
Computing MUS-Based Inconsistency Measures⋆

Isabelle Kuhlmann1[0000−0001−9636−122X], Andreas
Niskanen2[0000−0003−3197−2075], and Matti Järvisalo2[0000−0003−2572−063X]

1 University of Hagen, Germany
2 University of Helsinki, Finland

Abstract. We detail two instantiations of a generic algorithm for the
problematic and MUS-variable-based inconsistency measures, based on
answer set programming and Boolean satisfiability (SAT). Empirically,
the SAT-based approach allows for more efficiently computing the mea-
sures when compared to enumerating all minimal correction subsets of a
knowledge base.

Keywords: Inconsistency measurement · minimal unsatisfiability

1 Introduction

Inconsistency measurement [27, 29] aims to provide a quantitative assessment of
the level of inconsistency in knowledge bases. However, inconsistency measure-
ment in propositional knowledge bases is highly non-trivial under essentially any
reasonable quantitative measure of inconsistency [61]. Despite this, algorithmic
approaches to inconsistency measurement have been developed [41, 42, 39, 40, 57]
based on declarative techniques. However, various inconsistency measures based
on minimally unsatisfiable subsets (MUSes) of knowledge bases [32, 21, 28, 63]
cannot be directly captured with a single call to an NP optimizer due to higher
complexity of MUS-based inconsistency measures [61]. Less attention has been
paid so-far on developing algorithms for such measures [34].

We develop algorithms for the problematic (P) [28] and MUS-variable-based3

(MV) [63] inconsistency measures. Both can be determined by enumerating all
MUSes in the knowledge base (KB) in terms of the KB formulas: the former
measure is the number of KB formulas that occur in the union of the MUSes,
the latter the number of variables that occur in the union of the MUSes (rela-
tive to the number of variables in the KB). By hitting set duality [60], instead
of enumerating all MUSes, the measures can alternatively be computed by enu-
merating all MCSes of the KB [63] using SAT-based MCS enumerators [58, 59,
30, 10, 6] as extensions of MCS extractors [4, 31, 48, 51, 53]; MCS enumeration
is known to be often easier than MUS enumeration [45, 7, 55, 11, 9, 8]. However,
MCS enumeration algorithms are not specifically developed with inconsistency
measurement in mind.
⋆ Work financially supported by Deutsche Forschungsgemeinschaft (grant 506604007

/ IK) and by Academy of Finland (grants 347588 / AN and 322869, 356046 / MJ).
3 Not to be confused with the notion of variable minimal unsatisfiability [18, 5].

2 I. Kuhlmann et al.

We develop a generic algorithmic approach specifically for computing the P
and MV inconsistency measures, and detail two of its instantiations: one based
on iteratively calling an answer set programming (ASP) solver [26, 56] on a se-
quence of queries under a disjunctive answer set program specific to P and MV,
and another based on SAT-based counterexample-guided abstraction refinement
(CEGAR) [19, 20]. The SAT-based CEGAR instantiation empirically outper-
forms both ASP and state-of-the-art MCS enumerators.

2 Preliminaries

A knowledge base (KB) is a finite set of propositional formulas. The signature
At(·) of a formula or knowledge base is the set of atoms (or variables) appearing
in the formula/KB. A (truth) assignment τ : At → {0, 1} assigns a truth value
(1, true or 0, false) to each atom in At. An assignment τ satisfies a formula
ϕ (and ϕ is satisfiable) iff τ(ϕ) = 1, i.e., ϕ evaluates to 1 under τ . A KB K is
consistent if there is an assignment that satisfies all formulas in K, and otherwise
inconsistent. Let K be the set of all knowledge bases. Formally, an inconsistency
measure is a function I : K → R∞

≥0 for which I(K) = 0 iff K is consistent for
all K ∈ K. The problematic (P) inconsistency measure [28] counts the number
of formulas in a given KB participating in some conflict. Similarly, the MUS-
variable-based (MV) inconsistency measure [63] counts the number of atoms in
the signature of a KB that are involved in some conflict. A conflict is defined
by the notion of a minimal unsatisfiable subset (MUS). A set of logical formulas
S ⊆ K is a minimal unsatisfiable subset (MUS) of K if S is inconsistent, and all
S′ ⊊ S are consistent. Now, let MUS(K) be the set of MUSes of a given KB K.

Definition 1. The problematic (P) inconsistency measure Ip : K → R∞
≥0 is

Ip(K) = |
⋃
MUS(K)|. The MUS-variable-based (MV) inconsistency measure

Imv : K → R∞
≥0 is Imv(K) = |

⋃
M∈MUS(K) At(M)|/|At(K)|.

Example 1. Let K1 = {x∧ y,¬x,¬y, y∨ z}. Then MUS(K1) = {{x∧ y,¬x}, {x∧
y,¬y}}. Hence |

⋃
MUS(K1)| = |{x ∧ y,¬x,¬y}| = 3, so Ip(K1) = 3. Moreover,

|
⋃

M∈MUS(K1)
At(M)| = |At({x ∧ y,¬x}) ∪ At({x ∧ y,¬y})| = |{x, y} ∪ {x, y}| =

|{x, y}| = 2, and |At(K1)| = |{x, y, z}| = 3. Therefore Imv(K1) =
2
3 .

A set S ⊆ K is a minimal correction set (MCS) if K \ S is consistent, and
for all S′ ⊊ S, K\S′ is inconsistent. In words, MCSes identify fragments of KBs
whose removal resolves inconsistency. By hitting set duality between MUSes and
MCSes [60], we have

⋃
MUS(K) =

⋃
MCS(K) for any KB K, i.e., the union of

MUSes is the same as the union of MCSes. In turn, Ip(K) = |
⋃

MCS(K)|. The
MV measure is equivalently defined by considering atoms in MCSes [63].

3 Algorithms for the P and MV Inconsistency Measures

The P and MV measures can be computed via the union of MCSes of the in-
put KB K. This is (naively) achieved by enumerating all MCSes, as suggested

Computing MUS-Based Inconsistency Measures 3

Algorithm 1 Generic algorithm for the P and MV inconsistency measures.
Input: knowledge base K, measure I ∈ {Ip, Imv}.
1: Q← K, C ← ∅
2: while Q ̸= ∅ do
3: mcs← MCSoverlap(K, Q)
4: if mcs = ⊥ then break
5: if I = Ip then
6: C ← C ∪mcs; Q← Q \mcs
7: else if I = Imv then
8: C ← C ∪ At(mcs); Q← Q \ {ϕ ∈ K | At(ϕ) ⊆ C}
9: if I = Ip then return |C| else if I = Imv then return |C|/|At(K)|

for the MV measure [63]. However, this may result in the extraction of MCSes
redundant w.r.t. the measure: for P, an MCS which contains only formulas en-
countered in previous MCSes, and for MV an MCS whose signature is in the
signature of previous MCSes, does not affect the inconsistency value. The com-
putation of irredundant MCSes can be formalized as the MCS overlap problem:
find an MCS M of K which intersects a given query Q ⊆ K of interest. The
corresponding decision problem is Σp

2 -complete, as it is equivalent to the MUS
overlap problem [43, 37] which in turn captures the Σp

2 -complete problem of de-
ciding whether a given clause occurs in an MUS [44]. As at most a linear number
of NP oracle calls are needed for extracting an MCS [50], it is not plausible that
MCS enumeration algorithms could avoid computing redundant MCSes.

3.1 Generic Algorithm

Our generic algorithm (Algorithm 1) avoids computing redundant MCSes by
iteratively solving the MCS overlap problem instead of enumerating MCSes.
Assume that a procedure MCSoverlap is available, returning for a given KB
K and query Q an MCS mcs with mcs ∩ Q ̸= ∅, or ⊥ if no such MCS exists.
We start by initializing Q to K and C (covered elements) to ∅ (line 1). Then,
while Q remains nonempty, we extract an MCS intersecting Q (line 3). If no
such MCS exists, we exit the loop (line 4). How the query Q and the set C is
updated depends on the measure. For the P measure, we add the MCS to C and
remove it from Q (lines 5–6). For MV, we add the signature of the MCS to C
and remove from Q all formulas whose signature is included in C (lines 7–8).
Finally, we either return the size of C for the P measure, or divide it by the size
of the signature of the KB for the MV measure (line 9).

3.2 Instantiation via Disjunctive ASP

First, we detail a disjunctive ASP [17, 25, 47] approach, directly capturing Σp
2 ,

to the MCS overlap problem; see Listing 1.1. Its idea is to guess a candidate set
Scs of formulas and check whether it is a maximal satisfiable subset (MSS)—the

4 I. Kuhlmann et al.

1 1{inCs(X): kbElement(X)}.
2 inComplement(F):- kbElement(F), not inCs(F).
3 atomInComplement(A):- atomInFormula(A,F), inComplement(F).
4 validCS:- 1{ atomInComplement(A): queryAtom(A)}.
5 :- not validCS.
6 atomInCs(A):- atomInFormula(A,F), inCs(F).
7 1{ truthValueCS(A,T): tv(T)}1 :- atomInCs(A).
8 numElementsInCs(X):- X = #count{F: inCs(F)}.
9 csIsSat:- numElementsInCs(X), X{truthValueCS(F,t): inCs(F), kbElement(F)}X.

10 :- not csIsSat.
11 numSupersets(X):- numElementsInCs(Y), numKbElements(Z), X=Z-Y.
12 superset (1..X):- numSupersets(X), X>0.
13 1{ addElement(F,S): inComplement(F)}1 :- superset(S).
14 supersetEq(S1 ,S2):- superset(S1), superset(S2), S1!=S2, addElement(F1,S1),

addElement(F2 ,S2), F1==F2.
15 :- supersetEq(S1,S2).
16 inSuperset(F,S):- inCs(F), superset(S).
17 inSuperset(F,S):- addElement(F,S), superset(S).
18 atomInSuperset(A,S):- atomInCs(A), superset(S).
19 atomInSuperset(A,S):- addElement(F,S), atomInFormula(A,F).
20 truthValueSet(A,S,t) | truthValueSet(A,S,f):- atomInSuperset(A,S),

superset(S).
21 truthValueSet(A,S,t):- isUnsat(S), atomInSuperset(A,S), superset(S).
22 truthValueSet(A,S,f):- isUnsat(S), atomInSuperset(A,S), superset(S).
23 isUnsat(S):- truthValueSet(F,S,f), inSuperset(F,S).
24 :- not isUnsat(S), superset(S).

Listing 1.1: Disjunctive ASP encoding for MCS overlap.

set-complement of which is an MCS. An MSS must be satisfiable while all of its
supersets must be unsatisfiable. Moreover, we enforce that at least one atom from
At(Q) (w.r.t. MV) or, respectively, formula from Q (w.r.t. P) must be included
in the set-complement of the candidate set, i.e., an MCS. Following [39, 40], we
encode the formulas in a KB K by representing each atom x in a formula ϕ as
atomInFormula(x,ϕ), and the number of formulas as numKbElements(|K|). Atoms
and formulas are modeled as atom/1 and kbElement/1, respectively. For MV, we
represent each atom xq ∈ At(Q) as queryAtom(xq), and, for P, each formula
ϕq ∈ Q as queryFormula(ϕq). Then, e.g., a conjunction ϕ = ϕ1∧ϕ2 is encoded as
conjunction(ϕ,ϕ1,ϕ2). Truth values 1 (t) and 0 (f) are represented by tv(t,f).
The evaluation of (sub)formulas is encoded following the semantics of the con-
nectives: e.g., a conjunction ϕ = ϕ1 ∧ ϕ2 evaluates to 1 by truthValueCS(F,t):-
conjunction(F,G,H), truthValueCS(G,t), truthValueCS(H,t). Note that we need
to avoid the use of not, due to the use of saturation [23]. To check if supersets
of a candidate set are unsatisfiable, we refer to a specific superset, i.e., instead
of truthValueCS(F,t), we use truthValueSet(F,S,t), etc. A candidate set Scs

containing at least one formula ϕ ∈ K is guessed (line 1). We check that at
least one atom (w.r.t. MV) is in the set-complement (lines 2–5). (For P, line 3 is
omitted and atomInComplement (line 4) replaced by inComplement, and queryAtom
by queryFormula.) To check Scs for satisfiability, each atom in Scs (line 6) gets
a truth value (line 7); Scs is satisfiable iff all |Scs| of its formulas evaluate to 1
(lines 8–9). Only satisfiable candidate sets can be derived (line 10). To ensure
that each superset of Scs is unsatisfiable, we define |K| − |Scs| supersets (lines
11–12), and add exactly one element from the set-complement to each (line 13).
No two supersets are equal by lines 14–15. Lines 16–24 check if all supersets of
Scs are unsatisfiable. Lines 16–17 and 18–19 determine formulas (respectively

Computing MUS-Based Inconsistency Measures 5

Algorithm 2 SAT-based CEGAR for solving the MCS overlap problem. Input:
knowledge base K, query Q ⊆ K.
1: B ← ⊤
2: while true do
3: (result, τ)← SAT(

∨
ϕ∈Q ¬ϕ ∧B)

4: if result = unsat then return ⊥
5: S ← {ϕ ∈ K | τ(ϕ) = 1}
6: while true do
7: B ← B ∧

∨
ϕ∈K\S ϕ

8: (result, τ)← SAT(
∨

ϕ∈Q ¬ϕ ∧
∧

ϕ∈S ϕ ∧B)
9: if result = unsat then break else S ← {ϕ ∈ K | τ(ϕ) = 1}

10: (result, τ)← SAT(
∧

ϕ∈Q ϕ ∧
∧

ϕ∈S ϕ ∧B)
11: if result = unsat then return K \ S
12: else S ← {ϕ ∈ K | τ(ϕ) = 1}, B ← B ∧

∨
ϕ∈K\S ϕ

atoms) in a given superset. The unsatisfiability check is done by saturation: the
rule in line 20 allows the atoms in a superset to be both 1 and 0. If both 1 and
0 are derived for each atom (lines 21–22) and the formula evaluates to 0 (line
23), the formula is unsatisfiable. The constraint on line 24 enforces each super-
set to be unsatisfiable. If the disjunctive ASP program does not have an answer
set, no MCS containing at least one formula from Q (w.r.t. P) or at least one
atom from At(Q) (w.r.t. MV) exists, and Algorithm 1 terminates. Otherwise, we
extract the corresponding formulas or atoms (represented by inComplement/1 /
atomInComplement/1), and remove them from Q.

3.3 Instantiation via SAT-based CEGAR

We detail SAT-based CEGAR as a second approach to MCS overlap. The key
idea in SAT-based CEGAR is to overapproximate the solutions to the prob-
lem via a propositional abstraction. By iteratively solving the abstraction we
obtain candidate solutions, which are subsequently verified. This is done by
searching for a counterexample for the candidate solution being a valid solu-
tion to the problem. If a counterexample is found, the abstraction is refined by
adding constraints which rule out the candidate solution. Our SAT-based CE-
GAR algorithm is closely related to an earlier-proposed approach that reduces
MCS overlap to propositional circumscription [37, 36] and employs CEGAR for
circumscription [35, 2, 3] (which in itself is not directly applicable as it only sup-
ports computations over sets of individual clauses).

The CEGAR algorithm (Algorithm 2) for the MCS overlap problem takes
as input a KB K and a subset of query formulas Q ⊆ K, with the goal of find-
ing an MCS of K that intersects Q. This is equivalent to finding an MSS of K
which excludes at least one ϕ ∈ Q. As the abstraction, we drop the requirement
on maximality, and consider satisfiable subsets of K. To avoid finding assign-
ments which do not correspond to such MSSes, we initialize a set B of blocking
clauses (line 1). Since SAT solvers operate on formulas in conjunctive normal

6 I. Kuhlmann et al.

form (CNF), each ϕ ∈ K is encoded in a standard way [62] to a set of clauses
Cls(ϕ) and a variable Var(ϕ) so that ϕ is satisfiable iff Cls(ϕ) ∧ Var(ϕ) is. Thus
by initializing a SAT solver with

∧
ϕ∈K Cls(ϕ), we can query for the satisfiability

of any subset S ⊆ K with additional unit clauses
∧

ϕ∈S Var(ϕ).
In the main CEGAR loop (lines 2–12), we iteratively ask the SAT solver for

an assignment which falsifies some ϕ ∈ K (line 3). If there is no such assignment,
there is no MCS which overlaps Q, and we return ⊥ (line 4). Otherwise, a
satisfying assignment gives a satisfiable subset S of K (line 5) and K \ S is a
correction set. We subset-maximize S iteratively under the constraint that some
ϕ ∈ K is falsified (lines 6–9). Finally, we check if S is an MSS of K by asking for a
counterexample, i.e., an assignment satisfying every ϕ in Q∩S (line 10). If there
is no such assignment, K\S is an MCS which intersects Q (line 11). Otherwise we
block all subsets of the obtained satisfiable subset, including the candidate MSS
S (line 12). The number of iterations is bounded by the number of candidate
MSSes, and Algorithm 2 terminates. Note that the CEGAR approach allows for
several optimizations, in addition to using an incremental SAT solver. Since so-
called autark variables cannot be included in any MUS [38], the lean kernel, i.e.,
the set of clauses not touched by any autarky [52, 12], is an overapproximation
of the union of MUSes. A maximum autarky A of K is obtained with an MCS
extraction call [49]; A can be safely removed from every query Q in Algorithm 1.
Further, disjoint cores can be extracted by iteratively querying the SAT solver
for pairwise disjoint MUSes; their union D is an underapproximation of the union
of MUSes and hence the elements (formulas for P, atoms for MV) in D are known
to be covered in the set C.

4 Empirical Evaluation

For implementations of the SAT-based CEGAR and ASP instantiations of Algo-
rithm 1, see https://bitbucket.org/coreo-group/sat4im. We use the ASP
solver Clingo [24] 5.5.1, and we implemented the SAT-based CEGAR approach
via PySAT [33] 0.1.8.dev3 using the CaDiCaL 1.5.3 [16] SAT solver. We com-
pare the performance of the ASP and SAT-based CEGAR instantiations to
mcscache [58] as a state-of-the-art MCS enumerator and umuser [52] computing
the union of MUSes. Each KB formula ϕ ∈ K is encoded into CNF via Cls(ϕ) and
Var(ϕ), so that MCSes (resp. MUSes) of K can be computed as group-MCSes
(resp. group-MUSes [46, 54]) over {Var(ϕ) | ϕ ∈ K} with

∧
ϕ∈K Cls(ϕ) as hard

constraints. mcscache extracts one MCS of the KB at a time. We keep track of
the set of formulas (P) or variables (MV) currently covered by some MCS. We
terminate mcscache once all of the elements are covered.

We consider three variants of CEGAR: (i) CEGAR: with subset-maximization,
disjoint cores, and autarky trimming. (ii) CEGAR/no CM: Subset-maximization
of candidate MSSes (lines 6–9) is disabled, instead the SAT solver is directly
asked for a counterexample (line 10) and instead (line 11), the satisfiable subset
for an MSS is maximized. (iii) CEGAR/no AT: No autarky trimming.

Computing MUS-Based Inconsistency Measures 7

Table 1: Number of solved instances (#solved) and cumulative runtimes (CRT).
SRS (90 KBs) ML (100 KBs) ARG (100 KBs)

Approach #solved CRT (s) #solved CRT (s) #solved CRT (s)

P

CEGAR 87 1300.16 55 2576.94 51 298.78
CEGAR/no AT 87 1302.10 46 19.98 52 516.61
CEGAR/no CM 85 937.42 52 796.21 43 198.07
mcscache 87 1318.20 46 27.86 42 365.05
umuser 71 699.87 38 11.32 40 455.72
ASP 21 1783.06 15 651.65 10 203.71

MV

CEGAR 90 4.99 93 4775.11 53 453.82
CEGAR/no AT 90 5.07 46 20.17 52 629.98
CEGAR/no CM 90 5.62 85 2353.93 51 356.5
mcscache 90 6.72 46 29.06 46 387.78
umuser 71 699.87 38 11.32 40 455.72
ASP 36 1119.48 17 2645.44 10 339.04

We use KBs from three sources. (i) SRS [42, 39, 40]: 90 KBs, generated using
SyntacticRandomSampler from https://tweetyproject.org/, under 9 param-
eter combinations, randomly selecting 10 KBs per combination; (ii) ML [39, 40]:
100 randomly selected KBs from the Animals with Attributes dataset (http:
//attributes.kyb.tuebingen.mpg.de), interpreting association rules mined
with Apriori [1] as implications; (iii) ARG [40]: 100 randomly selected KBs con-
sisting of CNF clauses of a standard SAT encoding [15] for stable extensions
of abstract argumentation frameworks [22] from the ICCMA 2019 competition
with the constraint that a random subset of 20% of arguments are in the stable
extension. The experiments were run on Intel Xeon E5-2643 v3 3.40-GHz CPUs
with 192-GB RAM under Ubuntu 20.04.5 using a per-instance 900-s time limit.

The CEGAR approach performs the best, followed by mcscache and umuser;
see Table 1. Default CEGAR performs consistently well, solving significantly
more instances in particular on the ML and ARG datasets. Disjunctive ASP
solves significantly fewer instances than the other approaches. For CEGAR, dis-
abling autarky trimming (CEGAR/no AT) leads to more timeouts especially on
ML benchmarks and MV. Disabling subset-maximization (CEGAR/no CM) also
yields more timeouts, especially on the ARG dataset and P. (Disjoint cores did
not have a noticeable impact.) Every benchmark instance solved by mcscache
is also solved by the CEGAR approach, with the exception of a single ARG in-
stance for the P measure. CEGAR altogether outperforms mcscache on a great
majority of the benchmarks.

Overall, the CEGAR approach empirically outperformed ASP as well as
state-of-the-art MCS enumerators. Our results motivate the development of
specialized algorithms for other computationally notably complex inconsistency
measures, such as ones based on counting MCSes [13] and MUSes [12, 14].

8 I. Kuhlmann et al.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. VLDB’94. pp. 487–499 (1994)

2. Alviano, M.: Model enumeration in propositional circumscription via unsatisfiable
core analysis. Theory Pract. Log. Program. 17(5-6), 708–725 (2017)

3. Alviano, M.: Query answering in propositional circumscription. In: Proc. IJCAI
2018. pp. 1669–1675. ijcai.org (2018)

4. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: A
simple way of managing optional clauses. In: Proc. AAAI 2014. pp. 835–841. AAAI
Press (2014)

5. Belov, A., Ivrii, A., Matsliah, A., Marques-Silva, J.: On efficient computation of
variable MUSes. In: Proc. SAT 2012. Lecture Notes in Computer Science, vol. 7317,
pp. 298–311. Springer (2012)

6. Bendík, J.: On decomposition of maximal satisfiable subsets. In: Proc. FMCAD
2021. pp. 212–221. IEEE (2021)

7. Bendík, J., Benes, N., Cerná, I., Barnat, J.: Tunable online MUS/MSS enumera-
tion. In: Proc. FSTTCS 2016. LIPIcs, vol. 65, pp. 50:1–50:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2016)

8. Bendík, J., Cerná, I.: MUST: minimal unsatisfiable subsets enumeration tool. In:
Proc. TACAS 2020. Lecture Notes in Computer Science, vol. 12078, pp. 135–152.
Springer (2020)

9. Bendík, J., Cerná, I.: Replication-guided enumeration of minimal unsatisfiable sub-
sets. In: Proc. CP 2020. Lecture Notes in Computer Science, vol. 12333, pp. 37–54.
Springer (2020)

10. Bendík, J., Cerna, I.: Rotation based MSS/MCS enumeration. In: Proc. LPAR
2020. EPiC Series in Computing, vol. 73, pp. 120–137. EasyChair (2020)

11. Bendík, J., Cerná, I., Benes, N.: Recursive online enumeration of all minimal un-
satisfiable subsets. In: Proc. ATVA 2018. Lecture Notes in Computer Science, vol.
11138, pp. 143–159. Springer (2018)

12. Bendík, J., Meel, K.S.: Approximate counting of minimal unsatisfiable subsets. In:
Proc. CAV 2020. Lecture Notes in Computer Science, vol. 12224, pp. 439–462.
Springer (2020)

13. Bendík, J., Meel, K.S.: Counting maximal satisfiable subsets. In: Proc. AAAI 2021.
pp. 3651–3660. AAAI Press (2021)

14. Bendík, J., Meel, K.S.: Counting minimal unsatisfiable subsets. In: Proc. CAV 2021.
Lecture Notes in Computer Science, vol. 12760, pp. 313–336. Springer (2021)

15. Besnard, P., Doutre, S., Herzig, A.: Encoding argument graphs in logic. In: Laurent,
A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) Proc. IPMU 2014. Com-
munications in Computer and Information Science, vol. 443, pp. 345–354. Springer
(2014)

16. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

17. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

18. Chen, Z., Ding, D.: Variable minimal unsatisfiability. In: Proc. TAMC 2006. Lec-
ture Notes in Computer Science, vol. 3959, pp. 262–273. Springer (2006)

Computing MUS-Based Inconsistency Measures 9

19. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

20. Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided ab-
straction refinement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(7),
1113–1123 (2004)

21. Doder, D., Raskovic, M., Markovic, Z., Ognjanovic, Z.: Measures of inconsistency
and defaults. Int. J. Approx. Reason. 51(7), 832–845 (2010)

22. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

23. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell. 15, 289–323 (1995)

24. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with Clingo 5. In: Technical Communications of ICLP.
pp. 2:1–2:15. OASICS, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

25. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning 6(3), 1–238
(2012)

26. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. ICLP/SLP. pp. 1070–1080. MIT Press (1988)

27. Grant, J.: Classifications for inconsistent theories. Notre Dame J. Formal Log.
19(3), 435–444 (1978)

28. Grant, J., Hunter, A.: Measuring consistency gain and information loss in stepwise
inconsistency resolution. In: Proc. ECSQARU 2011. pp. 362–373. Springer (2011)

29. Grant, J., Martinez, M.V. (eds.): Measuring Inconsistency in Information, Studies
in Logic, vol. 73. College Publications (2018)

30. Grégoire, É., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: Proc. IJCAI
2018. pp. 1309–1315. ijcai.org (2018)

31. Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: Proc. AAAI 2014. pp. 2666–2673. AAAI Press (2014)

32. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent
sets. In: Proc. KR 2008. pp. 358–366. AAAI Press (2008)

33. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for proto-
typing with SAT oracles. In: Proc. SAT 2018. Lecture Notes in Computer Science,
vol. 10929, pp. 428–437. Springer (2018)

34. Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y.: A MIS partition based
framework for measuring inconsistency. In: Baral, C., Delgrande, J.P., Wolter, F.
(eds.) Proc. KR 2016. pp. 84–93. AAAI Press (2016)

35. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction re-
finement algorithm for propositional circumscription. In: Proc. JELIA 2010. Lec-
ture Notes in Computer Science, vol. 6341, pp. 195–207. Springer (2010)

36. Janota, M., Marques-Silva, J.: cmMUS: A tool for circumscription-based MUS
membership testing. In: Proc. LPNMR 2011. Lecture Notes in Computer Science,
vol. 6645, pp. 266–271. Springer (2011)

37. Janota, M., Marques-Silva, J.: On deciding MUS membership with QBF. In:
Proc. CP 2011. Lecture Notes in Computer Science, vol. 6876, pp. 414–428.
Springer (2011)

38. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Hand-
book of Satisfiability - Second Edition, Frontiers in Artificial Intelligence and Ap-
plications, vol. 336, pp. 571–633. IOS Press (2021)

10 I. Kuhlmann et al.

39. Kuhlmann, I., Gessler, A., Laszlo, V., Thimm, M.: A comparison of ASP-based and
SAT-based algorithms for the contension inconsistency measure. In: Proc. SUM
2022. pp. 139–153. Springer (2022)

40. Kuhlmann, I., Gessler, A., Laszlo, V., Thimm, M.: Comparison of SAT-based and
ASP-based algorithms for inconsistency measurement. arXiv p. 2304.14832 (2023),
preprint

41. Kuhlmann, I., Thimm, M.: An algorithm for the contension inconsistency measure
using reductions to answer set programming. In: Proc. SUM 2020. pp. 289–296.
Springer (2020)

42. Kuhlmann, I., Thimm, M.: Algorithms for inconsistency measurement using answer
set programming. In: Proc. NMR 2021. pp. 159–168 (2021)

43. Kullmann, O.: Constraint satisfaction problems in clausal form II: minimal unsat-
isfiability and conflict structure. Fundam. Informaticae 109(1), 83–119 (2011)

44. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

45. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints An Int. J. 21(2), 223–250 (2016)

46. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

47. Lifschitz, V.: Answer set programming. Springer Berlin (2019)
48. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing min-

imal correction subsets. In: Proc. IJCAI 2013. pp. 615–622. IJCAI/AAAI (2013)
49. Marques-Silva, J., Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I.: Efficient

autarkies. In: Proc. ECAI 2014. Frontiers in Artificial Intelligence and Applications,
vol. 263, pp. 603–608. IOS Press (2014)

50. Marques-Silva, J., Mencía, C.: Reasoning about inconsistent formulas. In: Proc. IJ-
CAI 2020. pp. 4899–4906. ijcai.org (2020)

51. Mencía, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: Proc. SAT 2016. Lecture Notes in Computer Science,
vol. 9710, pp. 342–360. Springer (2016)

52. Mencía, C., Kullmann, O., Ignatiev, A., Marques-Silva, J.: On computing the union
of muses. In: Proc. SAT 2019. Lecture Notes in Computer Science, vol. 11628, pp.
211–221. Springer (2019)

53. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
Proc. IJCAI 2015. pp. 1973–1979. AAAI Press (2015)

54. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proc. FMCAD 2010.
pp. 221–229. IEEE (2010)

55. Narodytska, N., Bjørner, N.S., Marinescu, M.V., Sagiv, M.: Core-guided minimal
correction set and core enumeration. In: Proc. IJCAI 2018. pp. 1353–1361. ijcai.org
(2018)

56. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

57. Niskanen, A., Kuhlmann, I., Thimm, M., Järvisalo, M.: MaxSAT-Based inconsis-
tency measurement. In: Proc. ECAI 2023. IOS Press (2023)

58. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumer-
ation via caching. In: Proc. SAT 2017. Lecture Notes in Computer Science, vol.
10491, pp. 184–194. Springer (2017)

59. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Premise set caching for
enumerating minimal correction subsets. In: Proc. AAAI 2018. pp. 6633–6640.
AAAI Press (2018)

Computing MUS-Based Inconsistency Measures 11

60. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

61. Thimm, M., Wallner, J.P.: On the complexity of inconsistency measurement. Artif.
Intell. 275, 411–456 (2019)

62. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of Reasoning, pp. 466–483. Springer Berlin Heidelberg (1983)

63. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal un-
satisfiable subsets. In: Proc. ECAI 2012, pp. 864–869. IOS Press (2012)

