
A Module-Based Framework for
Multi-language Constraint Modeling�

Matti Järvisalo, Emilia Oikarinen, Tomi Janhunen, and Ilkka Niemelä

Helsinki University of Technology TKK
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
{matti.jarvisalo,emilia.oikarinen,tomi.janhunen,

ilkka.niemela}@tkk.fi

Abstract. We develop a module-based framework for constraint modeling where
it is possible to combine different constraint modeling languages and exploit their
strengths in a flexible way. In the framework a constraint model consists of mod-
ules with clear input/output interfaces. When combining modules, apart from
the interface, a module is a black box whose internals are invisible to the out-
side world. Inside a module a chosen constraint language (approaches such as
CP, ASP, SAT, and MIP) can be used. This leads to a clear modular semantics
where the overall semantics of the whole constraint model is obtained from the
semantics of individual modules. The framework supports multi-language mod-
eling without the need to develop a complicated joint semantics and enables the
use of alternative semantical underpinnings such as default negation and classical
negation in the same model. Furthermore, computational aspects of the frame-
work are considered and, in particular, possibilities of benefiting from the known
module structure in solving constraint models are studied.

1 Introduction

There are several constraint-based approaches to solving combinatorial search and op-
timization problems: constraint programming (CP), answer set programming (ASP),
mixed integer programming (MIP), linear programming (LP), propositional satisfiabil-
ity checking (SAT) and its extension to satisfiability modulo theories (SMT). Each has
its particular strengths: for example, CP systems support global constraints, ASP re-
cursive definitions and default negation, MIP constraints on real-valued variables, and
SAT efficient solver technology. In larger applications it is often necessary to exploit
the strengths of several languages and to reuse and combine available components. For
example, in scheduling problems involving a large amount data and constraints, multi-
language modeling can be very useful (as also exemplified in this paper in Sect. 5).

In this work we develop a module-based framework for modeling complex prob-
lems with constraints using a combination of different modeling languages. Rather than
taking one language as a basis and extending it, we develop a framework for multi-
language modeling where different languages are treated on equal terms. The starting

� This work is financially supported by Academy of Finland under the project Methods for
Constructing and Solving Large Constraint Models (grant #122399).

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 155–168, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



156 M. Järvisalo et al.

point is to use modules with clear input/output (I/O) interfaces. When combining mod-
ules, apart from the interface, a module is a black box whose internals are invisible to
the outside world. Inside a module a chosen constraint language (for example, CP, ASP,
MIP) with its normal semantics can be used. In this way a clear modular semantics is
obtained: the overall semantics of the whole constraint model (consisting of modules)
is obtained by “composing” the semantics of individual modules.

We see substantial advantages of this approach for modeling. The clear module inter-
faces enable support for multi-language modeling without the need to develop a compli-
cated joint semantics capturing arbitrary combinations of special constraints available
in different languages. It is also possible to use alternative semantical underpinnings
such as default negation and classical negation in the same model. The module-based
approach brings the benefits of modular programming to developing constraints models
and enables to create libraries to enhance module reuse. It also improves elaboration
tolerance and facilitates maintaining and updating a constraint model. Moreover, ex-
tending the approach with further languages is conceptually straightforward.

Computational aspects of the framework are also promising. Module interfaces and
separation of inputs and outputs can be exploited in decision methods, for example, with
more top-down solution techniques where the overall output of the constraint model can
be used to identify the relevant parts of the model. The module-based approach allows
optimizing the computational efficiency of a model in a structured way: a module can
be replaced by another (more optimized) version without altering the solutions of the
model as long as the I/O relation of the module is not changed. Similarly, the framework
supports modular testing, validation, and debugging of constraint models.

This module-based framework for multi-language modeling seems to be a novel ap-
proach. Several approaches to adding modularity to ASP languages [1,2,3,4] have been
proposed. However, in these approaches modular multi-language modeling is not directly
supported (although the combination of propositional ASP and SAT modules is studied
in [5]). A large number of extended modeling languages have also been previously pro-
posed. On one hand, ASP languages have been extended with constraints or other ex-
ternally defined relations (see, e.g., [6,7,8,9,10,11]). On the other hand, Prolog systems
have been extended with ASP features [12,13,14]. Extended modeling languages have
been developed also for constraint programming, including ESRA [15], ESSENCE [16],
and Zinc [17]. However, none of the approaches supports modular multi-language mod-
eling where different languages are treated on equal terms. Instead, they can all be seen
as extensions of a given basic language with features from other languages.

The rest of this paper is organized as follows. As preliminaries, we first give a generic
definition of constraints and related notation (Sect. 2). Then constraint modules, the ba-
sic building blocks of module systems, are introduced (Sect. 3). The language of mod-
ule systems, based on composing constraint modules, is discussed in Sect. 4. Then, in
Sect. 5 we discuss how the framework can be instantiated in practice: A larger applica-
tion is considered in order to illustrate the issues arising in using a multi-language mod-
eling approach, and the required language interface for constructing a multi-language
module system is sketched. Before conclusions (Sect. 7), computational aspects, and
especially, possibilities of benefiting from the explicit modular constraint model de-
scription when solving such a model are highlighted (Sect. 6).



A Module-Based Framework for Multi-language Constraint Modeling 157

2 Constraints

In this section we give necessary definitions and notation related to the generic concept
of constraints applied in this work. These serve as basic building blocks for constraint
modules which are then combined to form complex constraint models.

Let X be a set of variables. For each variable x ∈ X , we associate a set of values
D(x), called the domain of x. Given a set X ⊆ X of variables, an assignment over X
is a function

τ : X →
⋃

x∈X

D(x),

which maps variables in X to values in their domains. A constraint C over a set of
variables X is characterized by a set Solutions(C) of assignments over X , called the
satisfying assignments of C. We denote by Vars(C) the set X of variables.

It is important to notice that, since the satisfying assignments solely characterize the
constraint, this generic way of describing constraints does not specify how a constraint
should be implemented, i.e., the modeling language and semantics used for realizing
the constraint declaratively remain unspecified.

Example 1. Let C be a constraint over a set of Boolean variables {a, b}, i.e., D(a) =
D(b) = {t, f}, characterized by Solutions(C) = {τ1, τ2}, where τ1 = {a �→ t, b �→ f}
and τ2 = {a �→ f, b �→ t}. Now, C can be implemented, for example, as a normal logic
program {a ← ∼b. b ← ∼a} or as a disjunctive logic program {a ∨ b ←} in ASP, or
as a conjunctive normal form (CNF) formula {a ∨ ¬b,¬a ∨ b} in SAT.

Given an assignment τ and a set of variables X , the projection πX(τ) of τ on X is
the assignment that maps each variable x ∈ X for which τ(x) is defined to τ(x). For
instance, the projection π{a}(τ1) for τ1 from Example 1 is the assignment π{a}(τ1) =
{a �→ t} over the set {a}.

Given a constraint C, and an assignment τ over a set X of variables, the restriction
C[τ ] of C to τ is characterized by

Solutions(C[τ ]) = {τ ′ ∈ Solutions(C) | πVars(C)∩X(τ ′) = πVars(C)∩X(τ)}.

For instance, let τ3 = {b �→ f} be an assignment over {b}. Now, the restriction
C[τ3] of C from Example 1 is a constraint characterized by {τ1} ⊆ Solutions(C), i.e.,
Solutions(C[τ3]) = {τ1}.

Given two constraints C and C′, an assignment τ over Vars(C) is compatible with an
assignment τ ′ over Vars(C′) if πVars(C)∩Vars(C′)(τ) = πVars(C)∩Vars(C′)(τ ′). The union
τ ∪ τ ′ of two compatible assignments, τ and τ ′ over X and X ′, respectively, is the
assignment over X ∪X ′ mapping each x ∈ X to τ(x) and each x ∈ X ′ \X to τ ′(x).

Example 2. Let C′ be a constraint over a set of Boolean variables {b, c} characterized
by Solutions(C′) = {τ ′} such that τ ′ = {b �→ f, c �→ f}. Consider C from Example 1.
The assignment τ1 is compatible with τ ′, because {a, b} ∩ {b, c} = {b} and τ1(b) =
f = τ ′(b). On the other hand, τ2 is not compatible with τ ′, because τ2(b) = t �= τ ′(b).
The union τ1 ∪ τ ′ = {a �→ t, b �→ f, c �→ f} is an assignment over the set {a, b, c}.



158 M. Järvisalo et al.

3 Constraint Modules

The view to constructing complex constraint models proposed in this work is based on
expressing such models as module systems. Module systems are built from constraint
modules which are combined together in a controlled fashion. In this section we in-
troduce the generic concept of a constraint module. Constraint modules are based on
a chosen constraint, with the addition of an explicit I/O interface. Our definition for a
constraint module is generic in the sense that it does not insist on a specific implementa-
tion of the constraint on the declarative level. The aim here is to allow implementing the
constraint using different declarative languages, offering the implementer of a module
the possibility to choose the constraint language and the semantics.

Definition 1. A constraint moduleM is a triple 〈C, I,O〉, where C is a constraint, and
I andO, with I ∩ O = ∅, define the I/O interface ofM:

– I ⊆ Vars(C) is the input specification ofM, and
– O ⊆ Vars(C) is the output specification ofM.

A moduleM is thus a constraint with a fixed I/O interface. In analogy to the characteri-
zation of a constraint, a moduleM = 〈C, I,O〉 is characterized by a set Solutions(M)
of assignments over I ∪ O called the satisfying assignments of the module. Given a
constraint moduleM = 〈C, I,O〉 and an assignment τI over I, the set of consistent
outputs ofM w.r.t. τI is

SolutionOut(M, τI) := {πO(τ) | τ ∈ Solutions(C[τI ])}.
The satisfying assignments of a module are obtained by considering all possible input
assignments.

Definition 2. Given a constraint moduleM = 〈C, I,O〉, the set Solutions(M) of sat-
isfying assignments ofM is the union of the sets {τI∪τO | τO ∈ SolutionOut(M, τI)}
for all assignments τI over I.

Those variables in Vars(C) which are not in I ∪ O are local toM; the assignments in
Solutions(M) do not assign values to them. Notice that the possibility of local variables
enables encapsulation and information hiding. A module offers through its I/O interface
to the user a black-box implementation of a specific constraint. The idea behind this
abstract way of defining a module is that, looking from the outside of a module when
using the module as a part of a constraint model, the user is interested in the input-
output relationship, i.e., the functionality of the module. This can be highlighted by
making explicit the conditions under which two modules are considered equivalent.

Definition 3. Two constraint modules, M1 = 〈C1, I1,O1〉 and M2 = 〈C2, I2,O2〉,
are equivalent, denoted by M1 ≡ M2, if and only if I1 = I2, O1 = O2, and
Solutions(M1) = Solutions(M2).

Example 3. ConsiderM = 〈C, {a}, {b}〉, where a and b are Boolean variables, and let
Solutions(M) = {τ1, τ2} where τ1 = {a �→ t, b �→ f} and τ2 = {a �→ f, b �→ t}.
Since τ1 and τ2 are the same as in Example 1,M can be implemented using any of the
implementations of the constraint described in Example 1.



A Module-Based Framework for Multi-language Constraint Modeling 159

Moreover, the set of variables used in implementing C is not limited to {a, b}. For
instance, a logic program module [4] 〈P, I, O〉 = 〈{c ← ∼a. b ← c}, {a}, {b}〉 is
an implementation of C such that Solutions(C) = {τ3, τ4} where τ3 = {a �→ t, b �→
f, c �→ f} and τ4 = {a �→ f, b �→ t, c �→ t}.1 Now, there are two possible assign-
ments over {a}. If τI = {a �→ t} we obtain SolutionOut(M, τI) = {π{b}(τ3)} since
Solutions(C[τI ]) = {τ3} as τ3(a) = τI(a) = t. For the other possible input assign-
ment τ ′

I = {a �→ f}, we obtain SolutionOut(M, τ ′
I) = {π{b}(τ4)}. Finally, notice that

τI ∪ π{b}(τ3) = τ1 and τ ′
I ∪ π{b}(τ4) = τ2. Thus, Solutions(M) = {τ1, τ2}.

4 Module Systems

In this section we discuss how larger module systems are built from individual con-
straint modules. The idea is that module systems are constructed by connecting smaller
module systems through the I/O interfaces offered by such systems. In other words, in
analogy to constraint modules, a module system has an I/O interface, and constraint
modules are seen as primitive module systems. We will start by introducing a formal
language for expressing such systems and then introduce the semantics for module sys-
tems which are well-formed.

Definition 4 (The language of module systems)
1. A constraint moduleM = 〈C, I,O〉 is a module system with Input(M) = I and

Output(M) = O.
2. IfM is a module system and X a set of variables, then πX(M) is a module system

with Input(πX(M)) = Input(M) and Output(πX(M)) = Output(M) ∩X .
3. IfM andM′ are module systems, then (M �M′) is a module system with

Input(M1 �M2) = Input(M1) ∪ (Input(M2) \ Output(M1)) and
Output(M1 �M2) = Output(M1) ∪ Output(M2).

Notice that Definition 4 is purely syntactical. Our next goal is to define the semantics
for more complex module systems as we have already defined the sets of satisfying
assignments for individual constraint modules. This is achieved by formalizing the se-
mantics of the two operators: intuitively, projection πX offers a way of filtering the
output of a module system, whereas composition � is used for merging two module
systems into one. We start by defining the conditions under which two module systems
are composable and independent.

Definition 5 (Composable and independent module systems). Two module systems
M1 andM2 are composable if Output(M1)∩Output(M2) = ∅. Module systemM1

is independent from module systemM2 if Input(M1) ∩ Output(M2) = ∅.
Composability is used to ensure that if two module systems interfere with each others’
output, they cannot be put together. Independence allows us to ensure that two modules
are not in cyclic dependency. Notice that the independence ofM1 fromM2 does not
imply thatM2 is independent fromM1.

1 Notice that unlike other formalisms mentioned so far, the logic program modules in [4] already
facilitate I/O interfaces, and their semantics differs from the standard stable model semantics
since input variables have a classical interpretation.



160 M. Järvisalo et al.

Definition 6 (Module composition). Given two composable module systemsM1 and
M2, their compositionM1 �M2 is defined if and only ifM1 is independent fromM2.
The set of satisfying assignments ofM1 �M2, Solutions(M1 �M2), is

{(τ1∪τ2) | τ1 ∈ Solutions(M1), τ2 ∈ Solutions(M2), and τ2 is compatible with τ1}.
Example 4. LetM = 〈C, {a}, {n}〉 andM′ = 〈C′, {n}, {m}〉 be constraint modules
where a is a Boolean variable, D(n) = D(m) = {1, 2, 3}, Solutions(M) = {τ1}, and
Solutions(M′) = {τ2, τ3} where τ1 = {a �→ f, n �→ 3}, τ2 = {n �→ 1, m �→ 1},
and τ3 = {n �→ 3, m �→ 2}. Since M is independent from M′, their composition
M �M′ is defined. Notice that n ∈ Output(M)∩ Input(M′) provides the connection
betweenM andM′, i.e., n ∈ Output(M) is the input forM′ because n ∈ Input(M′).
Furthermore, Input(M�M′) = {a}, Output(M�M′) = {n, m}, and Solutions(M�
M′) = {τ1 ∪ τ3}, because τ1 is not compatible with τ2 and τ1 is compatible with τ3.

As a special case, the empty module E is a constraint module such that Input(E) =
Output(E) = ∅ and Solutions(E) = {τe}, where τe is the empty assignment. Given any
module systemM, both E �M andM � E are defined, and E �M≡M � E ≡M.

Definition 7 (Projecting output of a module system). Given a module system M
and set of variables O, the module system πO(M) is defined if and only if O ⊆
Output(M). The set of satisfying assignments of πO(M), Solutions(πO(M)), is

{πO∪Input(M)(τ) | τ ∈ Solutions(M)}.
Example 5. Consider the module systemM �M′ from Example 4 and assume that we
are not interested in the values assigned to n. Thus, we consider the projectionMπ =
π{m}(M�M′). Now Input(Mπ) = {a}, Output(Mπ)={m}, and Solutions(Mπ)=
{τπ} where τπ = π{a,m}(τ1 ∪ τ3) = {a �→ f, m �→ 2}.
We are interested in so called well-formed module systems that respect the conditions
for applying � (independence) and πX (projection is focused on output).

Definition 8 (Well-formed module system). A module system is well-formed if each
composition and projection operation is defined in the sense of Definitions 6 and 7.

Determining whether an arbitrary module system is well-formed consists of a syntactic
check on the compositionality and compatibility of the I/O interfaces (�) and subset
relation (π). From now on we use the term module system to refer to a well-formed
module system. The graph formed by taking into account the input-output dependencies
of parts of a module system is directed and acyclic, and is referred to as the module
dependency graph. More precisely, the module dependency graph of a given module
system M has the set of constraint modules appearing in M as the set of vertices.
There is a edge from a constraint module M1 to module M2 if and only if at least
one output variable ofM1 is an input variable ofM2. Notice that the acyclicity comes
from that fact that recursive definitions can be stated only inside individual modules.

By definition, the semantics of a well-formed module system is compositional: com-
patible solutions for individual parts form a solution for the whole system and a solution
for the module system gives solutions for the individual parts.



A Module-Based Framework for Multi-language Constraint Modeling 161

Remark 1. Operators for � and πX provide flexible ways for building complex mod-
ule systems. Additional operators useful in practice can be defined as combinations of
these basic operators. For instance, by combining composition with projection we ob-
tainM1 �M2 defined as πOutput(M2)(M1 �M2). One could also be interested in a
non-deterministic choice of solutions forM1 andM2 (denotedM1 ∪M2) or com-
mon solutions forM1 andM2 (denotedM1 ∩M2). In order to defineM1 ∪M2 and
M1 ∩M2, we cannot assume thatM1 andM2 are composable. However, even these
operators can be expressed in terms of composition and projection using an additional
renaming scheme for variables.

5 Module Systems in Practice

We now outline how the framework for module systems developed in the previous sec-
tion can be instantiated in practice. First, we consider a demanding application to illus-
trate the issues arising in using a multi-language modeling approach. Then we sketch
the required language interface for constructing a multi-language module system.

5.1 Modular Representation for the Timetabling Domain

For illustrating multi-language modeling, we describe components involved in a modu-
lar constraint model for university timetabling, variants of which have previously been
formalized in SAT, CP, and ASP [18,19]. Designing a feasible weekly schedule for
events related to courses in a university curriculum is a challenging task. The problem
is not just about allocation time and space resources; the interdependencies of courses
and the respective events give rise to a rich body of constraints. For modeling, one
needs to express the mutual exclusion of events as regards, e.g., placing any two events
in the same lecture hall at the same time. A straightforward representation of such a con-
straint with clauses or rules may require quadratic space. In contrast, a concise encoding
can be obtained with global constraints such as all-different or cumulative constraints
typically supported by constraint programming systems. On the other hand, there are
features which are cumbersome to describe in CP. For example, exceptions like the tem-
porary unavailability of a particular lecture hall in a timetable are easy to represent with
non-monotonic rules such as those used in ASP. Moreover, rules provide a flexible way
of defining new relations on the basis of existing ones.

The structure of a modular constraint model for the university timetabling domain
is given in Fig. 1. The two ASP modules at the bottom define relations specific to
a particular problem instance. The first module, eventData, defines which events are
involved in the problem. The second, resourcesData, formalizes the time and space re-
sources available for scheduling. An individual resource is conceptualized as a pair
〈r, s〉 where r is a room and s is a session. The ASP module on top of these two
modules, dataViews, defines a number of subsidiary relations, such as ROOM(r) (avail-
able rooms) and LECTURER(l) (involved lecturers), on the basis of the relations pro-
vided by modules eventData and resourcesData. The relations MAXEVENT(n) and
MAXRESOURCE(m) hold (only) for the numbers of events n and resources m, respec-
tively. After suitable type conversions (represented by the circles in Fig. 1), these two



162 M. Järvisalo et al.

eventData resourcesData

event

dataViews

lecturer

allDifferent

...

... ...
maxResource

intint

testAllocation

allocation

resourceOf

occurs ...

session day
roomCapacity

resource

Main

maxEvent
room

Rel(int,int)

Fig. 1. Example of a Module System

size parameters serve as input for the CP module
allDifferent whose purpose is to assign different
resources (represented by integers in the range
1 . . .m) to all events (represented by an array of
integers indexed by 1 . . . n). Through such a con-
version, a constraint library implementation of
allDifferent which works only on integer-valued
variables can be directly used. The resulting ar-
ray of assignments of integers, RESOURCEOF, is
then converted to a relation for events e and re-
sources r and the ASP module allocation is used
to restore the representation of resources as inte-
gers back to pairs of rooms and sessions. The out-
come relation OCCURS(e, r, s) denotes the fact
that an event e takes place in room r during ses-
sion s. The topmost module testAllocation en-
sures that the given allocation of resources to
events, i.e., the relation OCCURS(e, r, s) meets
further criteria of interest. For instance, one could
insist on the property that sessions related with
a particular lecture hall are always reserved in a
contiguous manner, i.e., no gaps are allowed be-
tween reservations in the respective schedule.

5.2 Language Interface for Combining Constraint Modules

Referring to the theory developed in Sect. 3 and 4, we distinguish two types of module
declarations. An individual constraint module is written in a particular constraint lan-
guage accompanied by an appropriate I/O interface specification. The language of each
constraint module is declared using an identifier “SAT”, “ASP”, “CP”, etc. A module
system is effectively a definition of the interconnections between submodules encapsu-
lated by it. Since module systems are not confined to a particular constraint language
the identifier “SYSTEM” is used. In addition, simple type converters are declared when
needed, as outlined above.

In practice, a module system is not described as an expression (recall Definition 4)
using explicitly composition and projection operators. Instead, it is very useful to give
primitive constraint module descriptions as schemata which can be reused by instanti-
ating them with appropriate input and output variables. To support this we follow an ap-
proach which handles module instantiation and composition simultaneously. Modules
are instantiated using a declaration [outputlist]= modulename(inputlist);

where modulename is the name of the module being instantiated, and inputlist
and outputlist are the lists of input and output variables, respectively. This al-
lows for writing a module composition M1 �M2 as suitable module instantiations:
[x1, x2, . . .] = M1(. . .); [. . .] = M2(x1, x2, . . .); where appropriate output vari-
ables of M1 are used as input variables of M2. A module system is described as a
sequenceM1;M2; . . . ;Mn; of such instantiation declarations which is acyclic, i.e.,



A Module-Based Framework for Multi-language Constraint Modeling 163

#module ASP dataViews
(Rel(int, string, string, int, string, int) event,
Rel(int, string, int) resource,
Rel(int) session,
Rel(string,int) roomCapacity)

[Rel(int) maxEvent,
Rel(int) maxResource,
Rel(string) room,
Rel(string) lecturer]

% Determine problem dimensions
eventId(I) :- event(I,CC,T,D,L,C).
maxEvent(I) :- eventId(I), not eventId(I+1).
resourceId(I) :- resource(I,R,S).
maxResource(I) :- resourceId(I), not resourceId(I+1).

% Rooms and personnel
room(R) :- resource(I,R,S).
lecturer(L) :- event(I,CC,l,D,L,C), L!=noname.

...

#endmodule

#module SYSTEM main()

% Data (problem instance)
[event] = eventData();
[day,session,resource,roomCapacity] =
resourcesData();

% Different views of data
[maxEvent, maxResource, room, lecturer] =
dataViews(event,resource,session,roomCapacity);

% Allocating resources
[resourceOf] =
allDifferent(indexOfTrueElement(maxEvent),

indexOfTrueElement(maxResource));

% Recover rooms and sessions from resources
[occurs] = allocation(resource,

arrayToRel(resourceOf));

% Checking the feasibility allocation
[] = testAllocation(occurs);

#solve[occurs]

#endmodule

Fig. 2. Examples of a constraint module and a module system as illustrated in Fig. 1

output variables ofMi cannot be used as input variables for anyMj , j ≤ i. This guar-
antees that the set of declarations can be seen as a well-formed compositionM′

1�(M′
2�

(. . . �M′
n) . . .) whereM′

is are the corresponding instantiated constraint modules. The
projection operator is handled implicitly in the instantiation of modules. For the top
level of a module system we provide an explicit projection operator as the #solve[·]
directive for defining the actual output variables of the whole module system.

A simplified example of a constraint module and a module system is given in Fig. 2.
Each module description begins with a header line. The keyword “#module” is fol-
lowed by (i) the language identifier, e.g., SAT, ASP, CP, or SYSTEM, (ii) the name of the
module, and (iii) the specification of input and output variables enclosed in parenthe-
ses “(...)” and brackets “[...]”, respectively. The types of variables are declared
using elementary types (int, string, . . . ) and type constructors such as Rel.2 Lo-
cal variables (if any) and their types are declared with lines that begin with the keyword
#type. A module description ends with a line designated by a keyword#endmodule.
The module instantiation declarations need to be well-typed, i.e., the given input and
output variables must conform to the module interfaces. The top-level module is distin-
guished by the reserved name main and the #solve directive for defining the output
variables of the whole module system can be used only there.

6 Computational Aspects and Benefits of the Modular Approach

In this section we consider computational aspects related to module systems. First we
analyze how certain computational properties of individual constraint modules are re-
lated to those of more complex module systems. Then we show how the structure of a

2 Description of a complete typing mechanism is beyond the scope of this paper. For now, we
aim at type specifications which allow for static type checking.



164 M. Järvisalo et al.

module system can be exploited when one is interested in finding a satisfying assign-
ment for a subset of the output variables of the module system.

We describe computational properties of a constraint module under the terms check-
able, solvable, and finite output for fixed input, defined as follows.

Definition 9. A constraint moduleM = 〈C, I,O〉
– is checkable if and only if given any assignment τ over the variables in I ∪ O, it

can be decided whether τ ∈ Solutions(M);
– is solvable if and only if there is a computable function that, given any assignment τ

over the variables in I, returns an assignment in SolutionOut(M, τ) if one exists,
and reports unsatisfiability otherwise; and

– has FOFI (finite output for fixed input) if and only if (i) the set SolutionOut(M, τ)
is finite for any assignment τ over the variables in I, and (ii) there is a com-
putable function that, given any assignment τ over the variables in I, outputs
SolutionOut(M, τ).

In general, a constraint module which has FOFI is both checkable and solvable. How-
ever, a solvable (checkable, respectively) module is not necessarily checkable (solvable,
respectively).

The knowledge about a specific property forM andM′ is not necessarily enough
to guarantee that the property holds for a module system obtained usingM andM′.
Clearly, if M and M′ are checkable, then M � M′ is checkable, too. Solvability
of M and M′ does not, however, imply that M �M′ is solvable. For instance, let
M = 〈C, ∅, {a}〉 and M′ = 〈C′, {a}, {b}〉 be solvable constraint modules such that
Solutions(M) = {{a �→ 1}, {a �→ 2}}, Solutions(M′) = {{a �→ 2, b �→ 2}},
andM �M′ is defined. Assume that the computable function for M always returns
τ = {a �→ 1}. Now, SolutionOut(M′, τ) = ∅, and which leads us to think that
Solutions(M �M′) = ∅. But this is in contradiction with Solutions(M �M′) =
{{a �→ 2, b �→ 2}}. If we in addition assume thatM andM′ have the FOFI property,
thenM �M′ is solvable and, moreover, has the FOFI property.

For projection, the situation is slightly different. If M is a checkable constraint
module, then πO(M) is not necessarily checkable for O ⊂ Output(M). Given τ
over Input(M) ∪ O ⊂ Input(M) ∪ Output(M), we cannot decide whether τ ∈
Solutions(πO(M)) as we do not know the assignment for variables in Output(M)\O.
If, in addition,M is solvable, then using the projection τ ′ of τ to Input(M) we can
compute τ ′′ ∈ SolutionOut(M, τ ′) and the projection of τ ′′ to O. Thus πO(M) is
solvable.

Proposition 1. Let M and M′ be constraint modules s.t. M �M′ is defined, and
O ⊆ Output(M). IfM andM′ are checkable,M�M′ is checkable. IfM is solvable,
πO(M) is solvable. IfM andM′ have FOFI,M �M′ and πO(M) have FOFI.

Based on the concepts of total module systems and don’t care variables, the cone-of-
influence of a system is intuitively the part of the system that may influence the values of
output variables of interest. We will define the cone-of-influence reduction for module
systems which can be used in disregarding parts of a module system in the case we are
only interested in the values assigned to a subset of the output of the system.



A Module-Based Framework for Multi-language Constraint Modeling 165

Definition 10. A constraint moduleM is total if SolutionOut(M, τ) �= ∅ for all as-
signments τ over Input(M).

IfM1 andM2 are total module systems such thatM1 �M2 is defined, thenM1 �M2

is total. Furthermore πO(M) is total for any totalM and O ⊆ Output(M).
Seen as a black-box entity, testing totality from the outside is hard even on the level

of constraint modules. However, if the declarative implementation of the module is
known, there are easy-to-test syntactic conditions guaranteeing totality. For example,
in Boolean circuit satisfiability, we know that if no gate of a circuit is constrained to
a specific truth value, any module implemented by such a Boolean circuit is total. In
practice, when implementing reusable modules for inclusion in a module library, the
totality of a module could be explicitly declared in the module interface specification.

Definition 11. Given a constraint moduleM, x ∈ Input(M), and y ∈ Output(M),
we say that x is aM-don’t care w.r.t. y, if for any assignment τ over Input(M) \ {x},
{π{y}(τ ′) |τ ′∈SolutionOut(M, τ ∪ τ1)}={π{y}(τ ′) |τ ′∈SolutionOut(M, τ ∪ τ2)}
for all pairs of assignments τ1, τ2 for x.

As in the case of totality, in general checking whether a given input variable is a don’t
care is hard when constraint modules are seen as black-box entities. But again, if the
declarative implementation of the module is known, there are easy-to-test syntactic con-
ditions which guarantee that a variable is a don’t care. For example, if a CNF formula
can be split into two disjoint components, i.e., sets of clauses which do not share vari-
ables. A similar check can be done, e.g., for ASP programs and CSP instances.

In addition to totality and don’t cares, we use the concept of relevant I/O variables.
Let CM(M) denote the set of constraint modules appearing in a module system M.
For instance, ifM = πO(M1 �M2) then CM(M) = {M1,M2}.
Definition 12. Given a module systemM andO ⊆ Output(M), the set of relevant I/O
variables inM w.r.t. O, denoted by Rel(M,O), is the smallest set S ⊇ O of variables
that fulfills the following conditions:

– Input(M′) ⊆ S for each non-totalM′ ∈ CM(M).
– If y ∈ S, then for each totalM′ ∈ CM(M) such that y ∈ Output(M′),
{x ∈ Input(M′) | x is notM′-don’t care w.r.t. y} ⊆ S.

The cone-of-influence reduction allows the parts not belonging to the cone-of-influence
to be neglected when solving the constraint model.

Definition 13. Given a module systemM and a set X of variables, the module system
reductionM|X is defined as follows.

– IfM is a constraint module, then

M|X =
{E (the empty module) , if Output(M) ∩X = ∅ andM is total
M , otherwise.

– IfM is of the formM1 �M2, thenM|X = (M1|X �M2|X).
– IfM is of the form πO(M′), thenM|X = πOutput(M′|X)∩O(M′|X).

Given a module systemM and a set of variablesO, the cone-of-influence reduction of
M w.r.t. O is the module systemM|Rel(M,O).



166 M. Järvisalo et al.

For finding a satisfying assignment for O ⊆ Output(M) of a module systemM, one
needs to consider only the subsystemM|Rel(M,O) ofM.
Proposition 2. Given a module system M and a set of variables O ⊆ Output(M),
then {πO(τ) | τ ∈ Solutions(M)} = {πO(τ) | τ ∈ Solutions(M|Rel(M,O))}.
Example 6. Consider the module systemM = (M1 �M2) � (M3 �M4) illustrated
in Fig. 3. Thus, Input(M) = {a, b, c} and Output(M) = {d, e, f, g}. The constraint
moduleM2 represented with gray in Fig. 3 is not total, while the other constraint mod-
ules in CM(M), i.e.,M1,M3, andM4, are total. Assume that, in addition, it is known
that e and f areM4-don’t cares w.r.t. g. Assume that we are only interested in finding
a satisfying assignment for O = {g}. By Proposition 2 we can exploit the cone-of-
influence reduction. The set of relevant I/O variables Rel(M,O) = X = {a, b, c, d, g}
because O ⊆ Rel(M,O), Input(M2) ⊆ Rel(M,O), d is not M4-don’t care w.r.t.
g ∈ Output(M4), and a and b are notM1-don’t cares w.r.t. d ∈ Output(M1). Using
the set of relevant I/O variables, the cone-of-influence re-
duction ofM w.r.t. O is

M|Rel(M,O) = (M1 �M2)|X � (M3 �M4)|X
= (M1|X �M2|X) � (M3|X �M4|X)
= (M1 �M2) � (E �M4)
= (M1 �M2) �M4.

M2

d f g e

f

d e

M3

M4

M1

b ca

Fig. 3. A module system
7 Conclusions

We develop a generic framework for module-based constraint modeling using multiple
modeling languages within the same model. In the framework, constraint models are
constructed as module systems which are composed of constraint modules each hav-
ing an explicit input/output interface specification. This approach has many interesting
properties. First of all, individual constraint modules can be implemented using a con-
straint language most suitable for modeling the constraint in question. The approach
paves the way for reusable constraint module libraries and also allows for multiple
modelers to implement parts of a constraint model in parallel. Our framework supports
modular multi-language modeling by treating different constraint languages on equal
terms whereas previous approaches can be seen as extensions of a given basic language
with features from other languages. The modular construction of constraint models as
module systems yields in itself a structured view to the model which can be exploited
when solving the model. We describe a system-level cone-of-influence reduction, which
allows parts of the module system to be disregarded when solving a constraint model,
without the need to consider properties specific to the constraint languages employed
in implementing the individual constraint modules.

For further work, we see a number of possible approaches to solving constraint mod-
els expressed using the multi-language framework. In a hybrid system individual con-
straint modules (or parts of the module system modeled using the same constraint lan-
guage) are solved using language-specific solvers which have to interact in order to



A Module-Based Framework for Multi-language Constraint Modeling 167

compute solutions to the whole constraint model. In a translation-based approach all
parts of the model are mapped into a single constraint language for which highly effi-
cient off-the-shelf solvers are available. For example, there is interesting recent work
on bit-blasting more general CP models into SAT [20]. Another interesting paradigm
is the extension of SAT to Satisfiability Module Theories (SMT), into which e.g. sta-
ble model computation can be very compactly encoded [21]. Additionally, the modular
structure of module systems poses interesting research topics such as harnessing the I/O
interfaces in developing novel decision heuristics and devising techniques to instantiate
and ground module schemata lazily.

References

1. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quantifiers.
In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309.
Springer, Heidelberg (1997)

2. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in modular
answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 376–390. Springer, Heidelberg (2006)

3. Balduccini, M.: Modules and signature declarations for A-Prolog: Progress report. In: SEA,
pp. 41–55 (2007)

4. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for
smodels programs. Theory and Practice of Logic Programming 8(5-6), 717–761 (2008)

5. Janhunen, T.: Modular equivalence in general. In: ECAI, pp. 75–79. IOS Press, Amsterdam
(2008)

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: IJCAI, pp. 90–96 (2005)

7. Elkabani, I., Pontelli, E., Son, T.: Smodelsa - a system for computing answer sets of logic
programs with aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR
2005. LNCS (LNAI), vol. 3662, pp. 427–431. Springer, Heidelberg (2005)

8. Gebser, M., et al.: Clingcon (2009), http://www.cs.uni-potsdam.de/clingcon/
9. Tari, L., Baral, C., Anwar, S.: A language for modular answer set programming: Application

to ACC tournament scheduling. In: ASP, pp. 277–292 (2005)
10. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and con-

straint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66.
Springer, Heidelberg (2005)

11. Mellarkod, V., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. Ann. Math. Artif. Intell. 53(1-4), 251–287 (2008)

12. Castro, L., Swift, T., Warren, D.: Xasp (2009), http://xsb.sourceforge.net/
13. El-Khatib, O., Pontelli, E., Son, T.: Integrating an answer set solver into Prolog: ASP-

PROLOG. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS
(LNAI), vol. 3662, pp. 399–404. Springer, Heidelberg (2005)

14. Pontelli, E., Son, T., Baral, C.: A logic programming based framework for intelligent web
services composition. In: Managing Web Services Quality: Measuring Outcomes and Effec-
tiveness. IDEA Group Publishing (2008)

15. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for modelling
combinatorial problems. In: Bruynooghe, M. (ed.) LOPSTR 2004. LNCS, vol. 3018, pp.
214–232. Springer, Heidelberg (2004)

16. Frisch, A., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: ESSENCE: A constraint
language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)

http://www.cs.uni-potsdam.de/clingcon/
http://xsb.sourceforge.net/


168 M. Järvisalo et al.

17. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., de la Banda, M.G., Wallace, M.: The
design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

18. Goltz, H.J., Matzke, D.: University timetabling using constraint logic programming. In:
Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 320–334. Springer, Heidelberg (1999)

19. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV instantiator by backjumping
techniques. Ann. Math. Artif. Intell. 51(2-4), 195–228 (2007)

20. Huang, J.: Universal Booleanization of constraint models. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008)

21. Niemelä, I.: Stable models and difference logic. Ann. Math. Artif. Intell. 53(1-4), 313–329
(2008)


	A Module-Based Framework for Multi-language Constraint Modeling
	Introduction
	Constraints
	Constraint Modules
	Module Systems
	Module Systems in Practice 
	Modular Representation for the Timetabling Domain
	Language Interface for Combining Constraint Modules

	Computational Aspects and Benefits of the Modular Approach
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




