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Abstract

The reconstruction of the evolutionary tree of a set of species
based on qualitative attributes is a central problem in phylo-
genetics. In the NP-hard perfect phylogeny problem the in-
put is a set of taxa (species) and characters (attributes) on
them, and the task is to find an evolutionary tree that de-
scribes the evolution of the taxa so that each character state
evolves only once. However, in practical situations a perfect
phylogeny rarely exists, motivating the maximum compati-
bility problem of finding the largest subset of characters ad-
mitting a perfect phylogeny. Various declarative approaches,
based on applying integer programming (IP), answer set pro-
gramming (ASP) and pseudo-Boolean optimization (PBO)
solvers, have been proposed for maximum compatibility. In
this work we develop a new hybrid approach to solving max-
imum compatibility for multi-state characters, making use of
both declarative optimization techniques (specifically maxi-
mum satisfiability, MaxSAT) and an adaptation of the Bouch-
itté-Todinca approach to triangulation-based graph optimiza-
tion problems. Empirically our approach outperforms in scal-
ability the earlier proposed approaches w.r.t. various parame-
ters underlying the problem.

1 Introduction
Phylogenetics concerns the evolutionary history and rela-
tionships between individual or groups of individuals, e.g.,
species or populations in biology. Reconstruction of an evo-
lutionary tree of a set of species based on qualitative at-
tributes is a central problem in phylogenetics (Semple and
Steel 2003; Bordewich, Huber, and Semple 2005), and is
in many settings NP-hard (Steel 1992). In the perfect phy-
logeny problem the input is a set of taxa (species) and char-
acters (attributes) on them. Each character is a partition of a
subset of the taxa into character states, describing the prop-
erties of the taxa. The task is then to find an evolutionary tree
that describes the evolution of the taxa so that each character
state evolves only once. This problem has received a lot of
attention in theoretical algorithmics (Bodlaender, Fellows,
and Warnow 1992; Steel 1992).

However, in practical situations a perfect phylogeny
rarely exists. This gives rise to maximum compatibility, the
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problem of finding the largest subset of characters admit-
ting a perfect phylogeny. Maximum compatibility has found
various applications in analyzing real-world datasets (Ringe,
Warnow, and Taylor 2002; Brooks et al. 2007). However, de-
veloping efficient algorithms for the problem is challenging;
in addition to NP-hardness, maximum compatibility cannot
be approximated well, shown via a reduction from the in-
approximable maximum clique problem (Day and Sankoff
1986; Arora et al. 1992).

Nevertheless, the quest for practical exact algorithms for
maximum compatibility has received noticeable attention:
various declarative approaches have been proposed, includ-
ing an encoding as answer set programming (ASP) (Brooks
et al. 2007); integer programming (IP) formulations based
on minimal separators (Gusfield 2010; Gysel and Gus-
field 2011) and by reducing the general problem to a spe-
cific special case (Gusfield, Frid, and Brown 2007; Stevens
and Gusfield 2010) and a pseudo-Boolean optimization
(PBO) approach (Miranda, Lynce, and Manquinho 2014).
Beyond declarative approaches, the algorithmic BT frame-
work of Bouchitté and Todinca (2001) which yields efficient
exponential-time algorithms for various triangulation-based
graph optimization problems (Bodlaender and Fomin 2005;
Furuse and Yamazaki 2014; Fomin, Todinca, and Villanger
2015), can be adapted to solving maximum compatibil-
ity (Gysel 2014). However, this comes with the restric-
tion that the number of states allowed in the characters—
describing properties of taxa—is only two. In contrast, in
applications to biology the number of states of characters is
often naturally higher—for example, four for DNA and 20
for amino acid sequences (Wiley and Lieberman 2011).

In this work, we propose a new exact approach to maxi-
mum compatibility. We make use of the BT framework as a
basis of a novel declarative view to the problem. Whereas
BT is based on computing the so-called potential maxi-
mal cliques (PMCs) of the input graph and then perform-
ing recursive computation in the style of dynamic program-
ming over the PMCs, we harness the declarative optimiza-
tion paradigm of maximum satisfiability (MaxSAT) for the
second part. We model as MaxSAT in one shot the recursive
computations of BT (as hard clauses) and the task of opti-
mally resolving a triangulation-related issue that obstructs



extending the original BT algorithm to multi-state charac-
ters. We also give formal evidence for the fact that the re-
striction of BT to two-state characters in maximum compat-
ibility is in itself a fundamental barrier, further motivating
our hybrid approach. Our approach is also directly appli-
cable to cases where characters are weighted as well that
cases where parts of the input data is missing. We show that
an implementation of the resulting hybrid approach outper-
forms in scalability the earlier proposed approaches in terms
of various parameters underlying the maximum compatibil-
ity problem.

2 Preliminaries
We start with necessary preliminaries on graph-related con-
cepts and compatibility of phylogenetic characters. In par-
ticular, our approach to the problem builds on Theorem 1.

2.1 Graph Theory
Let G be an undirected simple graph. The set of vertices and
edges of G are V (G) and E(G), respectively. A complete
graph has an edge between every pair of its vertices. We de-
note the edges of a complete graph having S as vertices by
S2. If S is a subset of vertices of G, G[S] is an induced sub-
graph of G defined by V (G[S]) = S, E(G[S]) = E(G) ∩
S2. If G[S] is complete, S is a clique of G. The neighbours
of vertex v are N(v) = {u | (v, u) ∈ E(G)} and the neigh-
bourhood of a vertex set S is N(S) = ∪v∈SN(v) \ S. For
a vertex set S, let G \ S = G[V (G) \ S]. A subset of ver-
tices of G is a connected component if there is a path be-
tween each pair of its vertices and it is subset-maximal. We
denote the connected components of G by C(G). S is a min-
imal separator of G if there are two distinct components
C1, C2 ∈ C(G \ S) such that N(C1) = N(C2) = S.

A graph is chordal if every cycle of length at least 4 has
a chord, an edge that joins two non-adjacent vertices. Graph
H is a triangulation ofG if it is chordal, V (G) = V (H) and
E(G) ⊂ E(H). The edges in E(H) \ E(G) are called fill
edges. A minimal triangulation is a triangulation such that
no subset of its edges form another triangulation. We denote
the set of minimal triangulations of G by MT(G).

Example 1. Consider the graph G in Figure 1 (left). Let
S = {b, e}. The graph G \ S is in Figure 1 (middle). S
is a minimal separator of G as the connected components
of G \ S are C(G \ S) = {{d}, {a, c, f}} and N({d}) =
N({a, c, f}) = {b, e}. The other minimal separators of G
are {b, c}, {c, e} and {c, d}. G is not chordal since it has
chordless cycle {b, c, e, d}. The graph H in Figure 1 (right)
is a minimal triangulation of G. The fill edges of H are
E(H) \ E(G) = {(b, e)}.

2.2 Character Compatibility
In phylogenetics characters describe properties of taxa (sin-
gular: taxon). A character on a set of taxa X is a function
X : X ′ → C, where X ′ is a non-empty subset of X and C
is the state set of X . If X ′ = X , then X is a full character.
If |C| = r, then X is an r-state character. Therefore an r-
state character X partitions X ′ into r parts. We denote this
partition with π(X ) = {X−1{α} | α ∈ C}.
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Figure 1: An example graph (left), one of its subgraphs (mid-
dle), and one of its minimal triangulations (right).

For taxa X , an X-tree is a pair T = (T, φ), where T is a
tree and φ is a function φ : X → V (T ) such that v ∈ φ(X)
for each node v ∈ V (T ) with degree at most two. For a node
set S ⊂ V (T ), let TS be the minimal connected subtree of
T containing S. An X-tree displays a character X if no two
of the trees in {Tφ(A) | A ∈ π(X )} intersect each other.

Definition 1 (Semple and Steel 2003). A set of characters C
on taxa X is compatible if there is an X-tree displaying C.

The perfect phylogeny problem is to determine if a set of
characters is compatible and the maximum compatibility
problem is to find a maximum size subset of characters that
is compatible.

Example 2. Consider a set of three-state characters C =
{A,B,C} on a set of taxa X = {X1, . . . , X5} in Figure 2
(left). A is not a full character since it does not map X2 to
any state. B and C are full characters. C is compatible as
theX-tree in Figure 2 (middle) displays all of its characters.
The nodes with degree at most 2 are labeled with taxa in X
to describe φ. The internal nodes of degree 3 are labeled
with hypothetical taxa [1 1 2] and [1 2 2] which do not ap-
pear in X . Such a labeling is always possible in a way that
preserves the displayed characters.

Characters that are k-state for k > 2 are multi-state char-
acters. Maximum compatibility instances in which not all
characters are full are called instances with missing data.

We will apply a characterization of compatibility based on
triangulations of the partition intersection graph of the char-
acters. This allows us to apply the BT approach for minimal
triangulations to the maximum compatibility problem.

Definition 2 (Buneman 1974). Let C be a set of characters.
The partition intersection graph (PI-graph) int(C) of C has

V (int(C)) =
⋃
X∈C
{(X , A) | A ∈ π(X )},

E(int(C)) = {((X , A), (X ′, B)) | A ∩B 6= ∅}.
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Figure 2: Three characters on five taxa. Table describing
character states (left), X-tree that displays the characters
(middle) and the PI-graph of the characters (right).



In words, each vertex of the PI-graph corresponds to a
character state. Two vertices are connected if the corre-
sponding character states have a common taxon, i.e., the cor-
respondings parts of the partitions intersect. The PI-graph is
used to characterize compatible sets of characters as follows.
Let ((X , A), (X ′, B)) ∈ V (int(C))2 be an edge that is added
to the PI-graph. The broken characters of the edge are

BC(((X , A), (X ′, B))) =

{
{X} if X = X ′
∅ otherwise .

The broken characters of a triangulation H of int(C) are
BC(H) =

⋃
e∈E(H)BC(e).

Theorem 1 (Bordewich, Huber, and Semple 2005). Let
int(C) be a PI-graph of C. A subset of characters C′ ⊂ C
is compatible iff there is a triangulation H of int(C) with
broken characters BC(H) ⊂ C \ C′.

Therefore maximum compatibility problem reduces to
finding a triangulation H of int(C) with minimum cardinal-
ity of BC(H).
Example 3. Consider characters C on taxa X as shown in
Figure 2 (left). Figure 2 (right) is the PI-graph int(C) of
C. The vertices are labeled with the corresponding char-
acters and the states are denoted in subscripts. The PI-
graph is not chordal because it contains the chordless cycle
{A1, B1, C2, B2}. The PI-graph has two minimal triangu-
lations MT(int(C)) = {H1, H2}, each containing only one
fill edge. Let H1 be the triangulation with (A1, C2) as the
fill edge and H2 the triangulation with (B1, B2) as the fill
edge. BC(H1) = {}, and hence C is compatible. On the
other hand, BC(H2) = {B}.

3 The Bouchitté-Todinca Approach
Our work builds on an instantiation of the Bouchitté-Todinca
approach to the maximum compatibility problem. BT (Bou-
chitté and Todinca 2001; Fomin et al. 2008) was proposed
originally for the treewidth and minimum fill-in problems.
Later the algorithmic approach of BT has been extended to
cover multiple other problems that are formulated as find-
ing an optimal minimal triangulation w.r.t some cost func-
tion (Bodlaender and Fomin 2005; Furuse and Yamazaki
2014; Fomin, Todinca, and Villanger 2015). BT has also
been extended—restricted to two-state characters—to the
maximum compatibility problem via a reduction to the
weighted minimum fill-in problem (Gysel 2014). We now
first give a generic overview of the BT approach and then
explain its instantiation to maximum compatibility over two-
state characters. These details build ground for our BT-
oriented MaxSAT approach to the general maximum com-
patibility problem over multi-state characters (Section 4).

3.1 A General View on BT
The BT approach characterizes minimal triangulations of a
graph via recursion on the blocks of the graph. A pair (S,C)
is a block of G if S is a minimal separator and C is a con-
nected component of G \ S such that N(C) = S. The re-
alization of a block, R(S,C), is the subgraph induced by
S ∪ C, where the separator is filled into a clique. It has

V (R(S,C)) = S ∪ C,

E(R(S,C)) = E(G[S ∪ C]) ∪ S2.

The BT approach defines the set of minimal triangulations
of each realization of a block based on the set of minimal
triangulations of smaller realizations of blocks. In dynamic
programming algorithms that utilize the BT approach, the
dynamic programming scheme computes an optimal mini-
mal triangulation for each realization of a block.

In order to simplify representation, we define that
({}, V (G)) is also a block of G. We do this to represent the
graphG itself as a realization of a block,R({}, V (G)) = G.

The BT approach defines the transitions between blocks
with potential maximal cliques (PMCs). A set of vertices Ω
is a PMC of G if it is a maximal clique in some minimal
triangulation of G. We denote the set of PMCs of a graph
G with Π(G). The minimal triangulations of a realization
R(S,C) are characterized via PMCs of G that are contained
in S ∪C and contain the minimal separator S. We call those
PMCs the relevant PMCs of (S,C) and denote them by

R(S,C) = {Ω ∈ Π(G) | S ⊂ Ω ⊂ S ∪ C}.

The associated blocks of PMC Ω in component C are

A(C,Ω) = {(Si, Ci) | Ci ∈ C(G[C \ Ω]), Si = N(Ci)}.

Theorem 2 formalizes the recursion that characterizes the
minimal triangulations of G.

Theorem 2 (Bouchitté and Todinca 2001). H ∈
MT(R(S,C)) if and only if Ω ∈ R(S,C) and

V (H) = S ∪ C,

E(H) = Ω2 ∪
⋃

(Si,Ci)∈A(C,Ω)

E(Hi),

where Hi ∈ MT(R(Si, Ci)).

Intuitively, for each block there is a choice of which of
the relevant PMCs to fill into a clique. After filling the PMC
into a clique, the computation is divided into the associated
blocks in smaller components of the graph. The root of the
recursion is given by the block R({}, V (G)) = G.

Example 4. Consider the graph G in Figure 3 (left). Let
S = {b, c} and C = {d, e, f}. The pair (S,C) is a block
of G. There relevant PMCs of the block are R(S,C) =
{{b, c, e}, {b, c, d}}. The realizations of the two blocks as-
sociated to PMC {b, c, e} and of the single block associated
to PMC {b, c, d} are shown in Figure 3 (middle) and (right),
resp., with their minimal separators in gray.

a

b c

d e f

b

d e

c

e f

c

d e f

Figure 3: A graph G (left) and realizations R({b, e}), {d}),
R({c, e}, {f}) (middle) and R({c, d}, {e, f}) (right). Gray
vertices correspond to minimal separators of G.
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Figure 4: A PI-graph of a set of two-state characters (left)
and a minimum-weight triangulation of the PI-graph (right).

Instantiations of the BT approach enumerate the potential
maximal cliques of G and then adapt the recursion of Theo-
rem 2 to find an optimal minimal triangulation. The blocks
and relations R and A connecting them to PMCs are com-
puted in time O(|Π(G)|n3). Best known time complexity
for enumerating PMCs is O(1.7347n) (Fomin, Todinca, and
Villanger 2015), but practical algorithms are observed to of-
ten be much faster (Korhonen, Berg, and Järvisalo 2019).

3.2 BT for Two-State Maximum Compatibility
Towards our hybrid BT-oriented MaxSAT approach to maxi-
mum compatibility, Gysel (2014) provides a reduction of the
maximum compatibility problem over two-state characters
to weighted minimum fill-in problem which can be solved
directly via BT.

The idea of the reduction is that in the two-state case, for
each character X ∈ C there is only one edge e ∈ V (int(C))2

that has BC(e) = {X}, i.e., that breaks the character X .
Therefore, in order to count the number of broken edges
|BC(H)| of triangulation H , it is sufficient to count the
number of fill-edges e ∈ E(H) that have |BC(e)| = 1.

The minimum fill-in problem is to find a triangulation H
of a graph G which minimizes |E(H) \ E(G)|, the num-
ber of fill-edges. In the weighted version of the problem,
each possible fill edge is assigned a non-negative weight
by a weight function w : V (G)2 → R≥0, and the goal
is to minimize the sum of the weights of the added edges,
w(H) =

∑
e∈E(H)\E(G) w(e). Weighted minimum fill-

in can be solved in O(|Π(G)|n3) time after listing the
PMCs (Gysel 2014; Furuse and Yamazaki 2014).

Consider the weight function w(e) = |BC(e)|.
Theorem 3 (Gysel 2014). Let C be a set of two-state char-
acters. A maximum compatible subset of characters C′ ⊂ C
has size |C′| iff a minimum-weight triangulation H of int(C)
has weight w(H) = |C| − |C′|.

Example 5. Consider a set of two-state characters C =
{A,B,C,D} with a PI-graph int(C) in Figure 4 (left). The
edge weight function w of Theorem 3 assigns weight 1
to fill edges (A1, A2), (B1, B2), (C1, C2) and (D1, D2).
It assigns weight 0 to other edges. Figure 4 (right) dis-
plays a minimum-weight triangulation H of int(C). It has
fill edges (A1, A2), (B1, D1) and (A2, C2), so its weight is
w((A1, A2)) +w((B1, D1)) +w((A2, C2)) = 1 + 0 + 0 =
1. Following Theorem 3, a maximum compatible subset of
C has size 3. A maximum compatible subset is given by
C \BC(H) = {A,B,C,D} \ {A} = {B,C,D}.

However, the reduction of Gysel (2014) is not directly ap-
plicable to maximum compatibility over multi-state charac-
ters since broken characters may be counted multiple times.
This turns out to be a fundamental limitation for BT.

4 BT / MaxSAT Approach to Maximum
Compatibility over Multi-State Characters

We will provide evidence on why BT (as overviewed in Sec-
tion 3) is not applicable for solving the maximum compat-
ibility problem over characters with more than two states.
This is a critical issue in many scenarios, as biologically
interesting data most often has more character states than
two—for example, DNA sequences are over four states. To
circumvent this issue, we will introduce a novel approach to
the maximum compatibility problem that uses the BT recur-
sion to formulate the problem as MaxSAT.

4.1 Non-Generalizability of BT to Multi-State
Theorem 3 does not directly generalize to characters with
more than two states because there can be multiple possible
fill edges within each character. Our following theorem pro-
vides strong corroboration for the fact that BT (as discussed
so far) is not applicable to solving the maximum compatibil-
ity problem over multi-state characters in general.

Theorem 4. The vertex cover problem has a polynomial re-
duction to maximum compatibility of C where each compo-
nent of int(C) has 4 vertices.

Proof. Let a graph G be an instance of vertex cover prob-
lem. We create set of characters C = {Xv | v ∈ V (G)} such
that each character corresponds to a vertex of the graph. For
each edge (a, b) ∈ E(G) we create a 4-cycle in the PI-graph
int(C) by adding two new states for both Xa and Xb and four
taxa to connect these character states. A minimal triangula-
tion of this 4-cycle breaks either Xa or Xb, representing how
either a or b should be chosen to the vertex cover.

Each potential maximal clique is contained in exactly
one connected component so Theorem 4 implies that ver-
tex cover can be polynomially reduced into maximum com-
patibility of C, where int(C) has a linear number of potential
maximal cliques. In fact, the PI-graph created in the proof of
Theorem 4 has exactly 4m potential maximal cliques, where
m is the number of edges of the vertex cover instance. Cur-
rent adaptations of BT approach work in polynomial time
w.r.t the number of potential maximal cliques and the size of
the graph. By Theorem 4 and NP-hardness of vertex cover,
this kind of adaptation is not possible for maximum com-
patibility assuming P 6= NP. We conclude that, in order to
solve multi-state maximum compatibility with BT approach,
a different approach needs to be taken for solving NP-hard
problems on top of BT.

Example 6. Consider the vertex cover instance in Figure 5
(left). The reduction of Theorem 4 states that the maximum
compatibility instance on characters C = {A,B,C} in the
two tables in Figure 5 (middle) has an equivalent optimal
solution to it. The PI-graph int(C) of C in Figure 5 (right)
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Figure 5: An instance of vertex cover (left), a corresponding
maximum compatibility instance (middle) and the PI-graph
of the maximum compatibility instance (right).

consists of connected components of size 4. From the PI-
graph we see that broken characters cannot be counted in
a local manner, which is typical for BT, as the character A
could be broken by the edge (A1, A2) or (A3, A4) or both,
which are in different connected components.

4.2 An BT-MaxSAT Hybrid for Maximum
Compatibility over Multi-State Characters

To overcome the limitation implied by Theorem 4, we pro-
pose an alternative way of making use of BT in the gen-
eral setting of multi-state characters. Whereas the original
BT approach is based on computing the potential maxi-
mal cliques (PMCs) of the input graph and then perform-
ing recursive computation in the style of dynamic program-
ming over the PMCs, we harness the declarative optimiza-
tion paradigm of maximum satisfiability (MaxSAT) for the
second part.

A partial MaxSAT instance (FS , FH) consists of two sets
of clauses, soft clauses FS and the hard clauses FH , over
Boolean variables. An optimal solution is an assignment of
variables which satisfies all clauses in FH and the maximum
number of clauses in FS .

The main issue in applying the BT algorithm to multi-
state maximum compatibility is that, in the second phase of
the algorithm (i.e., after enumerating the PMCs) the broken
characters cannot be counted “locally”; we can add a fill
edge that breaks a character in one connected component,
and another fill edge that breaks the same character in a dif-
ferent connected component. Instead, one needs to reason
in a globally optimal way about the number of simultane-
ously compatible characters. To address this, we model as
MaxSAT in one shot the recursive computations of BT (as
hard clauses) and the task of finding a globally optimal way
of minimizing broken characters (as soft clauses).

The input to the MaxSAT encoding is a PI-graph of an
instance of the maximum compatibility problem and the
PMCs of the PI-graph underlying the instance. The blocks
and their relations to PMCs (R and A) are straightforward
to compute given the PMCs. For each character Xi ∈ C, we
use a variableXi to represent inclusion ofXi to the subset of
compatible characters. The assignment Xi = 1 corresponds
to including the character to the subset. The soft clauses of
the encoding are FS = {(Xi) | Xi ∈ C}, so an optimal so-
lution corresponds to the maximum number of compatible
characters.

Next we describe the hard clauses FH . The hard clauses

ensure that there is a triangulation for which the broken char-
acters are the characters Xi for whichXi is assigned to 0. To
this end, for each PMC Ω ∈ Π(G) we use a variable PΩ to
denote the PMCs that are filled into cliques. We add con-
straints as hard clauses to ensure that characters broken by
the fill edges of the PMCs are broken by the Xi variables

PΩ →
∧

Xi∈BC(Ω2)

¬Xi.

For each block (S,C) we add a variable BS,C denoting if
there is a triangulation of the realization of the block such
that its broken characters are a subset of the characters in-
dicated by Xi = 0. To express the BT recursion, we addi-
tionally add variable BS,C,Ω for each relevant PMC Ω of the
block (S,C) to indicate which of the PMCs are filled in the
BT recursion, and encode the recursion via

BS,C →
∨

Ω∈R(S,C)

BS,C,Ω,

BS,C,Ω →
∧

(Si,Ci)∈A(C,Ω)

BSi,Ci

BS,C,Ω → PΩ.

Finally, the base case is enforced by setting B{},V (G) = 1.
Often, like in Example 6, the PI-graph consists of multiple

connected components. In such cases, the hard clauses for
each connected component are generated independently.
Proposition 1. Given a PI-graph of any instance of the
maximum compatibility problem (possibly over multi-state
characters) and its PMCs, any optimal solution to the above
MaxSAT encoding corresponds to an optimal solution of the
maximum compatibility instance. Furthermore, the underly-
ing optimal X-tree can be obtained in linear time from the
optimal assignment of the variables.

Finally, as a side-note, we observe that the MaxSAT
encoding produces instances that are essentially Horn-
MaxSAT (i.e., each clause is Horn modulo negating all liter-
als except the Xi). While Horn-MaxSAT remains NP-hard,
as observed in (Marques-Silva, Ignatiev, and Morgado 2017)
Horn-MaxSAT can at least in theory be easier to solve for
certain types of current state-of-the-art MaxSAT solvers.

4.3 Preprocessing
In addition to the MaxSAT approach, we also consider mul-
tiple polynomial-time preprocessing steps to simplify the in-
stance and its PI-graph before the PMC enumeration phase
of the approach.

1. Remove character states that correspond to only one
taxon.

2. Remove characters with less than two distinct states – they
are always compatible with other characters.

3. Divide the PI-graph into atoms – induced subgraphs that
are separated by clique separators. Each atom will be con-
sidered as a separate connected component.

4. For each atom, compute a minimal triangulation. If the
minimal triangulation does not break any characters, re-
move the atom.



Techniques 1–2 are used before computing the PI-graph
of the instance, and techniques 3–4 are for simplifying
the PI-graph. Technique 1 is correct due to the equiva-
lence of missing data and states that correspond to only
one taxon (Semple and Steel 2003). Technique 2 is the triv-
ial character technique from (Stevens and Gusfield 2010).
Technique 3 is correct since a minimal triangulation will
never contain a fill-edge between two different atoms (Tar-
jan 1985). Technique 4 is based on the fact that triangula-
tions of each atom can be considered independently in the
case where they do not break any characters. To this end,
we compute minimal triangulations with the maximum car-
dinality search algorithm (Berry et al. 2004). In addition to
Technique 4, minimal triangulations are used in Technique 3
for computing the atoms (Tarjan 1985). We note that these 4
techniques cover the removal of simplicial vertices of the PI-
graph proposed by Gysel and Gusfield (2011). In particular,
splitting the graph into atoms (Technique 3) and removing
the atoms that are already chordal (Technique 4) removes all
simplicial vertices.

These preprocessing techniques can also be lifted for the
approaches that do not consider the PI-graph (including ones
we compare to in our experiments) by first employing all of
the techniques on the instance, and then taking the subset of
characters that occur in the final preprocessed PI-graph. The
rest of the characters will always be compatible.

5 Experiments
We empirically evaluate the performance of our hybrid BT-
MaxSAT approach. Our implementation, all test data and
detailed results are available via https://github.com/Laakeri/
phylogeny-aaai. We compare the performance of our im-
plementation with the performance of earlier proposed ap-
proaches to maximum compatibility over multi-state char-
acters, each of which is based on employing declarative op-
timization solvers.

PBO (Miranda, Lynce, and Manquinho 2014): Pseudo-
Boolean approach based on encoding the structure of phy-
logenetic trees.
Minsep IP (Gusfield 2010; Gysel and Gusfield 2011): Inte-
ger programming formulation based on minimal separators.
Bin IP (Gusfield, Frid, and Brown 2007; Stevens and Gus-
field 2010): Integer programming formulation based on re-
ducing the problem to the two-state case.

The PBO approach was earlier shown (Miranda, Lynce,
and Manquinho 2014) to be superior to an earlier declara-
tive approach based on answer set programming (Brooks et
al. 2007). For the PBO approach, we used the code provided
by the authors, in particular the PBO-RR variant which in-
cludes additional constraints to strengthen the PBO formula-
tion, which we observed to be the best-performing variant in
preliminary experiments. For the experiments on PBO, we
used Minisat+ (Eén and Sorensson 2006) as the PBO solver.

We re-implemented both of the IP-based approaches our-
selves, as we were unable to obtain the original implemen-
tations. For more information on these approaches, the min-
imal separator IP (Minsep IP) approach characterizes trian-
gulations of the PI-graph with minimal separators: A trian-

gulation is obtained by completing a maximal set of non-
crossing separators into cliques. The approach first enumer-
ates the (exponential number of) minimal separators of the
PI-graph, and encodes as an IP the maximality and non-
crossing constraints, creating #minseps2 constraints in the
worst case. The Bin IP approach employs first a reduction
from multi-state to two-state perfect phylogeny with miss-
ing data (Stevens and Gusfield 2010), extended to maximum
compatibility with additional constraints, and then uses an
IP formulation of Gusfield, Frid, and Brown (2007) on the
level of the character-state matrix. For both of the IP-based
approaches, we used CPLEX 12.7.1 (IBM ILOG 2017) as
the IP solver in the experiments.

We implemented our BT-MaxSAT approach based on the
Triangulator implementation of BT (Korhonen, Berg, and
Järvisalo 2019), and used MaxHS (Davies and Bacchus
2013) as the MaxSAT solver. The running times reported
for our approach include both the PMC enumeration and the
MaxSAT solving phases.

We used the preprocessing techniques as described in Sec-
tion 4.3 with all of the approaches. For Minsep IP, the pre-
processing on the PI-graph level was directly implemented,
and for PBO and Bin IP it was lifted as described in Sec-
tion 4.3. The experiments were run single-threaded on com-
puters with 2.4-GHz Intel Xeon E5-2680-v4 processors with
a per-instance 2-hour time limit and 32-GB memory limit.

Benchmarks. We generated a comprehensive set of bench-
marks using the ms data generator (Hudson 2002) employed
in various empirical evaluations of algorithms for maximum
compatibility and perfect phylogeny (Gusfield, Frid, and
Brown 2007; Gusfield 2010; Stevens and Gusfield 2010; Gy-
sel and Gusfield 2011; Gysel, Gusfield, and Stevens 2013;
Coulombe, Stevens, and Gusfield 2015) extended to multi-
state instances as described in (Gusfield 2010). The gener-
ator generates instances based on four parameters: n, the
number of taxa; m, the number of characters; k, the number
of states for each character; and r, the recombination param-
eter that controls how far the data is from admitting a perfect
phylogeny. Following Gusfield (2010) we set n = m. The
value nm reflects the size of an instance. For the parameter
k, the values 4 and 20 are biologically relevant (nucleotide
and amino acid) (Wiley and Lieberman 2011). Setting r = 0
guarantees a perfect phylogeny; we let r vary from 0 to 4.
For instance, we found that parameters n = m = 200,
k = 20, r = 2 produce instances where the maximum com-
patible subset consists of 60− 92% of the characters.

Results. We look at the results in two parts. Firstly, we tested
how the runtimes varied when two of the parameters n, k,
r was fixed and one varied. The fixed values were always
n = 200, k = 20 and r = 2, and the range of variation was
from 20 to 400 for n, from 2 to 40 for k and from 0 to 3.8
for r. For each set of parameters 20 random instances were
generated. Figure 6 shows for each parameter combination
how many instances of the 20 generated were solved by the
different approaches. Our MaxSAT approach exhibits best
performance overall regardless of which of the three param-
eters is varied, with the Minsep IP and Bin IP approaches
coming in second and third, respectively.
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Figure 6: Number of solved instances out of 20 generated with ms with different parameters fixed.

Secondly, we generated instances with all parameter com-
binations from the sets n = {50, 100, . . . , 400}, k =
{4, 10, 20, 40} and r = {0, 1, 2, 4}. We generated 5 random
instances for each of the combinations, resulting in a total of
640 instances. We compare the MaxSAT approach to the Bin
IP and Minsep IP in Figure 7 and Figure 8, respectively. Our

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

M
a
xS

A
T
 (

s)

Bin IP (s)

k=4
k=10
k=20
k=40

Figure 7: MaxSAT vs Bin IP for different values of k
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Figure 8: MaxSAT vs Minsep IP for different values of r

MaxSAT approach performs significantly better than Bin IP
at larger values of k, with a significantly fewer timeouts, and,
similarly, better than Minsep IP at larger values of r.

The MaxSAT solving phase caused a timeout on only 5
instances among all of the 1840 generated. Over solved in-
stances, the average time spent in PMC enumeration was
669s and 51s for MaxSAT solving.

Finally, we note that we also tested the algorithms on
the (unfortunately few) “real-world” benchmarks based
on datasets used in (Miranda, Lynce, and Manquinho
2014) dealing with Chinese dialects (Minett and Wang
2003), Indo-European languages (Ringe, Warnow, and Tay-
lor 2002), Mammal mitochondrial sequences (Hasegawa,
Kishino, and Yano 1985) and Alcataenia (Hoberg 1992).
These instances turned out to be mostly very fast to solve for
all of the approaches, with running times < 5 seconds, apart
from a non-preprocessed version of the Indo benchmark (on
which both Minsep IP and PBO ran out of memory, MaxSAT
solving the instance in hours) and Mammals (on which PBO
took more than 20 seconds).

6 Conclusions
The NP-hard maximum compatibility problem finds various
applications in the analysis of phylogenetic data. We pro-
posed a novel practical approach to maximum compatibil-
ity, bridging together ideas from the BT algorithmic frame-
work and declarative optimization, in particular maximum
satisfiability. Empirically, we showed that this hybrid ap-
proach outperforms earlier proposed declarative approaches
to maximum compatibility. Furthermore, we provided a rig-
orous argument for why the BT framework in itself cannot
be generalized to cover maximum compatibility in the gen-
eral setting we considered, i.e., the multi-state character set-
ting motivated by real-world applications.

In this work we focused on generalizing the second phase
of the BT approach via harnessing maximum satisfiability.
Further improvements to our approach could be achieved
by improving the first (PMC enumeration) phase of the hy-
brid approach. More generally, studying applications of the
BT-with-MaxSAT approach proposed in this work to other
problems that can be defined via minimal triangulations of
graphs but not directly as BT and dynamic programming is
another possible research direction.
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