation of Papadimitriou’s Random Walk algorithm
has a quadratic expected running time on our encoding.

1 Introduction

Applications of constraint satisfaction (CSP) often involve a mixture of Boolean
constraints and other finite domain constraints. In order to develop an efficient
solver for such problems one can encode all the constraints as Boolean constraints
in conjunctive normal form (CNF) and exploit efficient Boolean satisfiability
(SAT) checking techniques that have emerged in recent years, see e.g., chaff [15]
and BerkMin [10]. For interesting reformulations of CSPs as SAT, see e.g. [9, 22,
4].

A problem in this approach is that the translation to CNF often leads to a
substantial increase in the instance size especially for finite domain constraints
with large domains. Another approach is to encode such instances as binary CSPs
so that efficient CSP search techniques using e.g. filtering methods can be ex-
ploited. A number of interesting reformulations of Boolean constraints and other
non-binary constraints as binary ones have been introduced and studied [2, 3, 22,
21, 20, 1]. It has been shown that, e.g., the hidden variable encoding of Boolean
constraints in CNF to binary CSP has attractive computational properties [21].
For example, forward checking applied to the resulting binary CSP is as efficient
as the Davis-Putnam procedure [8] with unit propagation for the original SAT

? The financial support from Academy of Finland under the project Applications of
Rule-Based Constraint Programming (#53695) is gratefully acknowledged.

instance. A remaining problem is that encodings with nice computational prop-
erties (such as the hidden variable encoding) lead to an exponential increase in
the size of the CSP w.r.t. the length of the CNF clauses in the SAT instance.

In many promising applications of SAT/CSP techniques, such as planning [12],
hardware verification [6], testing [13], and bounded model checking [7], long
clauses naturally emerge. It is well-known that an arbitrary SAT instance in
CNF can be translated into a SAT instance in 3-CNF in which all clauses are
of length 3. However, this increases the number of Boolean variables and CNF
clauses and can adversely affect the solution time for the instance.

In this paper we develop a novel reformulation of CNF SAT instances as
binary CSPs with the aim of avoiding the exponential blow-up or introduction of
new Boolean variables when handling long clauses while preserving the attractive
computational properties of earlier promising encodings (such as the hidden
variable encoding).

The rest of the paper is organised as follows. First, as preliminaries we intro-
duce concepts related to propositional satisfiability and constraint satisfaction
(Section 2), and review the known CSP encodings for SAT (Section 3). We then
proceed by presenting our novel encoding (Section 4), and providing a theoretical
comparison of our encoding and the previous ones (Section 5).

2 Preliminaries

In this section we review basic concepts related to propositional satisfiability and
constraint satisfaction.

2.1 Propositional Satisfiability

A literal is a propositional variable v (a positive literal) or its negation, ¬v (a
negative literal). A clause of length k is a disjunction

∨k
i=1 li of k literals li. The

place of a literal li in a clause
∨k

i=1 li is the index i. A clause of length one
is a unit clause. A propositional formula in conjunctive normal form (a CNF
formula) is a set F = {C1, . . . , Cm}, where each Ci is a clause.

A truth assignment over a set of propositional variables V is a function π :
V → {0, 1}. A positive (negative) literal v (¬v) is satisfiable under a truth
assignment π if π(v) = 1 (π(v) = 0). A clause C =

∨k
i=1 li is satisfiable under π

if some li is satisfiable. A CNF formula F is satisfiable under π, and π is called
a satisfiable truth assignment for F , if every clause in F is satisfiable under π.

The SAT problem is the following. Given a CNF formula F , is F satisfiable?
In the k-SAT problem, each clause in F is of length k.

Most state-of-the-art systematic SAT solvers today are based on the Davis-
Putnam procedure (DP) [8]. DP is a search method that includes a pruning rule
in addition to branching; DP does unit propagation, i.e., given a unit clause l all
clauses having l are removed and ¬l is removed from each clause containing it.1

1 We do not consider additional rules such as subsumption or affirmative-negative, as
they do not affect the efficiency of DP in theoretical terms.

2

In addition to DP, we consider in this paper the local search methods Walk-
SAT [18], GSAT [19], and RW [16] for SAT. Let ∆(v) be the change in the
number of satisfied clauses achieved by flipping the truth value of the variable
v. All of the methods start with a randomly chosen truth assignment, and do
the following loops, respectively.

WalkSAT. Choose an unsatisfied clause at random, and (i) with probability
p, where 0 < p < 1, choose a variable within the clause at random, and flip its
truth value, or (ii) with probability 1− p choose at random one of the variables
within the clause for which ∆ is the greatest and flip its truth value.
GSAT. Choose at random one of the variables for which ∆ is the greatest and
flip its truth value.
RW. Choose an unsatisfied clause and a variable within the clause at random,
and flip its truth value.

2.2 Constraint Satisfaction

A constraint satisfaction problem (CSP) consists of a finite set of variables X =
{x1, . . . xn}, each xi taking on values from the domain Dom(xi), and a finite
collection of constraints (relations) R = {RX1 , . . . RXm}. Each RXi is defined
over a tuple of variables Xi = (xi1 , . . . , xik

) by a subset of the Cartesian product
Dom(xi1)× · · ·× Dom(xik

). The number of variables k in the tuple is the arity
of the constraint. In a binary CSP, each constraint is of arity two (a binary
constraint). A non-binary CSP contains constraints of arity greater than two.
A CSP can be represented by a constraint (hyper) graph, the nodes of which
correspond to variables and the edges to constraints.

An assignment φ over a subset of variables X ′ ⊆ X , where φ(xi) ∈ Dom(xi)
for each xi ∈ X ′, is consistent with a constraint R(xi1 ,...xik

) if

(i) φ(xij) is defined for all xij , and
(ii) (φ(xik

), . . . , φ(xi1)) ∈ R(xi1 ,...xik
), i.e., the assignment φ satisfies the con-

straint.

A solution to a CSP is an assignment over all the variables that is consistent
with each of the constraints. A binary relation R(x,y) is arc consistent if

(i) for each a ∈ Dom(x), there is an element b ∈ Dom(y) such that (a, b) ∈ R,
and

(ii) for each b ∈ Dom(y), there is an element a ∈ Dom(x) such that (a, b) ∈ R.

A binary CSP is FC consistent if all its constraints which have exactly one
unassigned variable are arc consistent. A binary CSP is arc consistent if all its
constraints are arc consistent. An arc consistent binary CSP is thus also FC
consistent.

A local consistency property can be enforced if there is a function LC from
CSPs to CSPs such that if C is a CSP, then LC(C) is a new CSP with the
same set of solutions. Applying such a function is called enforcing the particular

3

local consistency. Furthermore, it is required that enforcing a local consistency
property must result in a CSP satisfying the property, and that if C satisfies
the property, then LC(C) = C. For the consistency properties considered in this
paper, enforcement involves transformations that may only reduce the domains
of some of the variables.

For systematic search methods for CSPs, we consider in this paper maintain-
ing arc consistency (MAC) [17] and forward checking (FC) [11]. In addition to
branching, MAC (or full lookahead) enforces arc consistency, while FC enforces
FC consistency.

For local search methods for CSPs we consider Min Conflicts (MC) [14] and a
generalisation of RW for CSPs. These methods start with a random assignment
over all the variables, and then do the following loops, respectively.

MC. Pick a variable in a violated constraint at random, and select at ran-
dom one of the values for the variable that most reduces the number of violated
constraints.
Generalised RW. Pick a violated constraint and a variable within the con-
straint at random, and randomly select some other value for the variable.

3 Previous CSP Encodings for SAT

For the sake of comparison, we review in this section the previously known
dual, hidden variable (see e.g. [22]), and literal (introduced in [2, 3]) binary
CSP encodings and a non-binary CSP encoding for SAT. For the following, let
F = {C1, . . . , Cm} be a CNF formula over the set of variables V = {v1, . . . , vn}.

Dual encoding. A variable ci is associated with each clause Ci ∈ F . The domain
of ci consists of the truth assignments over the variables in Ci that satisfy Ci.
For every pair of clauses Ci, Cj that share a variable v the constraint

R(ci,cj) = Dom(ci)×Dom(cj) \ {(πi, πj) | πi(v) 6= πj(v)}
is introduced.

Hidden variable encoding. A variable xi with domain {0, 1} is associated
with each vi ∈ V. As in the dual encoding, a variable ci is associated with each
clause Ci ∈ F . The domain of ci consists of those truth assignments over the
variables appearing in Ci that satisfy Ci. For each clause Ci =

∨ki

j=1 lij ∈ F ,

(i) given that lij is a positive literal v, the constraint

R(ci,x) = Dom(ci)× {0, 1} \ {(π, y) | π(v) 6= y}
is introduced, where x is the variable associated with v, and

(ii) given that lij is a negative literal ¬v, the constraint

R(ci,x) = Dom(ci)× {0, 1} \ {(π, y) | π(v) = y}
is introduced, where x is the variable associated with v.

4

Literal encoding. A variable ci is associated with each Ci ∈ F . The domain
of ci consists of those literals that satisfy the clause Ci. For example, if Ci =
v1 ∨ ¬v2, the domain of ci is {v1,¬v2}. The constraint

R(ci,cj) = Dom(ci)×Dom(cj) \ {(v,¬v), (¬v, v) | v ∈ V}

is introduced for every pair of clauses Ci, Cj that contain complementary literals.

Non-binary encoding. A variable xi with domain {0, 1} is associated with
each variable vi ∈ V . Let Vars(C) denote the set of variables that appear in a
clause C. For each subset of variables V = {vj1 , . . . , vjkj

} ⊆ V such that

IV = {i | {vj1 , . . . , vjkj
} = Vars(Ci)} 6= ∅,

the constraint

R(xj1 ,...,xjkj
) =

⋂

i∈IV

{π | π is a truth assignment over V and satisfies Ci}

is introduced, where each xji is the variable associated with vji .

4 A New Binary CSP Encoding for SAT

Defined as follows, we call our new binary CSP encoding for SAT the place en-
coding.

Place encoding. A variable xi is associated with each vi ∈ V. If vi appears in
a unit clause l, then the domain of xi has only the value that satisfies l, i.e.,

(i) Dom(xi) = {1} if l is a positive literal vi, and
(ii) Dom(xi) = {0} if l is a negative literal ¬vi.

The domain of each xi is {0, 1}. A variable ci with domain {1, . . . , ki} is associ-
ated with each clause Ci ∈ F , where ki ≥ 2 is the length of Ci. For each clause
Ci =

∨ki

j=1 lij ∈ F with ki ≥ 2,

(i) given that lij is a positive literal v, the constraint

R(ci,x) = {1, . . . , ki} × {0, 1} \ {(j, 0)}

is introduced, where x is the variable associated with v, and
(ii) given that lij is a negative literal ¬v, the constraint

R(ci,x) = {1, . . . , ki} × {0, 1} \ {(j, 1)}

is introduced, where x is the variable associated with v.

5

Example 1. The place encoding of the CNF formula

{v1 ∨ v2,¬v1 ∨ v3, v2 ∨ ¬v3 ∨ ¬v4,¬v1 ∨ ¬v2 ∨ ¬v3, v4}

has the set of variables {x1, x2, x3, x4, c1, c2, c3, c4} with domains {0, 1} for x1, x2, x3,
{1} for x4, {1, 2} for c1, c2, and {1, 2, 3} for c3, c4, and has the following con-
straints.

R(c1,x1) = {(1, 1), (2, 0), (2, 1)}
R(c1,x2) = {(1, 0), (1, 1), (2, 1)}
R(c2,x1) = {(1, 0), (2, 0), (2, 1)}
R(c2,x3) = {(1, 0), (1, 1), (2, 1)}
R(c3,x2) = {(1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}
R(c3,x3) = {(1, 0), (1, 1), (2, 0), (3, 0), (3, 1)}
R(c3,x4) = {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0)}
R(c4,x1) = {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1)}
R(c4,x2) = {(1, 0), (1, 1), (2, 0), (3, 0), (3, 1)}
R(c4,x3) = {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0)}

The name place encoding comes from the fact that in the domain of a variable
associated with a clause in the encoding, each value specifies the place of a literal
in the clause that should be satisfied.

The constraint graph of the CSP above is shown in Figure 1. Notice that the
constraint graph is always bipartite, and of exactly the same structure as with
the hidden variable encoding.

x
1

x
2

x
3

x
4

c
1

c
2

c
4

c
3

Fig. 1. Constraint graph of the place encoding in Example 1.

However, there is a fundamental difference between these two encodings. In the
hidden variable encoding, each variable associated with a clause has a domain
of exponential w.r.t. k, the length of the clause. The values in the domain corre-
spond to the 2k − 1 satisfying truth assignments over the variables that appear
in the clause. On the other hand, in the place encoding each variable associated

6

with a clause has a domain of linear size w.r.t. k, each value specifying the place
of a literal that at least must be satisfied in order to satisfy the clause. For
instance, consider the clause v2 ∨ ¬v3 ∨ ¬v4. Using the shorthand

π0 = {v2 → 0, v3 → 0, v4 → 0} π4 = {v2 → 1, v3 → 0, v4 → 0}
π1 = {v2 → 0, v3 → 0, v4 → 1} π5 = {v2 → 1, v3 → 0, v4 → 1}
π2 = {v2 → 0, v3 → 1, v4 → 0} π6 = {v2 → 1, v3 → 1, v4 → 0}
π3 = {v2 → 0, v3 → 1, v4 → 1} π7 = {v2 → 1, v3 → 1, v4 → 1},

in the hidden variable encoding the domain of the associated clause c3 is

{π0, π1, π2, π4, π5, π6, π7}.
This difference might have implications in practice. Notice that when branch-
ing on a variable associated with a clause in the hidden variable encoding (if
enabled), enforcing arc consistency reduces the domain of each variable that ap-
pears in the clause into a singleton set in each branch (of which there are an
exponential number). On the other hand, when enforcing arc consistency after
branching on a variable associated with a clause in the place encoding, the do-
main of a single variable in the clause is reduced into a singleton set in each
branch (of which there are a linear number).

Last, notice that the size of a constraint dealing with a variable associated
with a clause of length k is 2k−1 for the place encoding and 2k−1 for the hidden
variable encoding. For instance, again considering the clause v2 ∨ ¬v3 ∨ ¬v4, in
the hidden variable encoding we have the constraints

R(c3,x2) = {(π0, 0), (π1, 0), (π2, 0), (π4, 1), (π5, 1), (π6, 1), (π7, 1)}
R(c3,x3) = {(π0, 0), (π1, 0), (π2, 1), (π4, 0), (π5, 0), (π6, 1), (π7, 1)}
R(c3,x4) = {(π0, 0), (π1, 1), (π2, 0), (π4, 0), (π5, 1), (π6, 0), (π7, 1)},

where we have used the shorthand above.

Theorem 1. Let F be a CNF formula and C the place encoding of F . Then F
is satisfiable if and only if C has a solution.

Proof. Let π be a satisfying truth assignment for F . Assign values to xis accord-
ing to π, i.e., assign xi ← 0 if π(vi) = 0, and xi ← 1 if π(vi) = 1. Now consider
an arbitrary clause C =

∨k
i=1 li with k ≥ 2 in F (the case of unit clauses is

trivial by the translation). Let c be the variable in C associated with C. As π
satisfies F , π must satisfy C, and furthermore π must satisfy some li. Consider
any such li. Let li be a positive (negative) literal v (¬v). Let x be the variable in
C associated with v. By the translation, we have (i, 1) ∈ R(c,x) ((i, 0) ∈ R(c,x)).
Assign c ← i. By the translation, {(i, 0), (i, 1)} ⊂ R(c,x′) for any other variable
x′ associated with a variable v′ that appears in C. Thus we do not break any of
the constraints in C.

For the other direction, take any solution to C. Consider any variable c in C
associated with a clause C in F , and all constraints R(c,xi) dealing with c. In

7

each such R(c,xi) there appears only one of (j, 0), (j, 1) for a distinct j. Thus the
value of j assigned to c in the solution fixes a certain value for the variable xi

associated with the variable vi appearing in the clause C. By the translation,
we satisfy C by assigning the value assigned to xi in the solution to the variable
vi. ut
Remark 1. Note that the place encoding of any CNF formula is arc consistent
(and thus also FC consistent).

5 Theoretical Comparison of the Encodings

5.1 Encoding k-SAT

For the following, consider a CNF formula over a set of n variables and with m
clauses, in which each clause is of length k (a k-SAT instance). A comparison
of the size of the resulting CSP w.r.t. the number of variables (#variables), the
size of the variable domains, the number of constraints (#constraints), and the
size of the constraints, using the encodings presented in the previous section is
shown in Table 1. Notice that out of all the encodings, only the place encoding is
linear in all of these parameters (number of variables, domain size, and constraint
size). For convenience, for the domain size we write, e.g., O(1) (n) / O(k) (m)
to notate that the encoding has n variables with domains of size O(1) and m
variables with domains of size O(k).

Table 1. Comparison of the sizes of the different CSP encodings for k-SAT.

Encoding #variables domain size #constraints constraint size

place n + m O(1) (n) / O(k) (m) O(kn) O(k)

dual m O(2k) O(m2) O(2k)

hidden variable n + m O(1) (n) / O(2k) (m) O(kn) O(2k)

literal m O(k) O(m2) O(k2)

non-binary n O(1) O(
ą

n
k

ć
) O(2k)

5.2 Systematic Search

In this section we subject the place encoding to the same analysis that is done
to the dual, hidden variable, literal, and non-binary encodings in [22, 21]. We
show that (i) enforcing FC consistency on the place encoding results in an arc
consistent CSP (Theorem 2), that (ii) unit propagation on a CNF formula F does
the same work as enforcing FC consistency on the place encoding of F (Theorem
3), and thus (iii) DP on a CNF formula F explores the same number of branches
as FC / MAC on the place encoding of F (Corollary 1). In the sense of these
theorems, the place encoding is equivalent to the hidden variable encoding; the

8

equivalent results for the hidden variable encoding are given in [22]. However, as
shown in Table 1, variables associated with clauses have domains of exponential
size in the hidden variable encoding, while these domains are of linear size in
the place encoding.

We begin by showing that enforcing FC consistency on the place encoding
results in an arc consistent CSP.

Theorem 2. Let F be a CNF formula and C the place encoding of F . Enforcing
FC consistency on C results in an arc consistent CSP.

Proof. Let FC(C) be the resulting CSPs when enforcing FC consistency on C.
Assume that FC(C) is not arc consistent, i.e., there is a constraint R(c,x) in
FC(C), where |Dom(c)| ≥ 2 and Dom(x) = {0, 1}, such that

(i) for some b ∈ {0, 1}, there is no a ∈ Dom(c) such that (a, b) ∈ R(c,x), or
(ii) for some a ∈ Dom(c), there is no b ∈ {0, 1} such that (a, b) ∈ R(c,x),

where c is a variable associated with a clause C and x is a variable associated
with a propositional variable v in F . Now consider these two cases.

(i) Since by the place encoding only one of (a, 0), (a, 1) belongs to R(c,x) only if
a is the place of v in C, we have Dom(c) = {a}, and thus a contradiction.

(ii) Since there is some b ∈ {0, 1} such that (a, b) ∈ R(c,x) for each a ∈ Dom(c)
by the place encoding, we should have that Dom(x) = ∅, which is a contra-
diction.

ut
Next we argue that unit propagation on a CNF formula F does the same work
as enforcing FC consistency on the place encoding of F . In fact, we show that
unit propagation produces a positive literal v (a negative literal ¬v) if and only
if enforcing FC consistency on the place encoding removes the value 0 (1) from
the domain of the variable associated with v. Due to this we say that unit
propagation and enforcing FC consistency are propagation equivalent.

Theorem 3. Let F be a CNF formula and C the place encoding of F . Unit
propagation on F is propagation equivalent to enforcing FC consistency on C.
Proof. To unit propagate, we need to assume to have a unit clause, i.e., a positive
literal v (negative literal ¬v) in F . By the place encoding, we have Dom(x) = {1}
(Dom(x) = {0}) in C, where x is associated with v. When unit propagating on v
(¬v) the literal ¬v (v) is removed from each clause C in which it appears. Let c be
the variable associated with an arbitrary such clause C. By the encoding we have
that (i, 0) ∈ R(c,x) and (i, 1) 6∈ R(c,x) ((i, 1) ∈ R(c,x) and (i, 0) 6∈ R(c,x)), where i
is the place of the literal v (¬v) in C. By having Dom(x) = {1} (Dom(x) = {0}),
enforcing FC consistency on C thus removes i from Dom(c).

Now assume that unit propagating on v (¬v) produces a new literal l. This
can be only if we have a clause C = l ∨ v (l ∨ ¬v) in F . Let c be the variable
associated with C. By the above, we must have Dom(c) = {i, j}, where i, j are
the places of v, l in C, respectively. Thus enforcing FC consistency removes i

9

from the domain of c, and furthermore, having Dom(c) = {j}, the value 0 (in
case l is positive, or 1 if l is negative) from the domain of xl associated with l.

This reasoning is straightforward to reverse. ut

Now assume branching heuristics that instantiate variables associated with propo-
sitional variables before variables associated with clauses. This enables branching
identically in a CNF formula and its place encoding. Applying Theorems 2 and 3,
it is easy to see that a proof tree for MAC / FC can be mapped into a equivalent
size search tree explored by DP, and vice versa. This is simply because branching
only on the variables in the place encoding associated with propositional vari-
ables, by Theorem 3 we generate the equivalent subproblems by branching and
then enforcing arc consistency / enforcing FC consistency / unit propagating.

Corollary 1. Let F be a CNF formula and C the place encoding of F . Given
equivalent branching heuristics, we have that MAC and FC, respectively, applied
to C explores the same number of branches as DP on F .

Combining Corollary 1 with previously known results [21], we summarise the
behaviour of MAC and FC on the different CSP encodings with respect to the
behaviour of DP on the original CNF formula in Table 2. For notation, consider-
ing X vs Y , X = Y denotes that X and Y are equivalent in the above mentioned
sense, while X > Y and X 6= Y denote that X is superior to and incomparable
with Y , respectively.

Table 2. Summary of the behaviour of MAC and FC on the different CSP encodings
with respect to the behaviour of DP on the original CNF formula. For the non-binary
encoding, nFC0 and nFC1 refer to certain types of generalisations of forward checking
for non-binary CSPs, see [5].

place dual hidden variable literal non-binary

DP vs MAC = 6= = >

DP vs FC = > = > = (nFC0), < (nFC1)

5.3 Local Search

Next we turn to local search methods. As in [21], we say that a local search
method B can simulate method A if it holds that from any state X, method B
can move to state Y in the search space if method A can. We now show that
(i) GSAT on the original CNF formula F cannot simulate MC on the place
encoding C nor vice versa (Theorem 4), and that (ii) MC on C can simulate
WalkSAT on F but not vice versa (Theorem 5). Again, in the sense of these
theorems, the place encoding is equivalent to the hidden variable encoding; the
equivalent theorems for the hidden variable encoding are proven in [21]. Here

10

we continue to consider only flipping variables in the place encoding associated
with propositional variables.

The justifications given in [21] for the hidden variable encoding apply here
also. For Theorem 4, notice that (i) for a CNF formula with two disjoint sets of
clauses, one satisfiable and the other unsatisfiable, GSAT can flip a variable oc-
curring in some clause in the satisfiable set while MC cannot, and (ii) conversely,
MC may flip a variable that would decrease the number of satisfiable clauses in
the original CNF formula while GSAT cannot.

Theorem 4. MC on the place encoding can neither simulate GSAT on the orig-
inal CNF formula nor vice versa.

For Theorem 5, notice that (i) when WalkSAT flips a propositional variable
in an unsatisfied clause, MC can also flip the associated variable in the place
encoding, while (ii) again, given a CNF formula with two disjoint sets of clauses
and an assignment which satisfies only one of these sets, WalkSAT cannot flip
a propositional variable in the satisfied set of clauses, while MC can flip the
associated variable in the case that one of the variables associated with a clause in
the satisfiable set has an assignment that contradicts the given truth assignment.

Theorem 5. MC on the place encoding can simulate WalkSAT on the original
CNF formula, but not vice versa.

Combining Theorems 4 and 5 with previously known results [21], we can sum-
marise the behaviour of MC on a selection of different CSP encodings with
respect to the behaviour of GSAT and WalkSAT on the original CNF formula
as in Table 2.

Table 3. Summary of the behaviour of MC on a selection of different CSP encodings
with respect to the behaviour of GSAT and WalkSAT on the original CNF formula.

place dual hidden variable literal non-binary

GSAT vs MC 6= 6= 6=
WalkSAT vs MC < < =

Finally we turn to the computationally tractable case of 2-SAT, and prove
a theorem on the upper bound on the number of flips the (generalised) RW
algorithm is expected to make on the place encoding of a 2-SAT instance with
n variables and m clauses. This analysis is possible as in the case of 2-SAT all
variables in the place encoding have domains of size two (whereas in the hidden
as well as the dual encoding this kind of analysis is no possible as the variables
associated with clauses have domains of size three).

Theorem 6. Generalised RW is expected to take at most (n + m)2 flips to find
a satisfying assignment when applied to the place encoding of a satisfiable 2-SAT
instance with n variables and m clauses.

11

Proof. Similarly as explained in [16] and [21], the behaviour of RW in the place
encoding can be reduced to a one-dimensional random walk with a reflecting
and an absorbing barrier. In state i, where 0 ≤ i ≤ n + m, we are i flips away
from a solution. Letting N(i) be the expected number of steps (flips) to end up
in state 0 (to find a solution) when starting from state i, we have that N(0) = 0,

N(i) ≤ 1
2
(N(i− 1) + N(i + 1)) + 1 for 0 < i < n + m

(flipping a variable in an constraint inconsistent with the current assignment
brings us closer to a solution at least with probability 50 %), and

N(n + m) ≤ N(n + m− 1) + 1.

Considering the solution N(i) = 2i(n + m) − i2 of the recurrent relation in the
worst case N(i) = 1

2 (N(i−1)+N(i+1))+1 for 0 < i < n+m and N(n+m) =
N(n +m− 1)+ 1, in the worst case i = m+ n we get N(n + m) = (n + m)2. ut

6 Conclusions

The paper develops methodology for handling constraint satisfaction problems
consisting of a mixture of Boolean constraints and other finite domain con-
straints. The idea is to map non-binary constraints to binary ones in order
to be able to exploit, e.g., advanced filtering techniques developed for binary
constraints. A number of promising reformulations of non-binary constraints as
binary ones have been developed. However, they are unoptimal when applied
to Boolean constraints given in CNF especially when the clauses are long. In
this paper we develop a new compact encoding of Boolean CNF constraints to
binary constraints which is, to our knowledge, the first one that is linear in the
number of variables, domain size, and constraint size w.r.t. to the size of the
CNF Boolean constraints. Moreover, the encoding enjoys attractive computa-
tional properties. For example, unit propagation, often used in special purpose
Boolean SAT solvers, is propagation equivalent to enforcing arc consistency /
forward checking on the novel encoding of the SAT problem. This makes it pos-
sible to use the FC or the MAC search procedure to obtain as efficient search
techniques as the DP procedure on the original SAT procedure by using suit-
able search heuristics employed for SAT. The novel encoding has nice properties
also when using local search methods. For example, MC on the novel encoding
can simulate WalkSAT on the original SAT instance and random walk search
has a quadratic expected run time on the novel encoding of a 2-SAT instance.
Properties are similar to another interesting encoding of non-binary constraints
to binary ones, namely the hidden variable encoding. However, the advantage
of the novel encoding is that it is linear in the clause length of the SAT in-
stance whereas the hidden variable encoding is exponential. An interesting topic
of further research is to study experimentally how the proposed place encoding
compares to other CSP encodings of SAT.

12

References

1. Fahiem Bacchus, Xinguang Chen, Peter van Beek, and Toby Walsh. Binary vs.
non-binary constraints. Artificial Intelligence, 140:1–37, 2002.

2. Hachemi Bennaceur. The satisfiability problem regarded as a constraint satis-
faction problem. In Proceedings of the 12th European Conference on Artificial
Intelligence (ECAI 1996), pages 155–159. John Wiley and Sons, Chichester, 1996.

3. Hachemi Bennaceur. A comparison between SAT and CSP techniques. Constraints,
9:123–138, 2004.

4. Christian Bessière, Emmanuel Hebrard, and Toby Walsh. Local consistencies in
SAT. In Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science. Springer, 2004.

5. Christian Bessière, Pedro Meseguer, Eugene C. Freuder, and Javier Larrosa. On
forward checking for non-binary constraint satisfaction. Artificial Intelligence,
141(1–2):205–224, 2002.

6. Armin Biere and Wolfgang Kunz. SAT and ATPG: Boolean engines for formal
hardware verification. In Proceedings of 20th IEEE/ACM International Conference
on Computer Aided Design (ICCAD’02), San Jose CA, USA, November 2002.
IEEE Press, 2002.

7. Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19(1):7–34,
July 2001.

8. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

9. Ian P. Gent. Arc consistency in SAT. In Proceedings of the 15th European Con-
ference on Artificial Intelligence (ECAI 2002), pages 121–125. IOS Press, 2002.

10. Evgueni Goldberg and Yakov Novikov. Berkmin: A fast and robust SAT solver.
In Proceedings of Automation and Test in Europe (DATE 2002), pages 142–149,
2002.

11. Robert M. Haralick and Gordon L. Elliot. Increasing tree-search efficiency for
constraint satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

12. Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the
10th European Conference on Artificial Intelligence, pages 359 – 363, 1992.

13. Tracy Larrabee. Test Pattern Generation Using Boolean Satisfiability. IEEE
Transactions on Computer-Aided Design, 11(1):6–22, January 1992.

14. Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solv-
ing large-scale constraint satisfaction and scheduling problems using a heuristic
repair method. In Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI’90), 1990.

15. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, pages 530–535. ACM, 2001.

16. Christos H. Papadimitriou. On selecting a satisfying truth assignment. In Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS’91), pages 163–169. IEEE Computer Society Press, 1991.

17. Daniel Sabin and Eugene C. Freuder. Contradicting conventional wisdom in con-
straint satisfaction. In Proceedings of the Second International Workshop on Prin-
ciples and Practice of Constraint Programming, PPCP’94, Rosario, Orcas Island,
Washington, USA, pages 10–20, 1994.

13

18. Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for sat-
isfiability testing. In Proceedings of the Second DIMACS Challenge on Cliques,
Coloring, and Satisfiability, 1993.

19. Bart Selman, Hector J. Levesque, and David Mitchell. A new method for solving
hard satisfiability problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 440–446. AAAI Press, 1992.

20. Kostas Stergiou and Toby Walsh. Encodings of non-binary constraint satisfaction
problems. In Proceedings of AAAI/IAAI 1999, pages 163–168. AAAI Press / MIT
press, 1999.

21. Toby Walsh. Reformulating propositional satisfiability as constraint satisfaction.
In Proceedings of Symposium on Abstraction, Reformulation and Approximation
(SARA-2000), volume 1864 of Lecture Notes in Computer Science, pages 233–246.
Springer, 2000.

22. Toby Walsh. SAT v CSP. In Proceedings of Sixth International Conference on
Principles and Practice of Constraint Programming (CP-2000), volume 1894 of
Lecture Notes in Computer Science, pages 441–456. Springer, 2000.

14

