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Abstract
A major research direction in AI argumentation is the study
and development of practical computational techniques for
reasoning in different argumentation formalisms. Compared
to abstract argumentation, developing algorithmic techniques
for different structured argumentation formalisms, such as
assumption-based argumentation and the general ASPIC+

framework, is more challenging. At present, there is a lack of
efficient approaches to reasoning in ASPIC+. We develop a
direct declarative approach based on answer set programming
(ASP) to reasoning in an instantiation of the ASPIC+ frame-
work. We establish formal foundations for direct declarative
encodings for reasoning in ASPIC+ without preferences for
several central argumentation semantics, and detail ASP en-
codings of semantics for which reasoning about acceptance is
NP-hard in ASPIC+. Empirically, the ASP approach scales
up to frameworks of significant size, thereby answering the
current lack of practical computational approaches to reason-
ing in ASPIC+ and providing a promising base for capturing
further generalizations within ASPIC+.

1 Introduction
AI argumentation is today a significant area of knowledge
representation and reasoning research (Baroni et al. 2018;
Atkinson et al. 2017). A major research direction in AI
argumentation is the study and development of practical
computational techniques for reasoning in different argu-
mentation formalisms. In terms of formalisms, significant
research advances in the development of practical reason-
ing techniques have been achieved in recent years in par-
ticular in the context of Dung’s theory of abstract argu-
mentation frameworks (AFs) (Dung 1995). This progress
is witnessed by, e.g., various efficient system implementa-
tions and a biannual system competition focusing on central
reasoning tasks such as credulous and skeptical acceptance
of arguments (Thimm and Villata 2017; Gaggl et al. 2020;
Cerutti et al. 2018). However, while AFs have proven
to be very influential as a formal approach to argumenta-
tion, the level of abstraction inherent to AFs does not di-
rectly support specifying how arguments and attacks be-
tween arguments are constructed from knowledge bases.
In contrast, various formalisms developed for structured
argumentation—including ASPIC+ (Modgil and Prakken
2018; Modgil and Prakken 2013), assumption-based argu-
mentation (ABA) (Cyras et al. 2018; Bondarenko et al.

1997), defeasible logic programming (DeLP) (Garcı́a and
Simari 2018; Garcı́a and Simari 2004), and deductive argu-
mentation (Besnard and Hunter 2018; Besnard and Hunter
2008)—aim at a more comprehensive approach with the
ability to capture derivation of arguments and attacks start-
ing from knowledge bases. However, from the computa-
tional perspective, this makes the development of practical
reasoning approaches a more daunting task. Indeed, while
algorithmic approaches for different variants of structured
formalisms have been developed (Cerutti et al. 2018), it can
be argued that practical systems for reasoning over struc-
tured formalisms are currently at a less mature state than
those developed for abstract argumentation.

Motivated by advances in employing fully declarative
techniques for reasoning in AFs (Charwat et al. 2015), a first
fully declarative approach—based on answer set program-
ming (ASP) techniques (Niemelä 1999; Gelfond and Lifs-
chitz 1988; Brewka et al. 2015)—to reasoning in the struc-
tured formalism of ABA was recently developed (Lehtonen,
Wallner, and Järvisalo 2019). This ASP-based approach to
ABA was shown to significantly improve on the earlier state-
of-the-art systems for ABA reasoning in terms of empirical
performance. This motivates further study of the applicabil-
ity of ASP to capture reasoning in structured argumentation
formalisms more generally.

With these motivations, the focus of this paper is on de-
veloping an ASP-based approach to reasoning in the rule-
based structured argumentation formalism of ASPIC+. The
ASPIC+ framework finds application avenues, e.g., in legal
reasoning (Prakken et al. 2015; Prakken 2012), ontology-
based data access (Yun and Croitoru 2016), and intelli-
gence analysis (Toniolo et al. 2015). As in ABA, strict
rules capture deductively valid inferences. Extending on
ABA, defeasible rules capture presumptive inference, where
premises create a presumption supporting the conclusion
that can be refuted by contrary evidence. In its general form,
ASPIC+ allows for arguments that combine both strict and
defeasible inference rules as well as preferential informa-
tion. This generality raises significant challenges for devel-
oping effective systems for reasoning in ASPIC+. Indeed,
practical computational approaches (Snaith and Reed 2012;
Visser 2008) to instantiations of ASPIC+ remain to-date
somewhat underdeveloped (Modgil and Prakken 2018).

In this work, we develop a first ASP-based approach to



reasoning about acceptance in ASPIC+. We consider an in-
stantiation of ASPIC+ with both strict and defeasible rules
composed of atomic sentences, including axioms and ordi-
nary premises, and allowing asymmetric negation. Integral
towards a fully declarative approach, we establish founda-
tional underpinnings of phrasing several argumentation se-
mantics in terms of subsets of defeasible elements of this
instantiation of ASPIC+. Putting our theoretical observa-
tions into practice, we detail ASP encodings that allow for
reasoning about acceptance in ASPIC+ under various cen-
tral argumentation semantics. We show through an empir-
ical feasibility evaluation that the ASP approach scales up
to instances with thousands of sentences. While we do not
accommodate for preferences as of yet, our results pave the
way for further progress in efficient practical reasoning in
ASPIC+ more generally. Drawing on known complexity re-
sults in the context of ABA and AFs (Dimopoulos, Nebel,
and Toni 2002; Dvořák and Dunne 2018), we also explicate
complexity results for credulous and skeptical acceptance in
the considered instantiation of ASPIC+, with completeness
for the complexity classes NP, coNP, and ΠP

2 depending on
the argumentation semantics at hand. Our ASP approach
adheres to these complexity requirements, instead of, e.g.,
first generating a potentially exponential number of argu-
ments and attacks between them before invoking AF rea-
soning tools.

The rest of this paper is organized as follows. After back-
ground on the instantiation of ASPIC+ we focus on (Sec-
tion 2), we rephrase argumentation semantics (in Section 3)
towards our answer set programming encodings to deciding
acceptance (Section 5) and related complexity results (Sec-
tion 4). Before conclusions, we provide empirical results on
the scalability of the ASP approach (Section 6).

2 The ASPIC+ Framework
ASPIC+ (Modgil and Prakken 2018; Modgil and Prakken
2013; Prakken 2010) is a general formal framework for argu-
mentation with several ingredients. We assume a language
L composed of atoms x, a contrary function : L → 2L,
denoting contraries of x ∈ L by x ⊆ L. One part of an
ASPIC+ framework is a knowledge base K ⊆ L consist-
ing of a defeasible part (called ordinary premises Kp) and a
non-defeasible part (axioms Kn).
Definition 1. A knowledge base is a set Kn ∪Kp = K ⊆ L,
with disjoint sets Kn (axioms) and Kp (ordinary premises).

Another part of ASPIC+ is a set of rules over L, de-
noted by R. This set is composed of defeasible rules
a1, . . . , an ⇒ b and strict rules a1, . . . , an → b. We de-
note the set of defeasible rules by Rd and the set of strict
rules by Rs. When we do not distinguish between strict
or defeasible rules, we write a1, . . . , an  b. A partial
function n : Rd → L names defeasible rules. For a rule
r = a1, . . . , an  b, we denote its head by head(r) = b
and its body by body(r) = {a1, . . . , an}.

The central definition of argumentation theories is based
on knowledge bases and rules.
Definition 2. An argumentation theory (AT) is a tuple
(L,R, n, ,K), with a knowledge base K ⊆ L, rules R =

Rd ∪ Rs over L, a contrary function : L → 2L, and a
partial function n : Rd → L.

We restrict each part of an AT to be finite. Arguments
are constructed from parts of an AT. Intuitively, an argument
represents a “derivation tree” starting from elements in the
knowledge base and uses rules to derive a conclusion.

Definition 3. Given an AT T = (L,R, n, ,K), the set of
arguments in T is inductively defined as follows.

• If x ∈ K, then A = x is an argument with Conc(A) = x.
• IfA1, . . . , An are arguments, xi = Conc(Ai) for 1 ≤ i ≤
n, and (x1, . . . , xn  x) ∈ R, then A = A1, . . . , An  
x is an argument with Conc(A) = x.

There are no other arguments.

We use shorthands for the components of arguments.

Definition 4. Let T = (L,R, n, ,K) be an AT, and A an
argument in T .

• If A = x ∈ K then Sub(A) = {A} and Rules(A) = ∅.
• If A = A1, . . . , An  x, then
Sub(A) = {A} ∪

⋃n
i=1 Sub(Ai),

TopRule(A) = (Conc(A1), . . . , Conc(An) x), and
Rules(A) = {TopRule(A)} ∪

⋃n
i=1 Rules(Ai).

Further, Prem(A) = Sub(A) ∩ K, Premd(A) = Prem(A) ∩
Kp, and DefRules(A) = Rules(A) ∩Rd.

In words, we use shorthands for the subarguments (Sub)
of an argument, the rules and defeasible rules in the argu-
ment (Rules and DefRules), the topmost rule (TopRule),
the premises of the argument within the knowledge base
(Prem), and the ordinary premises (Premd). If A ∈ K, then
TopRule(A) is undefined. We extend the shorthands for a
set of arguments A as Conc(A) = {Conc(A) | A ∈ A}
and TopRule(A) = {TopRule(A) | A ∈ A}. For each
shorthand f ∈ {Sub, Rules, DefRules, Prem, Premd} re-
turning a set, we define f(A) =

⋃
A∈A f(A). An argument

A is an immediate subargument of B = A1, . . . , An  x if
A ∈ {A1, . . . , An}. As in (Modgil and Prakken 2018), we
focus on finite structures as arguments (i.e., on arguments
which are “trees” of finite size), and consider as arguments
those arguments A for which Sub(A) is finite (disallowing
infinite chaining of rules, e.g., via x x).

Example 1. Consider the example AT T = (L,R, n, ,K)
with L = {a, b, c, w, x, y, z, r1, r2, r3}, Kp = {b},
Kn = {a, c}, and contraries r2 = {z}, b = {w}, and
w = {x}, with R = Rd ∪ Rs given by the defeasible rules
(names in brackets) a ⇒ w (r1), c ⇒ y (r2), and x ⇒ z
(r3), and the only strict rule b→ x. The AT is shown in Fig-
ure 1(left) with the arguments it gives rise to. Square brack-
ets denote what is in an argument; solid lines non-defeasible
elements (axioms and strict rules); and dashed lines defea-
sible elements (ordinary premises and defeasible rules).

Conflicts among arguments are represented via attacks be-
tween arguments.

Definition 5. Given an AT T = (L,R, n, ,K) and two
arguments A and B in T , argument A attacks argument B
iff A undercuts, rebuts, or undermines B, where
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Figure 1: Example AT and corresponding AF

• A undercutsB (onB′) iff Conc(A) ∈ n(r) for someB′ ∈
Sub(B) such that TopRule(B′) = r is defeasible;

• A rebuts B (on B′) iff Conc(A) ∈ x for some B′ =
B1, . . . , Bn ⇒ x ∈ Sub(B); and

• A undermines B (on x) iff Conc(A) ∈ x and x ∈
Premd(B).
In brief, an argument can attack another argument on the

defeasible parts of the latter. Ordinary premises can be at-
tacked by undermining, and defeasible rules can be attacked
by rebutting the conclusion or undercutting the rule itself. In
Figure 1 the attacks among the arguments from Example 1
are depicted as solid arrows. Note that if a subargument is
attacked, the superargument is also attacked; these are omit-
ted from Figure 1(left).

Semantics of ATs are defined via a translation to (abstract)
argumentation frameworks (AFs) (Dung 1995). An AF is a
pair F = (A,D) of a set of (abstract) arguments A and at-
tacks D ⊆ A × A between arguments. If (A,B) ∈ D we
say that A attacks B. Similarly, S ⊆ A attacks B ∈ A if
there is an A ∈ S with (A,B) ∈ D. We say that S defends
an argument A if for each B ∈ A such that (B,A) ∈ D,
there is a C ∈ S such that (C,B) ∈ D. We consider the
AF semantics of conflict-free and admissible sets, and com-
plete, preferred and stable extensions, with the correspond-
ing functions σ ∈ {cf , adm, com, prf , stb}. A semantics
σ(F ) ⊆ 2A returns a set of extensions. An extension under
a semantics σ is a σ-extension for short.
Definition 6. Given an AF F = (A,D), a set E ⊆ A
is conflict-free (in F ) if there are no A, B in E such that
(A,B) ∈ D. The set of all conflict-free sets of F is denoted
by cf (F ). For an E ∈ cf (F ), we have that
• E ∈ adm(F ) iff each A ∈ E is defended by E;
• E ∈ com(F ) iff E ∈ adm(F ) and each A defended by E

is in E;
• E ∈ prf (F ) iff E ∈ adm(F ) and there is no T ∈
adm(F ) with E ⊂ T ; and

• E ∈ stb(F ) iff E attacks each argument in A \ E .
ATs can be translated to AFs as follows.

Definition 7. Let T = (L,R, n, ,K) be an AT. An AF F =
(A,D) corresponds to T ifA is the set of all arguments from
T and D the attack relation based on T .

Reasoning on ATs consists of checking whether a queried
atom is warranted, by asking (credulously) whether there
is a σ-extension having an argument concluding the atom,
or (skeptically) whether all σ-extensions have such an argu-
ment.

Definition 8. Given an AT T = (L,R, n, ,K) and an AF
F corresponding to T , we say that x ∈ L is

• skeptically justified in T under semantics σ if in each E ∈
σ(F ) there is an A ∈ E with Conc(A) = x;

• credulously justified in T under semantics σ if there is an
E ∈ σ(F ) with an A ∈ E s.t. Conc(A) = x.

Example 2. Continuing Example 1, an AF corresponding to
the AT is shown in Figure 1 (right). The complete extensions
of the AF are E1 = {A1, A2}, E2 = {A1, A2, A3, A6, A7},
and E3 = {A1, A2, A4, A5}. For instance, Conc(E1) =
{a, c} (the axioms of the AT) and Conc(E2) = {a, b, c, x, z}.
Since {a, c} ⊆ Conc(A1 ∪A2), both a and c are skeptically
justified under complete semantics. Since x ∈ Conc(E2)
andx /∈ Conc(E1), x is credulously but not skeptically justi-
fied under complete semantics. E2 and E3 are the only pre-
ferred (stable) extensions of the AF.

3 Rephrasing Semantics
In general the corresponding AF for an AT might be large in
size, which can be a barrier for computation. We approach
deciding whether an atom is justified from a different an-
gle, inspired by a similar approach in ABA (Cyras et al.
2018) and studies of general rule-based systems (Amgoud
and Besnard 2019): we look at parts of the defeasible ele-
ments of an AT, dubbed assumptions, and show that one can
restate semantics of ATs in a sufficient manner by imposing
conditions on assumptions.

Definition 9. For an AT T = (L,R, n, ,K) we call a pair
(P,D) with P ⊆ Kp and D ⊆ Rd an assumption in T .

We compare two assumptions (P,D) and (P ′, D′) for an
AT T via v defined by (P,D) v (P ′, D′) iff P ⊆ P ′ and
D ⊆ D′. The strict variant is defined as (P,D) @ (P ′, D′)
iff (P,D) v (P ′, D′) and ∃x ∈ P ′ ∪D′ with x /∈ P ∪D.

Given a set of rulesR and a set of atoms L ⊆ L, we write
that x ∈ L is derivable from L via R, denoted by L `R x,
if (i) x ∈ L or (ii) there is a sequence of rules (r1, . . . , rn)
from R s.t. head(rn) = x and for each rule ri it holds that
each atom in the body of ri is derived from rules earlier in
the sequence or is in L, i.e., body(ri) ⊆ L∪

⋃
j<i head(rj).

We extend the derivability notion to assumptions in a
straightforward way: given an AT T = (L,R, n, ,K) and
an assumption (P,D) in T , we say that from (P,D) one can
derive (within T ) an atom x ∈ L, denoted by (P,D) `T x,
if P ∪ Kn `D∪Rs x, i.e., x is derivable from the defeasi-
ble elements in the assumption and all non-defeasible parts
in the AT. The deductive closure of an assumption in T is
then defined as ThT (P,D) = {x ∈ L | (P,D) `T x}.
We say that a rule r is applicable by an assumption (P,D)
if body(r) ⊆ ThT (P,D), i.e., all elements of the body of r
can be derived using the assumption.

There is a natural connection of derivability via assump-
tions (P,D) and conclusions of arguments composed of el-
ements in the assumption along with strict rules and axioms.
For an assumption (P,D) in T and an argument A in T we
say that A is based on (P,D) if A uses only defeasible ele-
ments from this assumption, i.e., A is based on (P,D) in T
if DefRules(A) ⊆ D and Premd(A) ⊆ P .



Proposition 1. Let T = (L,R, n, ,K) be an AT and
(P,D) an assumption in T . There is an argument A based
on (P,D) in T with Conc(A) = x iff (P,D) `T x.

Proof. Define the height of an argument A inductively as
h(A) = 0 if A ∈ K and h(A) = n + 1 if A /∈ K and n =
max{h(A′) | A′ immediate subargument of A}. Assume
that A is based on (P,D) in T with Conc(A) = x. The
claim is proven by induction on the height. For h(A) = 0
the claim follows directly (A ∈ Kn ∪ P ). Now assume the
claim holds for all arguments A with n = h(A). Thus, for
any argument A′ with n + 1 = h(A′), the claim holds for
its immediate subarguments, implying the claim for A′ (one
can derive Conc(A′) from (P,D) via the top rule of A′).

For the other direction assume that (P,D) `T x. The case
with x ∈ K is straightforward. Assume x /∈ K. Then there is
a sequence of rules (r1, . . . , rn) with each rule applicable by
earlier rules in the sequence and by P , and Conc(rn) = x.
We show that for each i, 1 ≤ i ≤ n we have an argument A
based on (P,D) in T with Conc(A) = head(ri). By an in-
ductive argument, for i = 1 it holds that body(r1) ⊆ Kn∪P ,
implying existence of an A with Prem(A) ⊆ Kn ∪ P ,
r1 ∈ Rs ∪ D, and Conc(A) = head(r1). Assume that
the claim holds for i = m. We show that it holds also
for m + 1. By definition and assumption, it holds that
body(rm+1) ⊆ {head(rj) | j < m+1}∪P ∪Kn, implying
that there is a set of arguments S based on (P,D) in T such
that body(rm+1) ⊆ {Conc(A′) | A′ ∈ S} ∪ P ∪ Kn.

The central argumentative concept of attacks can also be
defined on assumptions.

Definition 10. Let T = (L,R, n, ,K) be an AT and (P,D)
an assumption in T . We say that (P,D) attacks

• a p ∈ Kp if p ∩ ThT (P,D) 6= ∅, and
• an r ∈ Rd if

– n(r) ∩ ThT (P,D) 6= ∅ or
– head(r) ∩ ThT (P,D) 6= ∅.

We define att(P,D) = {x ∈ Kp ∪Rd | (P,D) attacks x}.
In words, an assumption attacks an ordinary premise if

one can derive a contrary of the ordinary premise. A defeasi-
ble rule is attacked if either a contrary of the rule (name) can
be derived or a contrary of the head can be derived. Attacks
via assumptions are then connected to attacks on arguments
by the following corollary.

Corollary 2. Let T = (L,R, n, ,K) be an AT, (P,D) an
assumption in T , and p ∈ Kp and r ∈ Rd. Then

• (P,D) attacks p iff there is an argument A based on
(P,D) in T with Conc(A) ∈ p,

• (P,D) attacks r iff there is an argument A based on
(P,D) in T with Conc(A) ∈ n(r) ∪ head(r), and

• for an argument B in T , (P,D) attacks an x ∈
Premd(B) ∪ DefRules(B) iff there is an argument A
based on (P,D) in T that attacks B.

Proof. This follows from Proposition 1. The first two items
follow straightforwardly. Assume that (P,D) attacks an

x ∈ Premd(B) ∪ DefRules(B) for some argument B in
T . If x ∈ Kp then x ∩ ThT (P,D) 6= ∅. If x ∈ Rd, then ei-
ther ThT (P,D) ∩ n(x) 6= ∅ or ThT (P,D) ∩ head(x) 6= ∅.
Consider then the following three associated cases. If (i)
x ∈ Kp, by Proposition 1 there is an argument A based on
(P,D) with Conc(A) ∈ x that undermines B on x. If (ii)
x ∈ Rd and ThT (P,D) ∩ n(x) 6= ∅, there is an argument
A based on (P,D) in T with Conc(A) ∈ n(x) that under-
cuts B on a B′ ∈ Sub(B) (since x ∈ DefRules(B), there
must be a subargument B′ with TopRule(B′) = x). If (iii)
x ∈ Rd and head(x) ∩ ThT (P,D) 6= ∅, there is an argu-
ment A based on (P,D) with Conc(A) ∈ head(x) that re-
butsB on someB′ ∈ Sub(B) (sinceA concludes a contrary
of Conc(B′) and TopRule(B′) is defeasible). Analogously
for the other direction: A attacks B if either A undermines,
undercuts, or rebuts B (potentially on some B′ ∈ Sub(B)),
implying in all cases that Conc(A) is a corresponding con-
trary and that from (P,D) one can derive this contrary and
that (P,D) attacks an x ∈ Prem(B) ∪ DefRules(B) as de-
fined in Definition 10.

For intuition on defense on assumptions, an assumption
(P,D) defends a defeasible element x if from the AT ex-
cluding all defeasible elements attacked by (P,D) no at-
tacks target x (i.e., all attacks on x are attacked by (P,D)).
Definition 11. Let T = (L,R, n, ,K) be an AT and (P,D)
be an assumption in T . Assumption (P,D) defends an x ∈
Kp ∪Rd if assumption (P ′, D′) does not attack x with
• P ′ = Kp \ att(P,D) and
• D′ = Rd \ att(P,D).
Let def(P,D) = ({p ∈ Kp | (P,D) defends p}, {r ∈ Rd |
(P,D) defends r}).
Example 3. Consider the assumptions M1 = (∅, ∅), M2 =
({b}, {r3}), and M3 = ({b}, {r1}) of the AT from Exam-
ple 1. Now att(M1) = ∅ (no contrary derivable from ax-
ioms and strict rules), att(M2) = {r1, r2} (since w, r2 ∈
ThT (M2) and r1 concludes w), and att(M3) = {b, r1}.
Regarding defense, def(M1) = (∅, {r3}) since r3 is never
attacked by an assumption (no argument undercuts or rebuts
arguments based on r3). Further, def(M2) = ({b}, {r3})
(it holds that (∅, {r1}) attacks b, but r1 is attacked by M2)
and def(M3) = ({b}, {r1, r2, r3}).

Based on attacks and defense on assumptions, we next
state conditions on assumptions reflecting the conditions of
the corresponding semantics of ATs.
Definition 12. Let T = (L,R, n, ,K) be an AT. Assump-
tion (P,D) in T is conflict-free (in T ) if (P,D) does not
attack an x ∈ P ∪ D. Further, a conflict-free assumption
(P,D) in T with all rules r ∈ D applicable by (P,D) is
• admissible (in T ) iff (P,D) v def(P,D);
• complete (in T ) iff (P,D) is admissible in T and
def(P,D) = (P,D′) with each r ∈ D′ \ D not appli-
cable by (P,D′);

• stable (in T ) iff Kp = (att(P,D) ∪ P ) and no rule
r ∈ Rd \ (att(P,D) ∪ D) is applicable by (Kp \
att(P,D),Rd \ att(P,D)); and



• preferred (in T ) iff (P,D) is v-maximal admissible in T .
In words, an assumption is conflict-free if the assumption

does not attack itself (on an ordinary premise or a defeasible
rule). We require for a σ-assumption that each rule is appli-
cable (the body of each rule is derivable). An assumption
is admissible if it defends each of its defeasible elements,
and complete if additionally everything defended by the as-
sumption is included except non-applicable rules (inD′\D).
Stability requires that each ordinary premise is attacked or
in the assumption, while a defeasible rule is either attacked,
in the assumption, or non-applicable by unattacked defeasi-
ble elements. Finally, preferred assumptions arev-maximal
admissible assumptions. All these definitions reflect criteria
of argumentation semantics (Definition 6). However, spe-
cial care is required for the components of an AT (e.g., non-
applicability of rules).
Example 4. The complete assumptions of the AT of Exam-
ple 1 are (∅, ∅), ({b}, {r3}), and (∅, {r1, r2}). To see that
the first two are complete, consider the corresponding at-
tack and defense in Example 3. Note that each assumption
defends r3. However, (∅, ∅), for instance, does not include
r3; a complete (admissible) assumption set may not contain
a non-applicable defeasible rule, and completeness does not
require to include non-applicable defended rules.

Before establishing a connection of σ-assumptions and σ-
extensions of an AF corresponding to a particular AT, we
show basic properties of assumptions. Similarly as in AFs,
each stable assumption is admissible.
Proposition 3. Let T = (L,R, n, ,K) be an AT. Each sta-
ble assumption in T is admissible in T .

Proof. Let (P,D) be stable in T . Suppose (P,D) is not
admissible in T . Then there is an x ∈ P ∪ D not de-
fended by (P,D), and (P ′, D′) = (Kp \ att(P,D),Rd \
att(P,D)) attacks x. By definition, P ′ ⊆ P and each
r ∈ Rd \ att(P,D) is either in D or not applicable by
(P ′, D′). In the latter case r does not occur in any deriva-
tion from (P ′, D′), thus, (P ′, D′) attacks x iff (P ′, D′\{r})
attacks x. Let D′′ be D′ without rules not applicable by
(P ′, D′). We have (P ′, D′′) attacks x and D′′ ⊆ D, imply-
ing that (P,D) attacks x, a contradiction.

The next lemma states that if one collects all ordinary
premises and defeasible rules of a complete extension of
an AF corresponding to a particular AT, then this complete
extension contains all arguments based on these defeasible
elements. Intuitively, complete extensions include all argu-
ments based on the same defeasible parts, and, in turn, con-
tain each “derivation” (via arguments) based on these defea-
sible parts.
Lemma 4. Let T = (L,R, n, ,K) be an AT and F an
AF corresponding to T . If E is complete in F then each
argument based on (Premd(E), DefRules(E)) is part of E .

Proof. Suppose that E is complete in F and that
there is an argument A /∈ E based on (P,D) =
(Premd(E), DefRules(E)) in T . Hence there is an argument
B in T s.t. B attacks A and E does not attack B (other-
wise E would not be complete). It holds that B undermines,

undercuts, or rebuts A. Thus, either B undermines A on
some p ∈ Premd(A), or B undercuts or rebuts A on some
A′ ∈ Sub(A) with the top rule of A′ being defeasible. By
construction, for each x ∈ P ∪ D, there is an argument
C ∈ E with x ∈ Premd(C) ∪ DefRules(C). This implies
that B attacks a C ∈ E (since A and C are based on (P,D)
and share the same ”opening” for an attack from B). By
admissibility of E we have E attacks B, a contradiction.

We next state the main formal results connecting reason-
ing via assumptions and extensions. Intuitively, for each σ-
extension of an AF corresponding to a AT there is a cor-
responding σ-assumption based on the same defeasible ele-
ments, and vice versa. Proofs for other semantics apart from
admissibility are in Appendix A.

Theorem 5. Let T = (L,R, n, ,K) be an AT, σ ∈
{adm, com, prf , stb}, and F an AF corresponding to T .

• If (P,D) is a σ-assumption in T , then E = {A |
A based on (P,D) in T} is a σ-extension of F .

• If E is a σ-extension of F , then (P,D) is a σ-assumption
of T with P = Premd(E) and D = DefRules(E).

Proof for admissibility. Let σ = adm . Let (P,D) be ad-
missible in T and E = {A | A based on (P,D) in T}.
Suppose E is not admissible in F . If E is not conflict-
free, then there are arguments A,B ∈ E s.t. A attacks
B in F . Due to Corollary 2, then (P,D) attacks some
x ∈ Premd(B) ∪ DefRules(B) ⊆ P ∪ D, implying that
(P,D) is not conflict-free in T . Thus E is conflict-free in F .
In order for E to violate admissibility, it must hold that there
is an argument B in T that attacks an argument A ∈ E and
E does not attack B. For any C ∈ E it holds that C is based
on (P,D) in T . Thus, E does not attack B iff (P,D) does
not attack any x ∈ Premd(B)∪DefRules(B). This implies
that (Kp \att(P,D),Rd \att(P,D)) attacks a y ∈ P ∪D,
violating admissibility of (P,D).

For the other direction, assume that E is admissible in F ,
and let (P,D) be as above. For each x ∈ P ∪ D there is
an argument B ∈ E with x ∈ Premd(B) ∪ DefRules(B).
Since each r ∈ D is part of at least one argument, r is
applicable by (P,D). Suppose that (P,D) is not conflict-
free, implying (P,D) attacks some x ∈ P ∪ D. Thus
there is an argument B ∈ E based on (P,D) with x ∈
Premd(B) ∪ DefRules(B). By Corollary 2, there is an
argument A based on (P,D) with A attacking B. Due to
E being admissible, it holds that there is a C ∈ E that at-
tacks A (defending B). Thus, Conc(C) (i) is in p for some
p ∈ Premd(A) (if C undermines A), (ii) is in n(r) for some
r ∈ DefRules(A) (if C undercuts A), or (iii) is in head(r)
for some r ∈ DefRules(A) (if C rebuts A). Let y be p in
case C undermines A on p, or, otherwise, let y be the defea-
sible rule r in case C undercuts or rebuts A on A′ ∈ Sub(A)
with r being the top rule of A′. Since A is based on (P,D),
there is a E ∈ E with y ∈ Premd(E) ∪ DefRules(E).
Hence C also attacks argument E in T . Thus both C and
E are in E , and hence E is not conflict-free. Suppose that
(P,D) is conflict-free but not admissible. Then (P,D)
is not admissible iff (P,D) 6v def(P,D) iff there is an



x ∈ P ∪ D that (P,D) does not defend iff (P ′, D′) =
(Kp \ att(P,D),Rd \ att(P,D)) attacks an x ∈ P ∪D.
By Corollary 2 and the above, there is an argument B based
on (P ′, D′) that attacks some argument A ∈ E . Due to E
being admissible there is a C ∈ E that attacks B. However,
this means that C is based on (P,D) and that C attacks B
with Premd(B) ∪ DefRules(B) ⊆ P ′ ∪ D′, implying that
(P,D) attacks some y ∈ P ′ ∪D′, a contradiction.

Finally, we tie credulous and skeptical reasoning on ATs
to assumptions, enabling deciding these reasoning tasks
solely based on assumptions. First, we note that if an atom
x ∈ L is credulously justified under admissibility in an AT
T , then x is also credulously justified under complete and
preferred semantics. To see this, the former implies exis-
tence of an admissible set E in the AF F corresponding to T
with x ∈ Conc(E). Thus there is a complete and preferred
extension E ′ with E ⊆ E ′. Similarly, if x is credulously
justified under preferred (complete) semantics, a witnessing
preferred (complete) extension E contains an argument con-
cluding x, and E is admissible (complete).
Proposition 6. Let T = (L,R, n, ,K) be an AT, σ ∈
{adm, com, prf , stb, }, σ′ ∈ {stb, prf }, and x ∈ L. Then
• x is credulously justified in T under σ iff there is a σ-

assumption (P,D) in T with x ∈ ThT (P,D), and
• x is skeptically justified in T under σ′ iff in all σ′-

assumptions (P,D) in T we find x ∈ ThT (P,D).

Proof. Let F be an AF corresponding to T . Let x be cred-
ulously justified in T under σ. By definition, there is a σ-
extension E ∈ σ(F ) with some A ∈ E and Conc(A) = x.
By Theorem 5, (P,D) = (Premd(E), DefRules(E)) is a
σ-assumption in T . Since A is based on (P,D), it holds
that x ∈ ThT (P,D). For the other direction, if there is a
σ-assumption (P,D) with x ∈ ThT (P,D), then by Theo-
rem 5 there is a σ-extension E = {A | A based on (P,D)}
of F . If x ∈ ThT (P,D) then there is an argument A ∈ E
with Conc(A) = x (due to Proposition 1 and E containing
all arguments based on (P,D)).

For skeptical reasoning, let x be skeptically justified under
σ′ in T . Suppose that there is a σ′-assumption (P,D) with
x /∈ ThT (P,D). Then by Theorem 5 there is a σ′-extension
E = {A | A based on (P,D)} in F . If x /∈ ThT (P,D),
then there is no argument A ∈ E with Conc(A) = x, a
contradiction. For the other direction, assume that for all σ′-
assumptions (P,D) we have x ∈ ThT (P,D). Suppose that
x is not skeptically justified under σ′ in T . Then there is a σ′-
extension E of F s.t. no argument in E concludes x. By The-
orem 5, it holds that (P ′, D′) = (Premd(E), DefRules(E))
is a σ′-assumption in T . By Lemma 4 and E being com-
plete, E contains each argument A based on (P ′, D′). Since
(P ′, D′) is a σ′-assumption, then x ∈ ThT (P ′, D′). Thus,
there is an argument A based on (P ′, D′) that concludes x,
contradicting that no argument in E concludes x.

4 Complexity of Reasoning in ASPIC+

Stating semantics of ATs on assumptions allows for mak-
ing observations on the complexity of credulous and skep-
tical reasoning in ATs. In particular, assumptions allow for

working on structures that are inherently bound polynomi-
ally by the input instance, whereas translation to AFs may
not be bound in such a way (ATs yielding exponential-size
AFs exist). Our results hence enable both novel algorithms
and complexity results (membership) for ATs. For hard-
ness results, translations of corresponding problems exist
for assumption-based argumentation (Modgil and Prakken
2018; Heyninck and Straßer 2016) and AFs (Maher 2017).
Here we present a direct reduction from reasoning tasks on
AFs to establish hardness.

Proposition 7. For a given AT, deciding credulous justifi-
cation is NP-complete under admissible, complete, stable,
and preferred semantics. Deciding skeptical justification
is coNP-complete under stable semantics and ΠP

2 -complete
under preferred semantics.

Proof. For membership, first note that checking if a (P,D)
pair is a σ-assumption for all semantics, except preferred,
is polytime (Definition 12): computing derivations, attacks,
and defended elements from assumptions can be done in
polynomial time by chaining applicable rules. Thus by non-
deterministic construction of a (P,D)-pair (both sets are
bounded by the size of an input AT) and subsequent check
of the semantics conditions yields membership for credu-
lous reasoning. Recall that credulous reasoning under adm ,
com , and prf coincides. For the complement of skeptical
reasoning, non-deterministically construct a (P,D)-pair and
verify that this assumption is stable and does not derive the
queried atom. For preferred semantics, in order to verify,
first check admissibility, and then ask an NP oracle whether
there is a (P ′, D′) assumption that is admissible in T with
(P,D) @ (P ′, D′). If such an assumption does not exist,
the first assumption is preferred.

For hardness, reduce from the corresponding problems on
AFs. Given an AF F = (A,D), construct the AT T =
(A, ∅, n, ,K) with Kp = A, and A = {B | (B,A) ∈ D}
for each A ∈ A. Now A = p with p ∈ Kp are the only
arguments in T . There is a bijection between A and the set
of arguments A′ in the AF F ′ = (A′,D′) that corresponds
to T . Further, (A,B) ∈ D iff (A,B) ∈ D′. As A is cred-
ulously (skeptically) accepted in F under σ iff A is credu-
lously (skeptically) justified in T (via F ′) under σ, hardness
follows (Dvořák and Dunne 2018).

5 ASPIC+ Reasoning via ASP
ASP. An ASP π consists of rules r of the form b0 ←
b1, . . . , bk,not bk+1, . . . , not bm, where each bi is an atom.
A rule is positive if k = m and a fact ifm = 0. A literal is an
atom bi or not bi. A rule without head b0 is a constraint and a
shorthand for a ← b1, . . . , bk,not bk+1, . . . , not bm,not a
for a fresh a. An atom bi is p(t1, . . . , tn) with each tj either
a constant or a variable. An answer set program is ground
if it is free of variables. For a non-ground program, GP
is the set of rules obtained by applying all possible substi-
tutions from the variables to the set of constants appearing
in the program. An interpretation I , i.e., a subset of all the
ground atoms, satisfies a positive rule r = h ← b1, . . . , bk
iff all positive body elements b1, . . . , bk being in I implies



Listing 1: Module πcommon

1 in(X)← axiom(X).
2 in(X)← premise(X), not out(X).
3 out(X)← premise(X), not in(X).
4 in(X)← strict head(X, ).
5 in(X)← head(X, ), not out(X).
6 out(X)← head(X, ), not in(X).
7 supported(X)← axiom(X).
8 supported(X)← premise(X), in(X).
9 supported(X)← head(R,X), applicable by in(R).

10 supported(X)← strict head(R,X), applicable by in(R).
11 applicable by in(R)← in(R), head(R, ),

supported(X) : body(R,X).
12 applicable by in(R)← strict head(R, ), supported(X) :

strict body(R,X).
13 ← in(R), not applicable by in(R), head(R, ).
14 defeated(X)← supported(Y), contrary(X,Y), premise(X).
15 defeated(X)← supported(Y), contrary(X,Y), head(X, ).
16 defeated(X)← head(X,S), supported(Y), contrary(S,Y).
17 ← in(X), defeated(X).
18 supported by undefeated(X)← axiom(X).
19 supported by undefeated(X)← premise(X),

not defeated(X).
20 supported by undefeated(X)← head(R,X),

applicable by undefeated(R).
21 supported by undefeated(X)← strict head(R,X),

applicable by undefeated(R).
22 applicable by undefeated(R)← not defeated(R), head(R, ),

supported by undefeated(X) : body(R,X).
23 applicable by undefeated(R)← strict head(R, ),

supported by undefeated(X) : strict body(R,X).

that the head atom is in I . For a program π consisting only
of positive rules, let Cl(π) be the uniquely determined in-
terpretation I that satisfies all rules in π and no subset of I
satisfies all rules in π. Interpretation I is an answer set of
a ground program π if I = Cl(πI) where πI = {(h ←
b1, . . . , bk) | (h ← b1, . . . , bk,not bk+1, . . . ,not bm) ∈
π, {bk+1, . . . , bm} ∩ I = ∅} is the reduct; and of a non-
ground program π if I is an answer set of GP of π.

ASP Encodings. We give each r ∈ R in an AT a name
(recall that nmight be partial, and only for defeasible rules).
Let R′

d be the set of defeasible rules n is defined on. We
define an extension n′ of n as n′(r) = n(r) if r ∈ R′

d, and
for the remaining rules ri ∈ R \ R′

d = {r1, . . . , rn} we
define n′(ri) = i. We represent an AT T = (L,R, n, ,K)
in ASP as the set of facts AT(T ), defined as follows:

{axiom(a). | a ∈ Kn} ∪ {premise(a). | a ∈ Kp} ∪
{head(n′(r), b). | r ∈ Rd, b = head(r)} ∪
{body(n′(r), b). | r ∈ Rd, b ∈ body(r)} ∪
{strict head(n′(r), b). | r ∈ Rs, b = head(r)} ∪
{strict body(n′(r), b). | r ∈ Rs, b ∈ body(r)} ∪
{contrary(a, b). | b ∈ a, a ∈ L}.

We present ASP encodings for reasoning in ASPIC+ based
on the restatement of semantics in terms of assumptions (i.e.,
pairs of premises and defeasible rules), recall Definition 12

Listing 2: Module ∆stb

1 ← out(X), not defeated(X), premise(X).
2 ← out(R), applicable by undefeated(R).

and Theorem 5. For our encodings πσ of semantics σ ∈
{adm, com, stb, prf } it holds that (P,D) is a σ-assumption
in T iff there is an answer setM of AT(T )∪πσ with P∪D =
{p ∈ (Kp ∪ Rd) | in(p) ∈ M}. The encodings enable
credulous (skeptical) reasoning by specifying a query atom
a ∈ L as query(a) and adding a constraint enforcing that
the atom must (must not) be derivable from (P,D).

The subprogram πcommon is common to all the seman-
tics. Lines 1–6 encode a non-deterministic guess of a subset
of premises and defeasible rules that are in and out, with ax-
ioms and strict rules always considered in. Lines 7–12 en-
code what is supported by (i.e., derivable from) the guessed
in elements. The base cases are on Lines 7–8: axioms and
premises that are in are supported. Lines 9–10 encode that
an atom is supported if it is a head of a strict or defeasible
rule that is applicable by the in elements. A defeasible rule
is applicable if the rule is in and all its body elements are
supported (Line 11), with the body encoded here as a list of
supported(X) for all X in the body using the conditional
literal “:”. A strict rule is applicable when all body elements
are supported (Line 12). Line 13 encodes the restriction
that each defeasible rule that is in must be applicable by in.
The three types of attack from in are encoded on Lines 14–
16, encoding what is defeated by in, with Line 17 enforc-
ing conflict-freeness of in. Lines 18–23 construct the set of
atoms supported by premises and rules that are not attacked
by in in a similar manner as for in.

To extend πcommon to correspond to a particular seman-
tics, we employ Definition 12. The subprogram ∆stb ex-
tends to stable semantics: there are no premises that are not
in and not defeated by in (Line 1), and there are no rules
that are not in but are applicable by the elements that are not
attacked by in (Line 2). The encoding for stable semantics
is πstb = πcommon ∪∆stb .

Admissibility is encoded as πadm = πcommon∪∆adm . In
∆adm Lines 1–3 encode elements attacked by the elements
not attacked by in. Line 4 states that no such elements can
be in (since this would indicate an undefended attack to in).

Complete semantics is encoded as πcom = πadm ∪∆com .
Lines 1–6 of ∆com compute atoms that are derivable from

Listing 3: Module ∆adm

1 defeated by undefeated(X)← supported by undefeated(Y),
contrary(X,Y), premise(X).

2 defeated by undefeated(X)← supported by undefeated(Y),
contrary(X,Y), head(X, ).

3 defeated by undefeated(X)← head(X,S),
supported by undefeated(Y), contrary(S,Y).

4 ← in(X), defeated by undefeated(X).



Listing 4: Module πcom

1 supported by defended(X)← axiom(X).
2 supported by defended(X)← premise(X), not

defeated by undefeated(X).
3 supported by defended(X)← head(R,X),

applicable by defended(R).
4 supported by defended(X)← strict head(R,X),

applicable by defended(R).
5 applicable by defended(R)←

not defeated by undefeated(R), head(R, ),
supported by defended(X) : body(R,X).

6 applicable by defended(R)← strict head(R, ),
supported by defended(X) : strict body(R,X).

7 ← out(X), not defeated by undefeated(X), premise(X).
8 ← out(R), applicable by defended(R).

the elements that are not attacked by the set of elements that
are attacked by in. In other words, the set of atoms defended
by in is computed. Lines 7–8 enforce that in is complete:
there can not be premises that are out but defended by in
(Line 7), and no rule outside in may be applicable by the
elements defended by in (Line 8).

Recall that preferred assumptions are the v-maximal ad-
missible assumptions. Thus preferred assumptions can be
computed with the ASP-based system Asprin (Brewka et al.
2015) by adding a constraint that only subset-maximal an-
swers with respect to in are returned (as supported by As-
prin) on the encoding πadm .

6 Experiments
We study the scalability of our ASP-based approach to de-
ciding acceptance in ASPIC+ using the state-of-the-art ASP
system Clingo v5.4.0 (Gebser et al. 2018) (with default set-
ting) as the ASP solver and Asprin v3.1.0 (Brewka et al.
2015) for preferred semantics. The experiments were run on
Intel Xeon E5-2680 v4 2.4-GHz, 256-GB RAM computers
under a per-instance 600-s time and 8-GB memory limit.

We generated benchmark instances for the evaluation as
follows. In the following by atoms we mean members of
L excluding the names for defeasible rules. Let N be the
number of atoms. We consider ATs with up to N = 5500
atoms, with a stepping of 500 starting from 1000 atoms.
For each fixed N , we generated 25 frameworks and selected
one queried non-premise atom per framework to obtain 25
benchmark instances for eachN . In the frameworks, 25% of
rules are defeasible and 25% of atoms and defeasible rules
have a contrary. For the number of axioms, we considered
the values 0.5%, 1%, 5% and 10% of all atoms, and let 20%
of atoms be premises. For each non-premise atom, the num-
ber of rules deriving the atom was chosen at random from
[1, 15] and the number of atoms in the body of each rule
body was chosen at random from [1, 15].

Table 1 gives the number of timeouts observed perN with
the mean runtimes (timeouts included as 600 s) in parenthe-
ses, with 25 instances per N with 1% atoms being axioms
for different semantics and reasoning modes. We observe
that the approach enables solving a majority of the instances

#timeouts (mean runtime over all instances (s))
N adm cred com cred stb cred stb skept prf enum

1000 0 (1) 0 (1) 0 (1) 0 (1) 0 (15)
1500 0 (18) 0 (16) 0 (22) 0 (28) 3 (243)
2000 0 (75) 2 (108) 2 (124) 2 (100) 13 (446)
2500 5 (179) 7 (235) 5 (197) 4 (150) 15 (499)
3000 8 (248) 9 (273) 8 (242) 6 (211) 20 (537)
3500 16 (421) 19 (501) 15 (374) 14 (374) 24 (590)
4000 17 (447) 20 (541) 20 (481) 18 (472) 25 (600)
4500 17 (463) 19 (501) 16 (410) 18 (437) 25 (600)
5000 23 (563) 24 (594) 17 (410) 17 (410) 25 (600)
5500 21 (523) 23 (553) 21 (505) 22 (529) 24 (592)

Table 1: Timeouts and mean runtimes with 1% axioms.

up to N = 3000 atoms for all considered acceptance prob-
lems, with some instances being solved up to N = 5500
(and even beyond, with some fluctuations expectedly due to
randomness in the instance generation). Figure 2 shows the
impact of the relative number of axioms on scalability for
adm: as the number of axioms is increased (to 10%), the
mean runtimes drops, suggesting that small numbers of ax-
ioms result in empirically harder instances for the approach.

7 Conclusions
We developed a first ASP-based approach to deciding ac-
ceptance in an instantiation of the rule-based structured ar-
gumentation framework ASPIC+ with both strict and de-
feasible rules composed of atomic sentences, including ax-
ioms and ordinary premises, and allowing asymmetric nega-
tion. We rephrased argumentation semantics as subsets
of defeasible elements, yielding direct ASP encodings that
avoid generating the potentially exponentially-many argu-
ments and attacks between the arguments to decide accep-
tance. We detailed how credulous and skeptical acceptance
for several NP-hard semantics (admissibility, complete, sta-
ble, and preferred) are captured via ASP. Empirically, the
approach can scale to thousands of atoms. Rephrasing of
semantics also yielded complexity results for the considered
ASPIC+ instantiation. Natural next steps include generaliz-
ing the approach to accommodate preferences towards cap-
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turing ASPIC+ more generally and evaluating the approach
against other approaches to reasoning in ASPIC+.

A Proofs
Proof of Theorem 5. Complete semantics. Let σ = com .
Let (P,D) be complete in T and E as defined above. By the
proof above, E is admissible. Suppose E is not complete in
F . Thus, there is an argument A defended by E and A /∈ E ,
implying that there is an x ∈ Premd(A) ∪ DefRules(A)
with x /∈ P ∪ D. Let (P,D′) = def(P,D). Either
(i) x /∈ P ∪ D′ or (ii) x ∈ D′ \ D. In the latter case,
since x ∈ DefRules(A), body(x) 6⊆ ThT (P,D′). Thus,
for A to be an argument, A cannot be based on (P,D′),
implying that (Premd(A) ∪ DefRules(A)) 6⊆ (P ∪ D′)
(some element outside P and D′ is part of A), implying
the first case. Thus (P,D) does not defend x, (P ′′, D′′) =
(Kp \ att(P,D),Rd \ att(P,D)) attacks x, and there is
an argument B based on (P ′′, D′′) that attacks A (Corol-
lary 2). Since E defends A, there is an argument C ∈ E with
C attacking B. However, C is based on (P,D), implying
that (P,D) attacks some y ∈ Premd(B) ∪ DefRules(B) ⊆
P ′′ ∪D′′, a contradiction.

For the other direction, assume that E is complete in F
and (P,D) is not complete in T . By the above, (P,D)
is admissible in T . By Lemma 4, E contains each argu-
ment based on (P,D). For (P ′, D′) = def(P,D) we have
(i) P ⊂ P ′ or (ii) P = P ′ and there is an r ∈ D′ \ D
that is applicable by (P,D′). Suppose case (i) holds and
let p ∈ P ′ \ P . Then (P,D) defends p. By construc-
tion, argument A = p is not part of E . As E is com-
plete, there is an argument B that attacks A (Conc(B) ∈ p)
and E does not attack B. There is no argument based
on (P,D) in T that attacks B iff (P,D) does not attack
any x ∈ Premd(B) ∪ DefRules(B) (Corollary 2). Thus
(P,D) does not attack any x ∈ Premd(B) ∪ DefRules(B).
Since additionally (Premd(B), DefRules(B)) does attack
p, we have that (P,D) does not defend p: neither
Premd(B) nor DefRules(B) is attacked by (P,D), however
(Premd(B), DefRules(B)) attacks p, implying that (P,D)
does not defend p. If case (ii) holds, P = P ′ and there is
an r ∈ D′ \ D applicable by (P,D′). Then there is an ar-
gument A based on (P,D′) with r ∈ DefRules(A). As
all arguments in E are based on (P,D) @ (P,D′), we have
A /∈ E . Thus there is an argument B in T that attacks A and
E does not attack B. As above, then (P,D) does not attack
any x ∈ Premd(B) ∪ DefRules(B). If B undermines A on
p, thenB attacks E (since p ∈ P ), ifB rebuts or undercutsA
on A′ with TopRule(A′) = r′, then B attacks E if r′ ∈ D.
Since E does not attack B, B rebuts or undercuts A on A′

with the top rule r′ of A′ being in D′ \D. As above, (P,D)
does not defend r′ ∈ D′: (Kp\att(P,D),Rd\att(P,D))
attacks r′, contradicting r′ ∈ D′.

Stable semantics. Let σ = stb. Let (P,D) be stable
in T and E as above. By Proposition 3 (P,D) is admis-
sible in T , and by the proof above E is admissible in F .
It remains to show that E attacks each argument A /∈ E
in T . Suppose the contrary, i.e., A /∈ E is not attacked
by E . As E contains all arguments based on (P,D), (i)
A is not based on (P,D) and (ii) no argument based on

(P,D) attacks A, and, in turn, (P,D) does not attack any
x ∈ Premd(A)∪DefRules(A). If Premd(A) 6⊆ P , we arrive
at a contradiction: (P,D) would neither attack nor contain at
least one ordinary premise in Premd(A). If DefRules(A) 6⊆
D, then there is a rule r ∈ DefRules(A) \ D. By defini-
tion of stability of (P,D), it must be that r is not applicable
by (P ′, D′) = (Kp \ att(P,D),Rd \ att(P,D)). Since
no defeasible element in A is attacked by (P,D), we have
Premd(A) ⊆ P ′ and DefRules(A) ⊆ D′, implying that r
is, in fact, applicable by (P ′, D′), a contradiction.

For the other direction, assume that E is stable in F and
(P,D) is not stable in T . Since E is stable, E is complete
in F , and thus (P,D) is conflict-free in T . Since (P,D) is
conflict-free and not stable, either (i) there is a p ∈ Kp nei-
ther in nor attacked by (P,D) or (ii) there is a rule r ∈ Rd
s.t. r not in D, r not attacked by (P,D), and r is applicable
by (P ′, D′) = (Kp\att(P,D),Rd\att(P,D)). In case (i)
there is an argument A = p which is not in E , implying that
E attacks A, and hence (P,D) attacks p. In case (ii) there is
an argument A with r ∈ DefRules(A) and Premd(A) ⊆ P ′

and DefRules(A) ⊆ D′. We have E attacks A, contra-
dicting the assumptions that A is composed of unattacked
ordinary premises, defeasible rules, and the unattacked r.

Preferred semantics. Let σ = prf . Let (P,D) be pre-
ferred in T and E as above. Suppose E is not preferred
in F . Then there is a preferred E ′ in F with E ⊂ E ′
(since E is admissible in F ). Further, there must be an ar-
gument A ∈ E ′ \ E s.t. A is not based on (P,D), since
E contains all arguments based on (P,D). Thus there is
an x ∈ Premd(A) ∪ DefRules(A) with x /∈ P ∪ D. By
the above, (P ′, D′) = (Premd(E ′), DefRules(E ′)) is ad-
missible in T . Also, since each argument in E is in E ′,
we have P ⊆ P ′ and D ⊆ D′, and X ⊂ X ′ for one of
X ∈ {P,D}. For this, consider any y ∈ P ∪ D. Ei-
ther y ∈ P or y ∈ D is applicable by (P,D) (by defini-
tion). Thus, there is an argument B ∈ E based on (P,D)
with y ∈ Premd(B) ∪ DefRules(B) which is in E ′. Thus
(P,D) @ (P ′, D′) and thereby (P,D) is not preferred in T .

For the other direction assume that E is preferred in F and
(P,D) is not preferred in T . Then there is a preferred as-
sumption (P ′, D′) with (P,D) @ (P ′, D′), since elements
in T are finite: since (P,D) is admissible but not preferred,
(P,D) is not v-maximal, and one of the finitely many v-
greater assumptions must be admissible (otherwise (P,D)
would be preferred). By iteration, there is a preferred as-
sumption (P ′, D′) with (P,D) @ (P ′, D′). Since (P ′, D′)
is preferred, we have E ′ = {A | A based on (P ′, D′)} is
preferred in F (see above). Since (P,D) @ (P ′, D′), it fol-
lows that E ⊆ E ′. For this, consider any A ∈ E . A is based
on (P,D) and on (P ′, D′). Suppose E = E ′, then each ar-
gument A based on (P ′, D′) is also based on (P,D). This
implies P = P ′ (otherwise for p ∈ P ′ \ P one would have
an argument based on (P ′, D′) but not on (P,D)). Thus,
D ⊂ D′. Suppose that there is an r ∈ D′ \ D s.t. r is ap-
plicable by (P ′, D′). Then there is an argument B based on
(P ′, D′) with r as its top rule, contradicting that B is also
based on (P,D). Thus there is r ∈ D′ \D not applicable by
(P ′, D′), contradicting that (P ′, D′) is a preferred assump-
tion. Thus E ⊂ E ′, a contradiction.
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