
Machine Learning manuscript No.
(will be inserted by the editor)

Empirical Hardness of Finding Optimal Bayesian
Network Structures

Algorithm Selection and Runtime Prediction

Brandon Malone · Kustaa Kangas ·
Matti Järvisalo · Mikko Koivisto ·
Petri Myllymäki

Received: date / Accepted: date

Abstract Various algorithms have been proposed for finding a Bayesian network
structure that is guaranteed to maximize a given scoring function. Implementations
of state-of-the-art algorithms, solvers, for this Bayesian network structure learning
problem rely on adaptive search strategies, such as branch-and-bound and integer
linear programming techniques. Thus, the time requirements of the solvers are not
well characterized by simple functions of the instance size. Furthermore, no single
solver dominates the others in speed. Given a problem instance, it is thus a priori
unclear which solver will perform best and how fast it will solve the instance.

We show that for a given solver the hardness of a problem instance can be effi-
ciently predicted based on a collection of non-trivial features which go beyond the
basic parameters of instance size. Specifically, we train and test statistical models
on empirical data, based on the largest evaluation of state-of-the-art exact solvers
to date. We demonstrate that we can predict the runtimes to a reasonable degree
of accuracy. These predictions enable effective selection of solvers that perform
well in terms of runtimes on a particular instance. Thus, this work contributes a
highly efficient portfolio solver that makes use of several individual solvers.

This work is supported by Academy of Finland, grants #125637, #251170 (COIN Centre of
Excellence in Computational Inference Research), #255675, #276412, and #284591; Finnish
Funding Agency for Technology and Innovation (project D2I); and Research Funds of the
University of Helsinki.

Brandon Malone
Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III
and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidel-
berg, Germany, DZHK (German Centre for Cardiovascular Research), Partner site Heidel-
berg/Mannheim, Germany E-mail: brandon.malone@uni-heidelberg.de

Kustaa Kangas · Matti Järvisalo · Mikko Koivisto · Petri Myllymäki
Helsinki Institute for Information Technology HIIT, Department of Computer Science,
University of Helsinki, Finland

2 Malone et al.

1 Introduction

Since the formalization and popularization of Bayesian networks [55] for modeling
and reasoning with multiple variables, much research has been devoted to learn-
ing them from data [28]. One of the main challenges has been to learn the model
structure, represented by a directed acyclic graph (DAG) on the variables. Cast
as a problem of finding a DAG that is a global optimum of a score function for
given data, the Bayesian network structure learning problem (BNSL) is notori-
ously NP-hard; the hardness is chiefly due to the acyclicity constraint imposed on
the DAG to be learned [14]. To cope with the computational hardness, early work
on structure learning resorted to local search algorithms. While local search algo-
rithms oftentimes perform well, they are unfortunately unable to guarantee global
optimality. The uncertainty about the quality of the found network hampers the
use of the network [50] in probabilistic inference and causal discovery.

The last decade has raised hopes of solving larger problem instances to opti-
mality. The first algorithms guaranteed to find an optimum adopted a dynamic
programming approach to avoid exhaustive search in the space of DAGs [53,37,63,
62]. Later algorithms have expedited the dynamic programming approaches using
the A∗ search algorithm with various admissible heuristics [72], or have employed
quite different approaches, such as branch and bound in the space of (cyclic) di-
rected graphs [11], integer linear programming (ILP) [35,16,17], and constraint
programming (CP) [5]. In this work, we focus on such complete solvers for BNSL,
which we call simply solvers. Our interest is in unsupervised learning of a joint
structure over the variables, only noting in passing that alternative methods have
been developed for supervised learning of the relationship between a designated
response variable and the other predictor variables (see, e.g., a recent survey [7]
and references therein).

Due to the intrinsic differences between the algorithmic approaches underlying
BNSL solvers, it is not surprising that their relative efficiency varies greatly on
a per-instance basis. To exemplify this, a comparison of the runtimes of three
current state-of-the-art solvers, based on A∗, ILP, and CP, is illustrated in Figure 1
using typical benchmark datasets. Evidently, no single one of these three solvers
dominates the other two.

Figure 1 suggests that, to improve over the existing solvers, an alternative to
developing yet another solver is to design algorithm portfolios which select a solver
to run on a per-instance basis, ideally combining the best-case performance of the
different solvers. Indeed, in this work we do not focus on developing or improv-
ing an individual algorithmic approach. Instead, we aim to characterize how the
performance of different algorithmic approaches depends on the problem instance,
which is the key to the design of efficient algorithm portfolios. The underlying
motivation for developing such techniques is the aim of improving the efficiency
of state of the art in complete solvers in solving hard BNSL instances.

In this quest, it is vital to discover a collection of features that are efficient to
compute and yet informative about the hardness of an instance for a solver. Prior
work has identified two simple features, namely the number of variables and the
number of so-called candidate parent sets, denoted by n and m, respectively. To
explain the observed orthogonal performance characteristics shown in Figure 1, it
has been suggested, roughly, that typical instances can be solved to optimality by
A∗, if n is at most 40 (no matter how large m), and by ILP if m is moderate, say, at

Empirical Hardness of Finding Optimal Bayesian Network Structures 3

most some tens of thousands (no matter how large n) [17,72]; for the more recent
CP approach, we are not aware of any comparable description. Beyond this rough
characterization, the practical time complexity of the best-performing solvers is
currently poorly understood. This stems from the sophisticated search heuristics
employed by the solvers, which tend to be sensitive to small variations in the
instances, thus resulting in somewhat chaotic-looking behavior of runtimes. Fur-
thermore, the gap between the analytic worst-case and best-case runtime bounds,
in terms of n and m, is huge, and typical instances fall somewhere in between the
two extremes.

The starting point of our work is the following basic open question:

Q1 For determining the fastest of the available solvers on a given instance, do the
simple features, the number of variables and the number of candidate parent
sets, suffice?

We answer this question in the affirmative. Our result is empirical in that it relies
on training and testing a statistical model with a large set of problem instances
collected from various sources. We show that a simple set of features yields a
model which accurately predicts the fastest solver for a given instance based on
the parameters n and m only. Furthermore, we show how this yields an algorithm
portfolio that almost always runs as fast as the fastest solver, thus significantly
outperforming any fixed solver on a large collection of instances.

However, a closer inspection reveals that the predicted runtimes of the model
based on the simple features often differ from the actual runtimes by one to two
orders of magnitude. The large deviations suggest that, if the interest is in accu-
rate estimation of the runtimes, then the simple feature set may not suffice. This
observation motivates our second question:

Q2 For predicting the runtime of a solver on a given instance, can the accuracy be
significantly improved by including additional efficiently computable features?

Also to this question our answer is affirmative. We introduce and study several
additional features that capture the hardness of the problem more accurately for
a given solver. We focus on what are currently the three top-performing solver

A∗ vs. ILP A∗ vs. CP CP vs. ILP

1s 60s 1h
A*

1s

60s

1h

IL
P

1s 60s 1h
A*

1s

60s

1h

CP

1s 60s 1h
CP

1s

60s

1h

IL
P

Fig. 1 Comparison of three state-of-the-art algorithms for finding an optimal Bayesian net-
work. Runtimes below 1 or above 7,200 seconds are rounded to 1 and 7,200, respectively.
The specific solver parameterizations are A∗-comp (A∗), ilp-162 (ILP), and cpbayes (CP); see
Section 5 for descriptions of the solvers and the datasets.

4 Malone et al.

families based on A∗ [72], ILP [17], and CP [5], which clearly dominate earlier
approaches based on dynamic programming and branch-and-bound [51]. Specifi-
cally, we show that models with a wider variety of features yield at times significant
improvements in prediction accuracy.

Besides the aforementioned contributions, the empirical work associated with
this paper also provides the most elaborate evaluation of state-of-the-art solvers
to date, significant in its own right.

The present work extends and revises substantially our preliminary study
reported at the AAAI-14 conference [51]. Here we have thoroughly revised the
methodology and analysis presented throughout the paper. We have expanded the
portfolio itself to include the very recent CP-based solver [5]. At the same time,
we have updated the runtime results to the most recent versions of the A∗-based
and ILP-based solvers. Furthermore, we provide a more fine-grained analysis by
categorizing datasets based on their origin. Our results show that the origin of the
dataset significantly affects the relative runtime performance of solvers. To this
end, we have also increased the number of synthetic data sets considerably, from
a few dozens to several hundred. Finally, we provide a more extensive discussion
of the characteristics of the learned models, such as preprocessing strategies.

1.1 Related Work

Due to the wide range of potential applications, the general research area of algo-
rithm selection, with tight connections to machine learning and algorithm portfolio
design, is very diverse. Instead of aiming at a full review of the relevant literature,
here we aim at a brief overview of the research area by providing references to
some of the key early works on the topic and some of the more recent works most
closely related to ours. For an expanded discussion of the literature on algorithm
selection and runtime prediction, we refer the reader to two recent surveys on the
topic with further pointers to related work [34,39].

Research on algorithm selection for various types of important computational
problems has its roots in [58], where the algorithm selection problem was intro-
duced, and feature-based modeling was proposed to facilitate the selection of the
best-performing algorithm for a given problem instance, considering various ex-
ample problems. Later works, including [12,21,48], demonstrated the efficacy of
applying machine learning techniques, such as Bayesian approaches [31], to learn
models from empirical performance data.

More recently, empirical hardness models [45,46] have been applied in the
construction of solver portfolios [26] for various NP-hard search problems [40], in-
cluding Boolean satisfiability (SAT) (e.g., in [70]), constraint programming (e.g.,
in [24,32]), quantified Boolean formula satisfiability (e.g., in [57]), answer set pro-
gramming (e.g., in [30]), as well as for the traveling salesperson problem (e.g., in
[41]). To the best of our knowledge, for the important problem of Bayesian network
structure learning, the present work is the first to adopt the approach.

In terms of terminology, we investigate algorithm selection in the context of
learning Bayesian networks, which is an unsupervised learning task. Nevertheless,
this work is well-situated in the context of meta-learning [25], which most often
considers supervised settings. The BNSL features we propose in Section 3.1 are
exactly a set of meta-features for this particular domain. The regression models

Empirical Hardness of Finding Optimal Bayesian Network Structures 5

we learn (Section 3.2) capture meta-knowledge about the state-of-the-art BNSL
solvers.

Previous work [42,44] has suggested that in many cases, a small set of fea-
tures can lead to accurate predictions; indeed, in Section 5.2 we show that a very
small number of features leads to near-optimal algorithm selection performance.
Furthermore, while that work relied on qualitative visual analysis, in Section 6.4
we quantify the utility of each feature using the Gini importance [9].

Recently, a simple “Best in Sample” approach [59] was shown to be very effec-
tive for algorithm (classifier) selection in the supervised setting. Briefly, this ap-
proach trains each classifier in the portfolio using a very small subset of the data;
it then selects the classifier to use based on performance on the subset. “Probing”
features—a central form of features in, for example, SAT portfolios [70]—we ap-
ply in the context of BNSL (see Section 3.1) are similar in spirit to this approach,
though adapted to the unsupervised learning setting. In terms of evaluation, our
virtual best solver comparisons in Section 5 are quite similar to Loss Curves [43],
which have previously been used in the context of meta-learning.

1.2 Organization

The remainder of this paper is organized as follows. We begin in Section 2 by de-
scribing the problem of structure learning in Bayesian networks and by giving an
overview of the algorithmic techniques underlying the state-of-the-art solvers. Sec-
tion 3 presents the building blocks of our empirical hardness model: we introduce
several BNSL features; we choose an appropriate statistical learning framework;
and we describe the methods we use for training and evaluating the models. In
Section 4, we present the experimental setting, namely technical details of the
investigated solvers and characteristics of the collected problem instances. Results
on learning solver portfolios and on predicting runtimes of individual solvers are
reported in Sections 5 and 6, respectively. Finally, we discuss some questions that
are left open and directions for future research in Section 7.

2 Learning Bayesian Networks

A Bayesian network (G,P) consists of a directed acyclic graph (DAG) G on a set
of random variables X1, . . . , Xn and a joint distribution P of the variables such
that P factorizes into a product of the conditional distributions P (Xi|Gi). Here
Gi denotes the set of parents of Xi in G; we call a variable Xj a parent of Xi, and
Xi a child of Xj , if G contains an arc from Xj to Xi.

2.1 The Structure Learning Problem

In its simplest form, structure learning in Bayesian networks concerns finding a
DAG that best fits some observed data on the variables.1 Throughout this work,
we only deal with this optimization formulation, here only mentioning that there

1 Strictly speaking, the data are assumed to consist of N independent and identically dis-
tributed tuples (Xt

1, . . . , X
t
n), t = 1, . . . , N , so the dimension of the data is N × n.

6 Malone et al.

Variable Candidate Parents Local Score
Xi Gi si(Gi)

X1 ∅ 2.0

X2 ∅ 1.0

X3 ∅ 0.2
X3 {X1} 1.0

X4 ∅ 0.1
X4 {X6} 0.8

X5 ∅ 0.1
X5 {X1} 0.7
X5 {X1, X2} 2.0

X6 ∅ 0.2
X6 {X3} 0.8
X6 {X3, X4} 2.0

X7 ∅ 0.1
X7 {X5} 0.5
X7 {X4, X5} 1.0

⇒

X1 X2

X3 X4 X5

X6 X7

Fig. 2 An optimal DAG (on the right) for a given scoring function s (on the left). There are
n = 7 variables and m = 15 candidate parent sets in total. The optimal score, 8.1, is the sum
of the local scores shown in bold face. Observe that choosing G4 = {X6} would have increased
the score but violated the acyclicity constraint.

are also other popular formulations based on frequentist (multiple) hypothesis
testing [65,13] and Bayesian model averaging [49,23,37].

The goodness of fit is typically measured by a real-valued scoring function s,
which associates a DAG G with a real-valued score s(G).2 Frequently used scor-
ing functions are based on (penalized) maximum likelihood, minimum description
length, or Bayesian principles (e.g., BDeu and other forms of marginal likelihood).
Additionally, they decompose [28] into a sum of local scores si(Gi) for each variable
Xi and its set of parents Gi. In principle, for each i the local scores are defined
for all the 2n−1 possible parent sets. However, in practice this number is greatly
reduced by enforcing a small upper bound for the size of the parent sets Gi or by
pruning, as preprocessing, parent sets that provably cannot belong to an optimal
DAG [67,11]. Applying one or both of these reductions results in a collection of
candidate parent sets, which we will denote by Gi.

This motivates the following formulation of the Bayesian network structure
learning problem (BNSL).

Input: Local scores si(Gi) for a collection of candidate parent sets Gi ∈ Gi
for i = 1, . . . , n.

Task: Find a DAG G that maximizes the score s(G) =
∑

i si(Gi).

Along with the number of variables n, another key parameter describing the
input size is the total number of candidate parent sets m =

∑
i |Gi|. See Figure 2

for an example instance of the BNSL problem.

2 The score does not depend on the parameters of the unspecified distribution P , which
are treated as nuisance parameters and absorbed by the scoring function (e.g., estimated or
integrated away).

Empirical Hardness of Finding Optimal Bayesian Network Structures 7

2.2 Overview of Complete Solvers for BNSL

We call an algorithm that is guaranteed to find a global optimum and prove its
optimality for the BNSL problem a complete solver for BNSL, or simply a solver.
In the next paragraphs we review some state-of-the-art solvers that fit the scope
of our study. We omit algorithms that assume significant additional constraints
given as input [56] or massive parallel processing [66,54].

Several works [53,37,62] have proposed dynamic programming algorithms to
solve BNSL. The solvers are based on the early observation [10,15] that for any
fixed ordering of the n variables, the decomposability of the score enables efficient
optimization over all DAGs compatible with the ordering. The algorithms proceed
by adding one variable at a time, only tabulating partial solutions for the explored
subsets of the variables. Thus the runtime scales roughly as 2n.

Yuan and Malone [72] formulated BNSL as a state-space search through the
dynamic programming lattice and applied the A∗ search algorithm. Unlike the
other sophisticated solvers, A∗ maintains the meaningful worst-case time bound of
dynamic programming. To this end, they developed several admissible heuristics
which relax the acyclicity constraint; these allow the algorithm to prune subopti-
mal paths during search, thus typically avoiding visiting all the variable subsets.

The branch-and-bound style algorithm by de Campos and Ji [11] searches in a
relaxed space of directed graphs that may contain cycles. It begins by allowing all
variables to choose their optimal parents, which typically results in some number
of cycles. Then, any found cyclic solutions are iteratively ruled out: it finds a cycle
and breaks it by removing one arc in it, branching over the possible choices of the
arc. It examines graphs in a best-first order, so the first acyclic graph it finds is
an optimal DAG. In this way, the algorithm ignores many cyclic graphs.

Integer linear programming (ILP) algorithms by Jaakkola et al. [35] and by
Bartlett and Cussens [16,17] search in a geometric space, in which DAGs appear
as vertices of an embedded polytope, corresponding to integral solutions to a
linear program (LP). A series of LP relaxations are solved, and the solution to
each relaxation is checked for integrality; an integral solution corresponds to an
optimal DAG. The search space is effectively pruned by employing domain-specific
cutting planes.

A very recent development in solvers for BNSL is the constraint programming
(CP) based approach by van Beek and Hoffmann [5], constituting a constraint-
based depth-first branch-and-bound approach to BNSL. As a key ingredient, the
approach uses an improved constraint model with problem-specific dominance,
symmetry breaking, and acyclicity constraints and propagators. It also employs
cost-based pruning rules applied during search, together with domain-specific
search heuristics. The approach combines some of the ideas applied in A∗, specifi-
cally pattern databases, for obtaining bounds on the scoring function.

3 Empirical Hardness Models

In this work, we focus on the hardness of a BNSL instance, relative to a particular
solver. We define the hardness of instance I for solver S simply as the runtime

8 Malone et al.

TS(I) of the solver S on the instance I.3 Due to the sophisticated heuristics un-
derlying the state-of-the-art BNSL solvers, evaluating the empirical hardness is
presumably (that is, under standard complexity-theoretic assumptions) compu-
tationally intractable; indeed, the fastest method we are aware of for evaluating
TS(I) is actually running S on I.

Rather than exactly evaluating the function TS , we take a machine learning
approach to approximate it: from a large collection of example instances for which
the actual runtimes are known (computed), we learn a model which is efficient to
evaluate at any given instance. Underlying this approach is the hypothesis that an
accurate empirical hardness model [45] can be built based on a set of efficiently
computable features of BNSL instances; by a feature we refer to a mapping from
the instances to the real numbers. This approach naturally gives rise to the fol-
lowing supervised machine learning problem, for a fixed solver S.

Input: A training set of BNSL instances (represented as collections of
feature values) and the respective runtimes of the solver S.

Task: Learn a function T̂S which minimizes the average prediction error
on an unseen set of BNSL instances.

We next introduce several categories of efficiently-computable features of BNSL
instances. Most of these features have not previously been used for characterizing
the hardness of BNSL. We then explain our training and testing strategies.

3.1 Features for BNSL

We use four different sets of features based on complementary strategies to charac-
terize BNSL instances: Basic, Basic extended, Upper bounding, and Prob-
ing. Table 1 lists the features in each set. Further, we define the set All as the
union of Basic, Basic extended, Upper bounding, and Probing.

The Basic features are the number of variables n and the mean number of
candidate parent sets per variable, m/n, which can be viewed as a natural mea-
sure of the “density” of an instance. The features in Basic extended are other
simple features that summarize the size distribution of the collections Gi and the
candidate parent sets Gi in each Gi. During training, we take the logarithm of the
features related to the number of candidate parent sets (Features 2–5).

In the Upper bounding set, the features are characteristics of a directed
graph that is an optimal solution to a relaxation of the original BNSL prob-
lem. Notice here especially the features based on strongly connected components
(SCCs), which can be seen as a proxy for cyclicity.4 In the Simple UB subset,
a graph is obtained by letting each variable select its best parent set according
to the scores. The resulting graph may contain cycles, and the associated score
is a guaranteed upper bound on the score of an optimal DAG. Many of the re-
viewed state-of-the-art solvers either implicitly or explicitly use this upper bound-
ing technique; however, they do not use this information to estimate the difficulty

3 While, in principle, the function TS also depends on external factors such as the specific
hardware on which the solver is run, we do not consider those factors in this work.

4 Note that counting the number of cycles in a given graph is, in terms of computational
complexity, presumably highly intractable, whereas SCC computation is achieved fast with
well-known polynomial-time algorithms.

Empirical Hardness of Finding Optimal Bayesian Network Structures 9

of a given instance. The features summarize structural properties of the graph: in-
and out-degree distribution over the variables, and the number and size of non-
trivial strongly connected components. In the Pattern database UB subset, the
features are the same but the graph is obtained by solving a more sophisticated
relaxation of the BNSL problem using the pattern databases technique [71]. Briefly,
this strategy optimally breaks cycles among some subsets of variables but allows
cycles among larger groups; it is a strictly tighter relaxation than the Simple UB.
Both A∗ and CP explicitly make use of the pattern database relaxation.

Probing refers to running a solver for a fixed number of seconds and collecting
statistics about its behavior during the run. Probing has previously been shown to
be an important form of features, for example, in the context of Boolean satisfia-

Table 1 BNSL features

Basic
1. Number of variables
2. Mean number of CPSs (candidate parent sets)

Basic extended
3–5. Number of CPSs max, sum, sd (standard deviation)
6–8. CPS cardinalities max, mean, sd

Upper bounding

Simple UB
9–11. Node in-degree max, mean, sd
12–14. Node out-degree max, mean, sd
15–17. Node degree max, mean, sd
18. Number of root nodes (no parents)
19. Number of leaf nodes (no children)
20. Number of non-trivial SCCs (strongly connected components)
21–23. Size of non-trivial SCCs max, mean, sd

Pattern database UB
24–38. The same features as for Simple UB but calculated on the graph derived from

the pattern databases

Probing

Greedy probing
39–41. Node in-degree max, mean, sd
42–44. Node out-degree max, mean, sd
45–47. Node degree max, mean, sd
48. Number of root nodes
49. Number of leaf nodes
50. Error bound, derived from the score of the graph and the pattern database

upper bound

A∗ probing
51–62. The same features as for Greedy probing but calculated on the graph learned

with A∗ probing

ILP probing
63–74. The same features as for Greedy probing but calculated on the graph learned

with ILP probing

CP probing
75–86. The same features as for Greedy probing but calculated on the graph learned

with CP probing

10 Malone et al.

bility within the SATzilla portfolio approach [70]. Hutter et al. [34] survey the use
of probing features in other domains. Here in the context of BNSL we consider four
probing strategies: greedy hill climbing with a TABU list and random restarts, an
anytime variant of A∗ [52], and the default versions of ILP [17] and CP [5]. All
of these algorithms have anytime characteristics, so they can be stopped at any
time and output the best DAG found so far. Furthermore, the A∗, ILP, and CP
implementations give guaranteed error bounds on the quality of the found DAGs
in terms of the BNSL objective function; an error bound can also be calculated for
the DAG found using greedy hill climbing by using the upper bounding techniques
discussed above. Probing is implemented in practice by running each algorithm
for 5 seconds and then collecting several features, including in- and out-degree
statistics and the error bound. We refer to these feature subsets of Probing as
Greedy probing, A∗ probing, ILP probing, and CP probing, respectively.

3.2 Model Training and Evaluation

In this work, we use the auto-sklearn system [20] to learn an explicit empirical
hardness model T̂S for each solver S; Briefly, auto-sklearn uses a Bayesian
optimization strategy for learning good model classes and hyperparameters for
those model classes for a given training set; additionally, preprocessing strategies,
such as polynomial expansion or feature selection, and associated hyperparameters
are included in this optimization. Importantly, this approach avoids the difficult
step of manually choosing hyperparameters in an ad hoc fashion. We refer the
reader to the original publication [20] for more details.

In total, auto-sklearn selects from amongst eleven preprocessing strategies,
including higher dimensional projection techniques like polynomial expansion and
feature selection strategies based on, for example, mutual information. The default
learning strategy for auto-sklearn includes twelve model classes for regression
and selects an ensemble of up to 50 regressors with optimized hyperparameters. In
order to learn interpretable models and avoid potential overfitting, we restricted
the use of auto-sklearn to learn the hyperparameters for a single preprocessor
and random forest.5 As described in detail in Section 4.2, this study includes three
types of BNSL instances: Real, Sampled and Synthetic. For model training,
we used all of the three types of datasets.

The portfolios and prediction accuracy are evaluated using an “outer” 10-
fold cross-validation scheme. In other words, the data is partitioned into 10 non-
overlapping subsets. For each fold, nine of the subsets are used to train the model.
As a first step in training, we normalize each feature so that it has zero mean and
unit variance; the same mean and variance are later used to scale the test data. We
then use auto-sklearn to learn the respective models. Internally, auto-sklearn
further splits the training data in an “inner” cross-validation approach to avoid
overfitting. We give 5 hours for training time for each fold. The remaining subset
is used for testing, which only takes a few seconds; each subset is used as the
testing set once. Importantly, the subset used for testing is not at all seen by
auto-sklearn during training.

5 The choice of preprocessor was not restricted.

Empirical Hardness of Finding Optimal Bayesian Network Structures 11

For testing, we predict the runtime of each testing instance using the appro-
priate model for each solver. For the algorithm selection analysis in Section 5.2,
we then select the solver with the lowest predicted runtime. In order to accurately
reflect the entire cost of algorithm selection, we report the runtime of a portfolio
on a given instance as the sum of the runtimes of (i) feature computation for all
feature sets used in the respective models and (ii) the selected solver.

4 Experimental Setup

We continue with a detailed description of our experimental setup, including de-
scriptions of the solver parameterizations used, the data sets used in the experi-
ments, as well as the computing infrastructure used.

4.1 Solvers

We begin by describing the exact parameterizations of complete BNSL solvers used
in the experiments. Specifically, we evaluate three complete approaches: Integer-
Linear Programming (ILP), A∗-based state-space search (A∗), and a constraint
programming based approach (CP). Importantly, these approaches constitute the
current state-of-the-art solvers for BNSL.6

We consider the following solvers and their parameterizations. We refer to all
of the solvers for each approach as a solver family.

ILP We use the GOBNILP solver [17] as a state-of-the-art representative of the
ILP-based approaches to BNSL. GOBNILP uses the SCIP framework [1]
and an external linear program solver; we chose the open source SoPlex
solver [69] bundled with the SCIP Optimization Suite. We consider the most
recent version, GOBNILP 1.6.2, which uses SCIP 3.2.0 with SoPlex 2.2.0,
as well as GOBNILP 1.4.1 (SCIP 3.0.1, SoPlex 1.7.1). For both versions we
consider two parameterizations: the default configuration, which searches for
BNSL-specific cutting planes using graph-based cycle finding algorithms, and
a second configuration, “-nc” (“no cycle-finding”), which only uses nested
integer programs. We call these parameterizations ilp-141, ilp-141-nc, ilp-162,
and ilp-162-nc, respectively, for short.

A∗ We use the URLearning solver [72] as a state-of-the-art representative ap-
proach to BNSL based on the A∗ search method. We consider three parame-
terizations: A∗-ed3, which uses dynamic pattern databases, A∗-ec, which uses
a combination of dynamic and static pattern databases, and A∗-comp which
uses a strongly connected component-based decomposition [18].

CP We use the CPBayes solver [5] as the most recent state-of-the-art repre-
sentative approach to BNSL based on branch-and-bound style constraint
programming search with problem-specific filtering (search-space pruning)

6 In a preliminary version of this work [51], we also considered an earlier proposed branch-
and-bound approach [11], which we found to be always dominated by ILP; therefore, we
dropped it from consideration. Furthermore, the earlier proposed dynamic programming ap-
proach [37] is clearly dominated by A∗. We have also discarded some parameterizations of both
ILP- and A∗-based solvers that were found to be uncompetitive.

12 Malone et al.

techniques. This solver does not expose any parameters to control its behav-
ior, so we apply the solver in our experiments in its default configuration,
cpbayes.

The non-default parameterizations of the solvers were suggested to us by the
solver developers. While we use both an “up-to-date” version (1.6.2) and an older
version (1.4.1) of GOBNILP, it is important to note that, generally, the choice
of parameters and the solver version can at times have a noticeable effect on the
per-instance runtimes of the resulting solver—so much so that one could consider
the solvers different.7

4.2 Training Data

To train our models we first obtained a collection of datasets from various sources.
For each dataset we then evaluated one or more scoring functions to produce a col-
lection of BNSL instances. We used datasets from the following three categories.8

Real Real-world datasets obtained from machine learning repositories: the
UCI repository [2], the MLData repository (http://mldata.org/),
and the Weka distribution [27]. We searched primarily for datasets
of fully or mostly categorical data and a reasonable number of vari-
ables (16–64) to produce instances that are feasible but non-trivial to
solve. Every dataset found and matching these criteria was included.
While some of the datasets have originally been designed for super-
vised learning, they have been regularly included also in studies of
unsupervised learning. These datasets are summarized in more detail
in Table 9 of Appendix A.

Sampled Datasets sampled from benchmark Bayesian networks, obtained from
http://www.cs.york.ac.uk/aig/sw/gobnilp/. These datasets are
widely used for evaluating the performance of individual solvers, for
example, recently in the context of optimal BNSL [4–6,17–19,51,50,
60]. These datasets are summarized in Table 10 of Appendix A.

Synthetic Datasets sampled from synthetic Bayesian networks. We generated
random networks of varying number of binary variables (20–60) and
maximum in-degree (2–8). For each network one dataset was produced
by sampling a random number (100–10,000) of records.

We preprocessed each dataset by removing unique identifiers (to avoid over-
fitting) and trivial variables that only take on one value. Continuous variables as
well as other variables with very large domains were either removed or discretized
using a normalized maximum likelihood approach [38] when possible. The maxi-
mum number of records per dataset was limited to 60,000 to make the evaluation
of scoring functions feasible.

7 For corroborating evidence on this, see, e.g., empirical data provided [17] for different
parameterizations and versions of GOBNILP.

8 The main motivations for including both more real and, on the other hand, synthetic
datasets in the study are two-fold: (i) We aimed at a notably heterogeneous set of benchmarks
for the study, yielding insights into the prediction task on a wide range of datasets with different
properties; and (ii) the three-way categorization has analogies in the benchmark categorization
used in the SAT domain [36].

Empirical Hardness of Finding Optimal Bayesian Network Structures 13

Table 2 Number of source datasets, instances generated from the source datasets, and in-
stances used in training and testing the models.

Category Datasets All Instances Training & Testing

Real 39 637 486
Sampled 19 317 283
Synthetic 477 477 410

We considered five different scoring functions:9 the BDeu score with the Equiv-
alent Sample Size parameter selected from {0.1, 1, 10, 100} and the BIC score. For
each dataset in the Real and Sampled categories we produced multiple instances
by considering all scoring functions and varying upper bounds on the size of each
candidate parent set, ranging from 2 to 6, as well as the unbounded case. For
each dataset in Synthetic we produced one instance, choosing both the scoring
function and the parent limit at random. For larger datasets, evaluating the scores
was feasible only up to lower values of the maximum parent set size. The total
number of datasets and BNSL instances produced is summarized in Table 2.

For running all solvers on these instances we used a cluster of Dell PowerEdge
M610 computing nodes equipped with two 2.53-GHz Intel Xeon E5540 CPUs and
32-GB RAM. For each individual run we used one CPU core, with a timeout of
two hours and a 30-GB memory limit. We treat the runtime of any instance as
two hours if a solver exceeds either the time or memory limit.

For training the models, we used a subset of all instances obtained by removing
very easy instances, solved within five seconds by all solvers, as well as instances
on which all solvers failed.10 We call these the training instances (see Table 2) and
focus on them in the following sections.

4.3 Feature Computation

In order to train the models we computed the features detailed in Section 3.1
for all training instances. Table 3 summarizes the time spent to compute these
features separately for each feature category. We observe that the computation
takes around 16 seconds per instance on average and about 26 seconds in the
worst case. Further, most of the time is spent on probing, while features of all
other categories are computed in less than one second. In other words, a time
limit needs to be enforced only for computing the probing features. As witnessed
by the maximum feature computation times, probing occasionally exhibits higher
running times than the limit of 5 seconds to finish a preprocessing step. This can be
caused by overhead resulting, for example, from memory deallocation operations.
We gave an additional 5 seconds for probing to finish on those specific instances.
If the probing solver was still not completed within this time, it was terminated.

9 In our experiments, the results were not very sensitive to the scoring function, except
through its effect on the number of candidate parent sets and other features, so our results
can generalize to other decomposable scores as well.
10 This is in line with related work on portfolio construction in other domains such as SAT [34]

as well as the SAT Competitions where a similar criterion is used to filter out “too easy”
instances from the competition benchmark sets [3]. Solver selection for very easy instances is
trivial, as any choice of a solver is essentially a good one.

14 Malone et al.

Table 3 The runtime of feature computation for each feature category in seconds, shown as
the average, median, minimum, and maximum runtime over all training instances.

Feature set Average Median Min Max
Basic 0.00 0 0 0
Basic extended 0.00 0 0 0
Lower bounding 0.00 0 0 0
Greedy probing 2.53 2 0 6
A* probing 4.61 5 0 7
ILP probing 3.94 5 0 10
CP probing 4.49 6 0 10
All 15.57 18 0 26

All in all, the overhead from computing the features is negligible from a port-
folio perspective, as our main interest is in choosing the fastest solver for harder
instances that take several minutes or even hours to solve. The easiest instances
by contrast are often solved already in the probing phase.11

4.4 Availability of Experiment Data

To facilitate open access and further analysis of the data produced in the exper-
iments of this work, we have made the full solver runtime data, as well as the
models learned for runtime prediction, available at

http://bnportfolio.cs.helsinki.fi/ .

Furthermore, the runtime and feature data are available as a scenario in the ASlib
Algorithm Selection Library [8] for further benchmarking purposes at

http://github.com/coseal/aslib_data/tree/master/BNSL-2016 .

5 Portfolios for BNSL

This section focuses on the construction of practical BNSL solver portfolios in
order to address question Q1. Optimal portfolio behavior is to always select the
best-performing solver for a given instance. As the main result, we will show that,
perhaps somewhat surprisingly, it is possible to construct a practical BNSL solver
portfolio that vastly outperforms any single solver using only the Basic features.

5.1 Solver Performance

As the basis of this work, we ran all the solvers on all the BNSL instances, as
described in Section 4. A comparison of solver performance is shown in Figure 3,
in terms of the number of instances for which a particular solver was empirically
faster than all other solvers on the considered benchmarks. Tables 4 and 5 show
an alternative comparison in terms of the total number of instances that were
successfully solved within the given computational resources as well as the total

11 The benchmark set used was not filtered based on probing results.

Empirical Hardness of Finding Optimal Bayesian Network Structures 15

CPU time required to either solve an instance or run out of time or memory.
The results are given in comparison to the Virtual Best Solver (VBS), which is
the theoretically optimal portfolio that always selects the best solver, constructed
by selecting a posteriori the fastest solver for each input instance. Essentially, a
theoretical lower bound on the runtime of any portfolio approach using a fixed set
of k solvers is the runtime of the VBS. Furthermore, by interleaving the executions
of the solvers until the best solver for a specific instance terminates, a theoretical
upper bound of k times the runtime of the VBS is obtained.

We observe that among the ILP parameterizations, the two default config-
urations, ilp-141 and ilp-162, are empirically best-performing on the considered
benchmarks, while in terms of total runtime all four show fairly similar perfor-
mance empirically. Among the A∗ parameterizations, A∗-comp does best on aver-
age, while A∗-ec outperforms A∗-ed3 on nearly all instances and is also often the
fastest parameterization in the Real category, even though its total performance
is worse than that of A∗-comp.

In terms of the the relative performance of the solvers, Figure 4 shows the
pairwise correlations between the solvers on all instances. Unsurprisingly, different
parameterizations within the same solver family correlate strongly with each other.
Within the A∗ family, the strongest correlation is between A∗-ec and A∗-ed3, while
all ILP parameterizations are strongly correlated, though mildly less so between
different versions of the solver. Between solver families, A∗ and ILP correlate with
each other the least, while CP exhibits mild correlation with ILP and moderate
correlation with A∗. Interestingly, A∗-comp correlates more with CP than with the
other A∗ parameterizations.

0
5

10
15
20
25
30
35
40

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

Real Sampled

A*-e
c

A*-e
d3

A*-c
om

p

cp
ba

ye
s

ilp
-14

1

ilp
-14

1-n
c

ilp
-16

2

ilp
-16

2-n
c

0
5

10
15
20
25
30
35
40

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

Synthetic

A*-e
c

A*-e
d3

A*-c
om

p

cp
ba

ye
s

ilp
-14

1

ilp
-14

1-n
c

ilp
-16

2

ilp
-16

2-n
c

All

Fig. 3 The number of training instances for which a solver was fastest. Ties between solvers
are broken at random.

16 Malone et al.

Table 4 The performance of all solvers as well as the Virtual Best Solver (VBS) and four
portfolios on all training instances, measured as the number of instances solved and the overall
runtime. Instances that were not successfully solved within the given resources count as 7,200
seconds in the runtimes.

Runtime (s)
Solver Instances solved (%) Cumulative Average Median

VBS 1179 100 259,440 220 7.33
VBS without CP 1164 98 368,690 313 9.40
VBS without A∗ 1157 98 475,032 403 8.96
VBS without ILP 937 79 2,022,296 1,715 33.35

portfolio-basic 1141 96 540,384 458 12.30
autofolio-basic 1146 97 548,030 465 18.34

portfolio-all 1152 97 488,093 414 27.70
autofolio-all 1152 97 501,146 425 23.84

ilp-141 1036 87 1,364,855 1,158 36.39
ilp-141-nc 1034 87 1,384,022 1,174 41.83
ilp-162 1029 87 1,453,932 1,233 29.56
ilp-162-nc 1026 87 1,494,879 1,268 32.18
cpbayes 896 75 2,423,547 2,056 85.83
A∗-comp 768 65 3,152,809 2,674 185.79
A∗-ec 519 44 4,866,797 4,128 7,200.00
A∗-ed3 478 40 5,163,876 4,380 7,200.00

While the ILP approach appears to be the best-performing measured in the
total runtime and the number of instances solved on the set of benchmarks con-
sidered, the results suggest that the performance of ILP on a per-instance basis is
quite orthogonal to that of both CP and A∗ (recall Fig. 1). We will now show that
a BNSL solver portfolio can closely capture the best-case performance of all eight
of the considered solver parameterizations in terms of empirical runtimes.

A
∗ -

ec

A
∗ -

ed
3

A
∗ -

co
m

p

cp
ba

ye
s

ilp
-1

41

ilp
-1

41
-n

c

ilp
-1

62

ilp
-1

62
-n

c

ilp-162-nc

ilp-162

ilp-141-nc

ilp-141

cpbayes

A∗-comp

A∗-ed3

A∗-ec

−0.8

−0.4

0.0

0.4

0.8

Fig. 4 Pairwise (Pearson) correlations between the runtimes of individual solvers.

Empirical Hardness of Finding Optimal Bayesian Network Structures 17

Table 5 The performance of all solvers and portfolios within each instance category.

Runtime (s)
Solver Solved (%) Cumulative Average Median Category

VBS 486 100 92,165 78 2.69 Real
VBS without CP 480 98 141,833 120 5.13
VBS without A∗ 469 96 244,625 207 5.60
VBS without ILP 448 92 370,212 314 8.48

portfolio-basic 470 96 209,490 178 4.60
autofolio-basic 469 96 232,889 198 9.78

portfolio-all 475 97 175,555 149 16.66
autofolio-all 474 97 197,599 168 16.00

ilp-141 396 81 800,432 679 55.68
ilp-141-nc 396 81 799,734 678 56.78
ilp-162 382 78 882,431 748 44.24
ilp-162-nc 382 78 887,222 753 48.25
cpbayes 427 87 549,230 466 14.85
A∗-comp 382 78 860,025 729 65.98
A∗-ec 311 63 1,300,350 1,103 156.30
A∗-ed3 281 57 1,523,034 1,292 523.43

VBS 283 100 62,010 53 5.62 Sampled
VBS without CP 278 98 92,511 78 6.31
VBS without A∗ 280 98 97,027 82 5.95
VBS without ILP 227 80 453,422 385 33.07

portfolio-basic 274 96 131,034 111 9.02
autofolio-basic 277 97 123,468 105 17.15

portfolio-all 278 98 115,254 98 23.97
autofolio-all 280 98 97,502 83 19.08

ilp-141 256 90 253,298 215 9.54
ilp-141-nc 254 89 266,871 226 13.91
ilp-162 257 90 280,990 238 13.57
ilp-162-nc 252 89 309,674 263 15.07
cpbayes 212 74 603,795 512 91.45
A∗-comp 182 64 749,656 636 145.95
A∗-ec 81 28 1,488,628 1,263 7,200.00
A∗-ed3 71 25 1,558,424 1,322 7,200.00

VBS 410 100 105,264 89 14.98 Synthetic
VBS without CP 406 99 134,346 114 16.15
VBS without A∗ 408 99 133,380 113 15.90
VBS without ILP 262 63 1,198,662 1,017 357.74

portfolio-basic 397 96 199,860 170 25.44
autofolio-basic 400 97 191,674 163 26.44

portfolio-all 399 97 197,284 167 38.68
autofolio-all 398 97 206,045 175 36.77

ilp-141 384 93 311,125 264 45.16
ilp-141-nc 384 93 317,417 269 50.39
ilp-162 390 95 290,512 246 30.32
ilp-162-nc 392 95 297,984 253 29.48
cpbayes 257 62 1,270,522 1,078 758.21
A∗-comp 204 49 1,543,127 1,309 7,200.00
A∗-ec 127 30 2,077,819 1,762 7,200.00
A∗-ed3 126 30 2,082,419 1,766 7,200.00

18 Malone et al.

5.2 Portfolios for BNSL

As a main observation reported on in this section, we found that using only the
Basic features (number of variables, n, and mean number of candidate parent
sets, m/n) is enough to construct an efficient BNSL solver portfolio. We emphasize
that, while on an intuitive level the importance of these two features may be to
some extent unsurprising, such intuition does not directly translate into an actual
predictor that would close-to-optimally predict the best-performing solver.

We create two portfolios that select a solver based on the runtime predictions
from a random forest and preprocessor with hyperparameters optimized by auto-
sklearn [20], as described in Section 3.2. We denote these portfolios (i) portfolio-
basic and (ii) portfolio-all, using (i) the Basic features only and (ii) the full feature
set, respectively, to make the algorithm selections.

Tables 4 and 5 show the performance of these two portfolios compared to each
individual solver parameterization as well as the Virtual Best Solver. The reported
portfolio runtimes include both the time required to run the selected solver and
the time spent to compute the features used by the portfolio. Figures 5–8 present a
more detailed view of portfolio performance, measured as the number of instances
solved within a specific time, for the full benchmark set (All; Fig. 5), as well
as the individual benchmark categories: Real (Fig. 6), Sampled (Fig. 7), and
Synthetic (Fig. 8). Again, the time required to compute the necessary features
is included in the solving time. We observe that portfolio-basic solves over 96% of
the instances in the full benchmark set, with a cumulative runtime roughly twice
that of the VBS. It also greatly outperforms every individual solver; the fastest
solvers overall are the ones in the ILP solver family, which all solve 87% of the
instances and are over five times slower than the VBS. The portfolio using only the
Basic features is only slightly worse than portfolio-all, which solves a handful more
instances and has a somewhat lower cumulative runtime. The difference between
the two portfolios is more pronounced within the Real and Sampled categories,
while within Synthetic their performance is almost equal. This is presumably
due to both portfolios heavily leveraging the ILP family, which alone exhibits very
good performance in Synthetic, solving 95% of the instances.

For understanding the marginal contributions of the considered solvers, we
consider the Shapley value [61] as a measure for the contribution of a specific
solver to a portfolio, following Fréchette et al. [22]. In this framework, one considers
constructing a portfolio by adding solvers incrementally and measuring the value
of each solver as the increase in the portfolio’s performance when the solver is
added. As these values greatly depend on the order in which solvers are added,
the Shapley value of a solver is defined as its average value over all possible solver
permutations. Table 6 shows the Shapley values for all solver parameterizations,
using the total number of instances solved as the measure of portfolio performance.
Within each of the solver families, we observe that ilp-162, cpbayes, and A∗-comp,
respectively, have the highest Shapley values on the considered benchmarks.

Given the good runtime performance of the portfolios obtained using runtime
predictions from random forests as the underlying algorithm selection strategy,
it is interesting to investigate to what extent the choice of algorithm selection
strategy impacts portfolio performance using the same set of BNSL features. For
comparison, we consider AutoFolio [47], a state-of-the-art algorithm selection

Empirical Hardness of Finding Optimal Bayesian Network Structures 19

Table 6 The contribution of each solver to the VBS and the two portfolios measured as the
Shapley value in terms of the average number of additional instances solved after adding the
indicated solver to the portfolio.

Solver VBS portfolio-all portfolio-basic
ilp-162 184.53 181.82 178.75
ilp-141 184.12 179.78 181.86

ilp-141-nc 182.48 179.62 178.79
ilp-162-nc 181.50 178.96 177.44
cpbayes 160.42 152.18 149.37
A∗-comp 136.24 131.60 127.62

A∗-ec 78.28 77.72 77.10
A∗-ed3 71.43 70.34 70.08

system12, for constructing the portfolios autofolio-basic (using AutoFolio on the
Basic feature set) and autofolio-all (using AutoFolio on the full feature set).13

AutoFolio [47] trains a binary classifier for each pair of solvers which selects
the better-performing for a given instance; the instances are weighted based on the
difference in performance for the two solvers. Further, AutoFolio selects among
the feature sets to use during testing to minimize the overall solution time. A
Bayesian optimization strategy is used to optimize the classifier hyperparameters,
feature set and preprocessing choices.14 For an unseen instance, each of the trained
classifiers votes for a solver; the solver with the most votes is used for that instance.
The training and testing splits were the same for both AutoFolio and auto-
sklearn. For AutoFolio, we also used an “outer” 10-fold cross-validation scheme
to ensure it does not use testing instances during training.

The two portfolios produced by AutoFolio perform very similarly on the
benchmark set as those based on predicting runtimes with random forests. In
more detail, autofolio-all solves more instances than portfolio-all within the first
thirty seconds for all instance types; this is because AutoFolio does not always
use all of the feature sets, so it spends less time computing features during test
time. After this initial phase, the number of instances solved under a given per-
instance timeout was very similar for portfolio-all and autofolio-all. As Table 4
shows, though, in total, portfolio-all has a slightly lower cumulative runtime than
autofolio-all; the detailed breakdown in Table 5 clarifies that this is largely due to
better performance of portfolio-all on the Real instances.

On the other hand, portfolio-basic solves more instances than autofolio-basic in
the thirty second time limit. Indeed, portfolio-basic consistently outperforms all of
the other portfolios and individual solvers within this time limit for all instance
types. Eventually, autofolio-basic solves 5 more instances than portfolio-basic, albeit
with a higher average and median runtime. In total, we do not see significant
differences between the portfolios based on AutoFolio and auto-sklearn. This
may be at least partially due to the fact that, internally, they both use the SMAC
Bayesian optimization engine [33] and similar model classes and preprocessors.

12 In particular, we use an updated version recommended by the author, https://github.
com/mlindauer/AutoFolio.
13 We thank an anonymous reviewer for proposing this comparison with AutoFolio.
14 The AutoFolio implementation includes a pre-solving component [29]. We disabled that

feature for purposes of this comparison in order to strictly consider how well the models
capture solver behavior; however, a similar strategy could be used to include a pre-solver for
the auto-sklearn-based approach, as well.

20 Malone et al.

1s 60s 1h
Time

20

40

60

80

100
Pe

rc
en

ta
ge

 s
ol

ve
d

All
VBS
portfolio-basic
autofolio-basic
autofolio-all
portfolio-all
ilp-162
cpbayes
A*-comp

Fig. 5 Fraction of instances solved by the VBS, the portfolios, and individual solvers within
a given amount of time.

1s 60s 1h
Time

20

40

60

80

100

Pe
rc

en
ta

ge
 s

ol
ve

d

Real
VBS
portfolio-basic
autofolio-basic
autofolio-all
portfolio-all
cpbayes
ilp-162
A*-comp

Fig. 6 Fraction of instances of the Real category solved by the VBS, the portfolios, and
individual solvers within a given amount of time.

Empirical Hardness of Finding Optimal Bayesian Network Structures 21

1s 60s 1h
Time

20

40

60

80

100
Pe

rc
en

ta
ge

 s
ol

ve
d

Sampled
VBS
portfolio-basic
autofolio-basic
autofolio-all
portfolio-all
ilp-162
cpbayes
A*-comp

Fig. 7 Fraction of instances of the Sampled category solved by the VBS, the portfolios, and
individual solvers within a given amount of time.

1s 60s 1h
Time

20

40

60

80

100

Pe
rc

en
ta

ge
 s

ol
ve

d

Synthetic
VBS
portfolio-basic
autofolio-basic
autofolio-all
portfolio-all
ilp-162
cpbayes
A*-comp

Fig. 8 Fraction of instances of the Synthetic category solved by the VBS, the portfolios,
and individual solvers within a given amount of time.

22 Malone et al.

5.3 Basic Features and Solver Performance

As the Basic features yield efficient BNSL portfolios, we look more closely at
the effect of the per-instance Basic feature values on solver performance. Figure 9
reinforces the orthogonal strengths of different solver families in the space spanned
by these two features. Specifically, we observe that ILP parameterizations can fairly
reliably solve instances up to around 1,000 candidate parent sets per variable,
regardless of the number of variables. In comparison, the A∗ family consistently
solves benchmark instances up to 30 variables, and many up to 40, even with tens
of thousands of candidate parent sets per variable. Our results show that CP takes
a middle ground between the two, solving many instances at the high end of either
of the Basic features, albeit less consistently than either A∗ or ILP.

In particular, Figure 9 (top left) demonstrates why the Basic features result
in strong portfolio behavior; namely, the instances which are optimally solved by
the different solver families are nearly linearly separable in this space. The figure
also supports the rough characterization (recall Section 1) of the computational
limitations of state-of-the-art solvers: none of the state-of-the-art solvers are able
to solve the benchmark instances where both of the Basic features are very large.

100

101

102

103

104

M
ea

n
nu

m
be

r o
f C

PS

All solver families
none ILP A* CP

A* family

20 30 40 50 60
Number of variables

100

101

102

103

104

M
ea

n
nu

m
be

r o
f C

PS

CP family

20 30 40 50 60
Number of variables

ILP family

Fig. 9 All benchmark instances plotted in the space of the two Basic features, the number
of variables and the mean number of candidate parent sets (CPS). Each instance is marked
according to which solver was the fastest to solve it, specifically, whether the fastest solver
was from the A∗, ILP, or CP family, or whether none of the solvers could solve the instance.
The comparison is presented for all solver families together (top left) and individually for each
single family, highlighting their limitations as either or both features grow too large.

Empirical Hardness of Finding Optimal Bayesian Network Structures 23

A∗-comp

cpbayes

ilp-162

1s

60s

1h

Ru
nt

im
e

1s

60s

1h

Ru
nt

im
e

20 30 40 50 60
Number of variables

1s

60s

1h

Ru
nt

im
e

100 101 102 103 104

Mean number of CPS

Fig. 10 Relationship between the Basic features, the number of variables and the mean
number of candidate parent sets (CPS), and the runtimes of solvers.

Finally, we look deeper into the relationship between each feature indepen-
dently and the specific solvers. Here we focus on A∗-comp, cpbayes, and ilp-162
since they have the highest Shapley value within the respective solver families for
portfolio-all; we observed very similar trends for all solvers in each solver family. Fig-
ure 10 illustrates that the runtimes for ilp-162 and the number of candidate parent
sets are strongly related (coefficient of determination, that is, explained variance,
R2 ≈ 0.78).15 On the other hand, the number of variables better explains the vari-
ance in the runtimes of cpbayes (R2 ≈ 0.39) and A∗-comp (R2 ≈ 0.47). Conversely,
ilp-162 appears not to depend heavily on the number of variables (R2 ≈ 0.0004),
while A∗-comp and cpbayes seem able to solve instances irrespective of the number
of candidate parent sets (R2 ≈ 0.01, R2 ≈ 0.09, respectively).

6 Predicting Runtimes

In this section, we turn to the arguably harder problem of predicting per-instance
runtimes of individual solvers. Apart from pure scientific interest, accurate runtime

15 R2 ranges from 0 to 1, where 0 indicates that the feature is completely uninformative
about runtime, and 1 indicates that all of the variance in runtime is explained by the respective
feature.

24 Malone et al.

predictions on a per-instance basis are useful for job schedulers as computing clus-
ters often require an estimated job time. In our case specifically, such predictions
could also facilitate development of improved BNSL solvers. For example, a model
could be exploited as a heuristic estimate for subproblem hardness during search
within a parallel BNSL solver. As a further motivation, model-based algorithm
configuration [33] crucially relies on runtime predictions in order to guide search
for better configurations in the algorithm configuration space. In such contexts,
note also that runtime is a primary resource to predict, as running out of other
resources such as memory directly imply running out of time as well.

As shown in Section 5, the Basic features can effectively distinguish between
solvers to use on a particular instance of BNSL. We will now address question
Q2, that is, whether the use of additional features (cf. Section 3.1) improves the
accuracy of the runtimes predicted by the random forests learned with auto-
sklearn.

6.1 Predictions with Added Features

Figure 11 depicts the actual runtimes of solvers compared to the runtimes predicted
by the random forests learned with auto-sklearn. We again use A∗-comp, cpbayes,
and ilp-162 as representatives of their solver families (recall Section 5.2; similar
conclusions hold for all solvers within the respective families). On the left we see
this comparison for models trained using the Basic features only. Even though
these predictions allow for good portfolio behavior, the considerable amount of
prediction error makes them less useful for obtaining accurate estimates of the
runtime. The right side, on the other hand, shows the same comparison when
using All, where the predictions are more concentrated near the diagonal. In
other words, the larger, more sophisticated feature set results in more accurate
runtime predictions. Table 7 presents a numerical measure of the improvement in
terms of change in the approximation factor, defined as ρ = max{ap ,

p
a}, where a

and p are the actual and predicted runtimes, respectively. In particular, smaller
approximation factors are better.

Additionally, we show the coefficient of determination (R2) values of the pre-
dictions in Table 8. These values show that the observed variances in the actual
runtimes are well-explained by the predictions. As expected, R2 is always higher
(better) when using All features compared to only the Basic ones. This offers
another view which shows that the more sophisticated features improve prediction
accuracy.

Table 7 The percentage of instances with an approximation factor within the given ranges of
ρ, when predicting runtimes based on either Basic or All features. Higher percentages with
lower approximation values indicate more accurate predictions.

A∗-comp cpbayes ilp-162
Range of ρ Basic All Basic All Basic All

< 2 48% 60% 45% 67% 59% 71%
[2, 5) 22% 22% 27% 20% 29% 22%
[5, 10) 14% 7% 13% 7% 7% 4%
> 10 17% 11% 15% 6% 4% 3%

Empirical Hardness of Finding Optimal Bayesian Network Structures 25

Basic All

A∗-comp

1s 60s 1h
actual runtime

1s

60s

1h

pr
ed

ic
te

d
ru

nt
im

e

1s 60s 1h
actual runtime

1s

60s

1h

pr
ed

ic
te

d
ru

nt
im

e

cpbayes

1s 60s 1h
actual runtime

1s

60s

1h

pr
ed

ic
te

d
ru

nt
im

e

1s 60s 1h
actual runtime

1s

60s

1h

pr
ed

ic
te

d
ru

nt
im

e

ilp-162

1s 60s 1h
actual runtime

1s

60s

1h

pr
ed

ic
te

d
ru

nt
im

e

1s 60s 1h
actual runtime

1s

60s

1h

pr
ed

ic
te

d
ru

nt
im

e

Fig. 11 The actual runtimes of solvers compared to the predicted runtimes when using Basic
(left) or All (right) features.

Table 8 The coefficient of determination (R2) for the actual runtime given the predicted
runtime

Solver A∗-ec A∗-ed3 A∗-comp cpbayes ilp-141 ilp-141-nc ilp-162 ilp-162-nc
Basic 0.71 0.79 0.57 0.51 0.67 0.69 0.73 0.72
All 0.86 0.89 0.66 0.65 0.76 0.78 0.81 0.79

We also evaluated the impact of incrementally adding sets of features. Fig-
ures 12 and 13 show how the prediction error changes as we add Basic (features
1–2), Basic extended (1–23), Upper bounding (1–38), the relevant probing
features for A∗ (1–38, 51–62), CP (1–38, 75–86), and ILP (1–38, 63–74), and fi-
nally All (1–86) for every solver. The results show that predictions using the Basic
features are typically worse than those incorporating the other features, although
this behavior is more pronounced for some solvers, feature sets and instance cat-
egories than others. The plots also suggest that some features help more than
others for the different solvers. For instance, Upper bounding features greatly
improve the predictions of A∗ compared to the Basic and Basic extended fea-

26 Malone et al.

tures. In hindsight, this is relatively unsurprising since the efficacy of the upper
bounding directly impacts the performance of A∗, showing that auto-sklearn ef-
fectively exploits features we intuitively expect to characterize the empirical hard-
ness. Probing offers a glimpse at the true runtime behavior of the algorithms, and
auto-sklearn leverages this information to further improve prediction accuracy.
For both A∗ and ILP, probing with the respective solvers alone is informative,
while the other probing strategies (All features) yield little improvement and even
weaken some of the predictions. In contrast, surprisingly, for CP the predictions
modestly benefit from probing with other solvers as well. Out of the three solver
families CP predictions improve most from added features in general.

Finally, we evaluate the root mean squared error (RMSE) of the predictions for
each solver as we incrementally add feature sets. Figure 14 echoes the results from
Figures 12 and 13. We again see that Upper bounding improves predictions
on all A∗ parameterizations. The respective probing features greatly improve the
prediction accuracy for A∗-ec and A∗-ed3; relevant probing modestly improves the
accuracy for the other solvers, as well.

6.2 Preprocessing Characteristics

We now turn to more qualitative analysis based on the preprocessor and single
random forest with optimized hyperparameters learned by auto-sklearn.

First, we examine preprocessor choices. As shown in Figure 15, the choice of
preprocessor often reflects the amount of information inherently available in the
feature sets. Furthermore, Figure 15 includes a clustering of the solvers and feature
sets based on the choice of preprocessor. In the clustering, we see that the families
of solvers tend to cluster together.

The Basic feature set (dark tan) almost always result in a preprocessor which
increases the dimensionality, either the polynomial expansion or random forest
embedding technique; we interpret this to mean that the features alone do not
provide sufficient information for accurate prediction, so auto-sklearn attempts
to increase the information with preprocessing. Likewise, many of the “mildly
informative” feature sets, such as Simple UB (dark teal), almost exclusively
result in polynomial expansion for preprocessing the input features. Interestingly,
the Basic extended feature set (light tan) results in polynomial expansion, a
dimensionality expansion strategy, and feature agglomeration, a dimensionality
reduction strategy, in roughly equal proportions for all solvers.

On the other hand, for the A* algorithms with the larger feature sets like All
(light brown), auto-sklearn has “too much” information, so it uses feature aggre-
gation, as well as model-based and percentile-based feature selection, to combine
or remove uninformative features; these choices typically are statistically signifi-
cant. Preprocessing is usually not used for predicting most of the ILP runtimes
using “informative” feature sets, such as All and ILP Probing (light teal); again,
almost all of these choices are statistically significant.

This analysis demonstrates that the choice of preprocessing strategy by auto-
sklearn largely agrees with intuition. For small, relatively uninformative feature
sets, feature expansion strategies like polynomial expansion are often used; when
more informative features are available, they are relatively unchanged. Finally,

Empirical Hardness of Finding Optimal Bayesian Network Structures 27
A
∗
-c
o
m
p

cp
b
ay
es

il
p
-1
6
2

Real

20
40

60
80

10
0

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

1s60
s1h

Prediction error

Ba
si

c
Ba

si
c

ex
te

nd
ed

Up
pe

r b
ou

nd
in

g
A*

 p
ro

bi
ng

Al
l

20
40

60
80

10
0

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

1s60
s1h

Prediction error

Ba
si

c
Ba

si
c

ex
te

nd
ed

Up
pe

r b
ou

nd
in

g
CP

 p
ro

bi
ng

Al
l

20
40

60
80

10
0

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

1s60
s1h

Prediction error

Ba
si

c
Ba

si
c

ex
te

nd
ed

Up
pe

r b
ou

nd
in

g
IL

P
pr

ob
in

g
Al

l

Sampled

20
40

60
80

10
0

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

1s60
s1h

Prediction error

20
40

60
80

10
0

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

1s60
s1h

Prediction error

20
40

60
80

10
0

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

1s60
s1h

Prediction error

F
ig
.
1
2

T
h

e
a
b

so
lu

te
p

re
d

ic
ti

o
n

er
ro

rs
o
n
R
e
a
l

a
n

d
S
a
m
p
l
e
d

in
st

a
n

ce
s

u
si

n
g

d
iff

er
en

t
se

ts
o
f

fe
a
tu

re
s,

so
rt

ed
in

in
cr

ea
si

n
g

o
rd

er
.

28 Malone et al.

A
∗
-co

m
p

cp
b
ayes

ilp
-1
6
2

Synthetic

20
40

60
80

100
Percentage of instances

1s

60s 1h

Prediction error

Basic
Basic extended
Upper bounding
A* probing
All

20
40

60
80

100
Percentage of instances

1s

60s 1h

Prediction error

Basic
Basic extended
Upper bounding
CP probing
All

20
40

60
80

100
Percentage of instances

1s

60s 1h

Prediction error

Basic
Basic extended
Upper bounding
ILP probing
All

All

20
40

60
80

100
Percentage of instances

1s

60s 1h

Prediction error

20
40

60
80

100
Percentage of instances

1s

60s 1h

Prediction error

20
40

60
80

100
Percentage of instances

1s

60s 1h

Prediction error

F
ig
.
1
3

T
h

e
a
b

so
lu

te
p

red
ictio

n
erro

rs
S
y
n
t
h
e
t
ic

a
n

d
A
l
l

in
sta

n
ces

u
sin

g
d

iff
eren

t
sets

o
f

fea
tu

res,
so

rted
in

in
crea

sin
g

o
rd

er.

Empirical Hardness of Finding Optimal Bayesian Network Structures 29

Basic Basic extended Simple UB Pattern database UB Probing All

18

20

22

24

26

28

30

32

34

36
R

o
ot

m
ea

n
sq

ua
re

d
er

ro
r

A∗-ec

A∗-ed3

A∗-comp

cpbayes

ilp-141

ilp-141-nc

ilp-162

ilp-162-nc

Fig. 14 The improvement of the root mean squared error of the runtime predictions as the
more sophisticated features are used. “Probing” refers to the appropriate probing feature set
for the respective solver, such as A∗ probing for the A∗-ec solver.

when “too much” information is present, sophisticated feature selection strategies
are used to retain useful features while removing noise.

6.3 Model Complexity

We additionally analyzed the complexity of the learned random forests, in terms of
the mean size of the regression trees composing them. As expected, Figure 16(a)
shows that the trees learned using the Basic features are the smallest. Other
simpler feature sets, such as Basic extended and Simple UB also resulted in
small trees for all solvers.

Somewhat surprisingly, though, the regression trees for the various ILP solvers
are much larger than those for the cpbayes and A∗ family of solvers for the A∗

probing, Pattern database UB, All and CP probing feature sets. As shown in
Figure 15, auto-sklearn often forewent preprocessing in these cases for ILP. On
the other hand, it used sophisticated preprocessing, like the model-based approach,
for A∗ and cpbayes a significant amount of the time. Thus, these results suggest an
implicit tradeoff in auto-sklearn between resources used for preprocessing and
the model itself.

Also unexpectedly, the trees for ILP without the graph-based cutting plane
routines (the “-nc” parameterizations) are much larger than those using it with
the ILP probing feature set. We hypothesize this is due to differences in the
ILP implementation used for probing and the “-nc” solvers; namely, the ILP im-
plementation used in probing does use the graph-based cutting plane routines.
auto-sklearn uses preprocessing only sparingly in all of these cases, so it again
appears that a more complex model is used to handle the noise in the features.

30 Malone et al.

Solvers

A∗-comp

A∗-ec

A∗-ed3

cpbayes

ilp-141-nc

ilp-141

ilp-162-nc

ilp-162

Feature sets

A∗ probing

All

Basic

Basic extended

CP probing

Greedy probing

ILP probing

Pattern database UB

Simple UB

N
on

e

P
ol

yn
om

ia
l
ex

pa
ns

io
n

R
an

do
m

tr
ee

em
b
ed

di
ng

F
ea

tu
re

ag
gl

om
er

at
io

n

M
od

el
-b

as
ed

P
er

ce
nt

ile
-b

as
ed

IC
A

P
C
A

Preprocessing technique

ilp-162; Basic extended
ilp-141-nc; Basic extended
A∗-ed3; Basic extended
A∗-comp; Basic extended
A∗-ec; Basic extended
cpbayes; Simple UB
cpbayes; Basic extended
ilp-162; Simple UB
cpbayes; Pattern database UB
ilp-141-nc; Simple UB
cpbayes; Greedy probing
cpbayes; ILP probing
ilp-162-nc; Simple UB
cpbayes; A∗ probing
cpbayes; CP probing
ilp-141; Simple UB
cpbayes; Basic
A∗-comp; Basic
ilp-141-nc; Basic
A∗-ed3; Basic
A∗-ec; Basic
ilp-162; Basic
ilp-141; Basic
ilp-162-nc; Basic
ilp-162-nc; Pattern database UB
ilp-141-nc; A∗ probing
ilp-162; Pattern database UB
ilp-141-nc; CP probing
ilp-162-nc; Basic extended
ilp-141-nc; Pattern database UB
ilp-141; Basic extended
ilp-162; All
ilp-141-nc; All
ilp-162; CP probing
ilp-162-nc; All
ilp-141; Pattern database UB
ilp-141; CP probing
ilp-162; A∗ probing
ilp-162; ILP probing
ilp-162-nc; A∗ probing
ilp-141; All
ilp-141-nc; ILP probing
ilp-141-nc; Greedy probing
ilp-141; A∗ probing
ilp-141; Greedy probing
ilp-141; ILP probing
ilp-162-nc; Greedy probing
ilp-162; Greedy probing
ilp-162-nc; ILP probing
ilp-162-nc; CP probing
A∗-ec; A∗ probing
A∗-comp; All
A∗-ec; ILP probing
A∗-ed3; A∗ probing
A∗-ec; Pattern database UB
A∗-ed3; ILP probing
A∗-ec; CP probing
A∗-comp; Pattern database UB
A∗-comp; Greedy probing
A∗-ec; Simple UB
A∗-comp; CP probing
A∗-ed3; Simple UB
A∗-comp; ILP probing
A∗-ec; All
A∗-comp; A∗ probing
cpbayes; All
A∗-ed3; All
A∗-ed3; Pattern database UB
A∗-ed3; Greedy probing
A∗-comp; Simple UB
A∗-ed3; CP probing
A∗-ec; Greedy probing

S
ol

ve
r;

F
ea

tu
re

se
t

0

2

4

6

8

10

Preprocessor
Uses

Fig. 15 The preprocessing techniques used by auto-sklearn for each combination of solver
and feature set. The blue-green column of colors on the left indicate the solver in that row,
and the green-brown column indicates the feature set; the text on the right also gives this
information. Each cell shows the number of times the respective preprocessing technique was
selected in one of the 10 cross-validation folds for the associated (solver, feature set) pair.
The UPGMA algorithm [64] with a Euclidean distance metric was used for clustering. Cells
shaded in green indicate statistically significantly high choices (p < 0.01, one-sided binomial
test comparing to a uniform distribution, Benjamini-Hochberg multiple test correction).

Empirical Hardness of Finding Optimal Bayesian Network Structures 31

6.4 Important Features

Finally, we computed the Gini importance [9] of each feature for predicting each
solver while using the appropriate Probing features. The importance for a par-
ticular feature is calculated using a standard two-step technique [9]. First, the
feature is corrupted with noise to create a new dataset. Then, the new dataset
is used for training and testing as usual. The normalized increase in error when
using the noisy feature is taken as its importance. For the random forests, this
procedure is performed for all trees in the forest. The feature importance is then
the average across all trees. Finally, we average the feature importances across
each cross-validation fold.

Figure 16(b) shows important features for the different solvers. Several of the
importances are unsurprising; the number of variables in the dataset determines
the size of the search space for A∗, and that was the most important feature for
all parameterizations. Similarly, the size of the linear program solved by ILP is
directly determined by the number of candidate parent sets, and its most important
features describe these sets. Likewise, the respective probing error bound features
were typically somewhat important for ILP and CP. This is sensible because these
features indicate when a solver can quickly converge to a nearly-optimal solution;
however, as could be seen from Figure 14, the overall improvement to RMSE is
modest with the addition of the probing features.

Figure 16(b) shows that the CP and A∗ family models share many important
features. For example, CP uses the pattern database relaxation which also guides
the A∗ search, and pattern database node degree features are indeed important for
both CP and A∗ models.

In contrast to ILP and CP, A∗-comp is the only A∗ parameterization for which
probing was an important feature. Coupled with the minimal improvement to
RMSE shown in Figure 14 when using probing, this suggests that the runtime
characteristics of the anytime variant of A∗ are different enough from the A∗ family
of solvers included in the portfolio that it adds significant noise to learning.

Another somewhat unexpected result concerning A∗ is that many Simple UB
features are quite important. Previous experimental results [72] show that the
pattern database bounding approach is much more informative during the A∗

search. However, the solvers construct their pattern databases differently than
those used for extracting features, so the structural properties, such as the number
of non-trivial SCCs, of the constructed graphs may not reflect the difficulty of the
problem for the solver.

In general, the results presented in Figure 16(b) reveal that a small number of
features were consistently important for any particular solver; this is in line with
previous work [42,44]. Qualitatively, this implies that most of the trees were based
on the same small set of features.

7 Conclusions

We have investigated the empirical hardness of BNSL, the Bayesian network struc-
ture learning problem, in relation to several state-of-the-art complete solvers based
on A∗ search, integer linear programming, and constraint programming. While each
of these solvers always finds an optimal Bayesian network structure (with respect

32 Malone et al.

B
as

ic

B
as

ic
ex

te
nd

ed

A
∗

pr
ob

in
g

P
at

te
rn

da
ta

ba
se

U
B A
ll

C
P

pr
ob

in
g

G
re

ed
y

pr
ob

in
g

IL
P

pr
ob

in
g

S
im

pl
e

U
B

Feature set

ilp-162-nc

ilp-141-nc

ilp-162

ilp-141

A∗-ed3

A∗-ec

A∗-comp

cpbayes

S
ol

ve
r

200

400

600

800

1000

Mean regression
tree size

(a)

A
∗

pr
ob

in
g,

E
rr

or
b
ou

nd
C
P

pr
ob

in
g,

E
rr

or
b
ou

nd
IL

P
pr

ob
in

g,
E
rr

or
b
ou

nd
IL

P
pr

ob
in

g,
O

ut
-d

eg
re

e,
m

ea
n

N
um

b
er

of
C
P
S
,
m

ax
N

um
b
er

of
C
P
S
,
m

ea
n

N
um

b
er

of
C
P
S
,
sd

N
um

b
er

of
C
P
S
,
su

m
,
m

N
um

b
er

of
va

ri
ab

le
s,

n
P
d

U
B

,
In

-d
eg

re
e,

m
ax

P
d

U
B

,
In

-d
eg

re
e,

m
ea

n
P
d

U
B

,
N

od
e

de
gr

ee
,
sd

S
im

pl
e

U
B

,
In

-d
eg

re
e,

m
ea

n
S
im

pl
e

U
B

,
In

-d
eg

re
e,

sd
S
im

pl
e

U
B

,
N

od
e

de
gr

ee
,
m

ea
n

S
im

pl
e

U
B

,
O

ut
-d

eg
re

e,
m

ax
S
im

pl
e

U
B

,
O

ut
-d

eg
re

e,
m

ea
n

S
im

pl
e

U
B

,
O

ut
-d

eg
re

e,
sd

S
im

pl
e

U
B

,
S
C
C

si
ze

,
m

ax
S
im

pl
e

U
B

,
S
C
C

si
ze

,
sd

Feature

A∗-ed3; A∗ probing

A∗-ec; A∗ probing

A∗-comp; A∗ probing

cpbayes; CP probing

ilp-162; ILP probing

ilp-162-nc; ILP probing

ilp-141; ILP probing

ilp-141-nc; ILP probing

S
ol

ve
r;

F
ea

tu
re

se
t

0.0

0.1

0.2

0.3

0.4

0.5

Gini
importance

(b)

Fig. 16 (a) The average size of the regression trees in the random forests learned by auto-
sklearn for each solver and feature set. (b) The Gini importance [9] of features in the learned
random forest models for each solver using the respective Probing feature set. Only features
with an importance of at least 0.05 for at least one solver are included. We use the abbreviations
“CPS” for candidate parent sets, “Pd” for pattern database, and “sd” for standard deviation.
The UPGMA algorithm [64] with a Euclidean distance metric was used for clustering in both
cases; the features in (b) were not clustered.

Empirical Hardness of Finding Optimal Bayesian Network Structures 33

to a given scoring function), the runtimes of the solvers can vary greatly even
within instances of the same size. Moreover, on a given instance, some solvers
may run very fast, whereas others require considerably longer time, sometimes by
several orders of magnitude. We validated this general view, which has emerged
from a series of recent studies, by conducting the most elaborate evaluation of
state-of-the-art solvers to date. We have made the rich evaluation data publicly
available16 in order to facilitate possible further analyses that go beyond the scope
of the present work.

As the second contribution, we applied machine learning methods to construct
empirical hardness models from the data obtained by the solver evaluations. In-
stantiating the general methodology of empirical hardness models [58,46], we pro-
posed several features, that is, real-valued functions of BNSL instances, which
are potentially informative about solver runtimes and which go beyond the basic
parameters of instance size.

We used two approaches, auto-sklearn and AutoFolio, for building BNSL
portfolio solvers, to directly address the algorithm selection problem. Additionally,
we studied in more detail the runtime prediction accuracy of the models learned
with auto-sklearn. Both of these state-of-the-art systems use Bayesian optimiza-
tion to optimize model class, preprocessing and relevant hyperparameters, for the
respective models.

The learned models allowed us to answer two basic questions concerning predic-
tion of the solvers’ relative and absolute performance without actually running the
solvers. The first question (Q1) asked whether the basic parameters of input size
suffice for reliably predicting which of the solvers is the fastest on a given problem
instance. We answered this question in the affirmative by showing that whenever a
solver is significantly slower than the fastest solver on a given instance, the slower
one is very rarely predicted as the fastest one. We compared the performance of
portfolios based on models learned by both AutoFolio and auto-sklearn, and
observed that these two approaches yielded very similar portfolio runtime per-
formance. For varying distributions of instances, our portfolio solver using a very
basic set of BNSL features resulted in the fastest solver overall, exhibiting cumula-
tive runtimes within two times that of the Virtual Best Solver (VBS). In contrast,
the cumulative runtime of the best individual solver is over five times that of the
VBS. As a result, the proposed solver portfolio is currently the fastest algorithm
for solving BNSL when averaged over a large heterogeneous set of instances.

Our answer was affirmative also to the second question (Q2) of whether the
runtimes of each of the solvers can be predicted more accurately by extending the
set of features. We observed that, in general, the more high-quality the features, the
more accurate the predictions. For algorithm selection, however, the more accurate
runtime predictions translated only to a small improvement. This was somewhat
expected since the selections based on the basic features already achieved very
good performance.

Via the extensive empirical evaluation presented as part of this work, we man-
aged to answer some of the key basic questions about the empirical hardness of
BNSL. This first study opens several avenues for future research. First, we believe
the proposed collection of features is not complete—presumably, there are even

16 http://bnportfolio.cs.helsinki.fi/,
http://github.com/coseal/aslib_data/tree/master/BNSL-2016

34 Malone et al.

more informative, albeit possibly slower-to-compute, features yet to be discovered.
For example, while not considered here, one straightforward possibility would be to
use summary statistics for the BNSL features that are less susceptible to outliers,
for example, medians. The question of how to efficiently trade informativeness for
computational efficiency is relevant also more generally for the algorithm selection
methodology; probing features [34], as applied in this work to the context of BNSL,
provide just one, rather generic technique. Second, the empirical hardness model
and its evaluated performance obviously depend on the distribution of the training
and test instances. While this dependency is unavoidable, it is an intriguing ques-
tion to what extent the dependency can be weakened by considering appropriate
distributions and sufficiently large samples of instances.

Finally, we note that while in this work we focused on the runtime behavior of
complete BNSL solvers, that is, exact algorithms that provide provably-optimal
solutions to given BNSL instances, the techniques studied and developed in this
paper could also be extended to cover in-exact local-search style, greedy, and
approximate algorithmic approaches to BNSL. While such approaches typically
exhibit better scalability than the exact approaches studied here, the fact that in-
exact approaches cannot give guarantees of optimality on the produced solutions
brings new challenges in terms of portfolio construction and prediction, specifically
in understanding the interplay between solution quality and runtimes. Another po-
tentially interesting direction for further study—although a somewhat secondary
aspect compared to runtime behavior—would be to understand and predict the
memory usage of exact approaches. Furthermore, it would be interesting to ex-
pand the study in the future by including additional datasets, for example, from
OpenML [68].

Acknowledgements The authors thank James Cussens for discussions on GOBNILP and
the anonymous reviewers for valuable suggestions that helped improve the manuscript.

References

1. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming
Computation 1(1), 1–41 (2009)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013). URL http://archive.
ics.uci.edu/ml

3. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT Challenge
2012 solver competition. Artificial Intelligence 223, 120–155 (2015)

4. Bartlett, M., Cussens, J.: Integer linear programming for the Bayesian network structure
learning problem. Artificial Intelligence In press (2015)

5. van Beek, P., Hoffmann, H.: Machine learning of Bayesian networks using constraint pro-
gramming. In: Proceedings of the 21st International Conference on Principles and Practice
of Constraint Programming (CP 2015), Lecture Notes in Computer Science, vol. 9255, pp.
429–445. Springer (2015)

6. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian net-
works via maximum satisfiability. In: Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS 2014), JMLR Workshop and Conference
Proceedings, vol. 33, pp. 86–95. JMLR (2014)

7. Bielza, C., Larrañaga, P.: Discrete bayesian network classifiers: A survey. ACM Comput.
Surv. 47(1), 5:1–5:43 (2014)

8. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M.T., Malitsky, Y., Fréchette, A., Hoos,
H.H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J.: ASlib: A benchmark
library for algorithm selection. Artificial Intelligence 237, 41–58 (2016). DOI 10.1016/j.
artint.2016.04.003. URL http://dx.doi.org/10.1016/j.artint.2016.04.003

Empirical Hardness of Finding Optimal Bayesian Network Structures 35

9. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
10. Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the 7th Confer-

ence on Uncertainty in Artificial Intelligence (UAI 1997), pp. 52–60. Morgan Kaufmann
Publishers Inc. (1991)

11. de Campos, C., Ji, Q.: Efficient learning of Bayesian networks using constraints. Journal
of Machine Learning Research 12, 663–689 (2011)

12. Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M.:
Prodigy: an integrated architecture for planning and learning. SIGART Bulletin 2, 51–55
(1991)

13. Cheng, J., Greiner, R., Kelly, J., Bell, D.A., Liu, W.: Learning Bayesian networks from
data: An information-theory based approach. Artificial Intelligence 137(1-2), 43–90 (2002)

14. Chickering, D.: Learning Bayesian networks is NP-complete. In: Learning from Data:
Artificial Intelligence and Statistics V, pp. 121–130. Springer-Verlag (1996)

15. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks
from data. Machine Learning 9, 309–347 (1992)

16. Cussens, J.: Bayesian network learning with cutting planes. In: Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 153–160. AUAI Press
(2011)

17. Cussens, J.: Advances in Bayesian network learning using integer programming. In: Pro-
ceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI 2013), pp.
182–191. AUAI Press (2013)

18. Fan, X., Malone, B., Yuan, C.: Finding optimal Bayesian network structures with con-
straints learned from data. In: Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence (UAI 2014), pp. 200–209. AUAI Press (2014)

19. Fan, X., Yuan, C.: An improved lower bound for Bayesian network structure learning.
In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp.
3526–3532. AAAI Press (2015)

20. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient
and robust automated machine learning. In: Advances in Neural Information Processing
Systems 28 (2015)

21. Fink, E.: How to solve it automatically: Selection among problem-solving methods. In:
Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems
(AIPS 1998), pp. 126–136. AAAI Press (1998)

22. Fréchette, A., Kotthoff, L., Michalak, T.P., Rahwan, T., Hoos, H.H., Leyton-Brown, K.:
Using the shapley value to analyze algorithm portfolios. In: D. Schuurmans, M.P. Wellman
(eds.) Proceedings of the 30th AAAI Conference on Artificial Intelligence, pp. 3397–3403.
AAAI Press (2016)

23. Friedman, N., Koller, D.: Being Bayesian about network structure. a Bayesian approach
to structure discovery in Bayesian networks. Machine Learning 50, 95–125 (2003)

24. Gebruers, C., Hnich, B., Bridge, D.G., Freuder, E.C.: Using CBR to select solution strate-
gies in constraint programming. In: 6th International Conference on Case-Based Reason-
ing (ICCBR 2005), Lecture Notes in Computer Science, vol. 3620, pp. 222–236. Springer
(2005)

25. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-
learning. Machine Learning 54(3), 187–193 (2004)

26. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–62
(2001)

27. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

28. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

29. Hoos, H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling via answer
set programming. Theory and Practice of Logic Programming 15(1), 117–142 (2015)

30. Hoos, H., Lindauer, M.T., Schaub, T.: claspfolio 2: Advances in algorithm selection for
answer set programming. Theory and Practice of Logic Programming 14(4-5), 569–585
(2014)

31. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A
Bayesian approach to tackling hard computational problems. In: Proceedings of the 17th
Conference on Uncertainty in Artificial Intelligence (UAI 2001), pp. 235–244. Morgan
Kaufmann (2001)

36 Malone et al.

32. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: A hierarchical portfolio
of solvers and transformations. In: Proceedings of the 11th International Conference on
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2014), Lecture
Notes in Computer Science, vol. 8451, pp. 301–317. Springer (2014)

33. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for gen-
eral algorithm configuration. In: Selected Papers of the 5th International Conference on
Learning and Intelligent Optimization (LION 5), Lecture Notes in Computer Science, vol.
6683, pp. 507–523. Springer (2011)

34. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: Methods
& evaluation. Artificial Intelligence 206, 79–111 (2014)

35. Jaakkola, T.S., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure
using LP relaxations. In: Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics (AISTATS 2010), JMLR Proceedings, vol. 9, pp. 358–365.
JMLR.org (2010)

36. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver compe-
titions. AI Magazine 33(1), 89–92 (2012)

37. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. Journal
of Machine Learning Research pp. 549–573 (2004)

38. Kontkanen, P., Myllymäki, P.: MDL histogram density estimation. In: In Proceedings of
the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS
2007), JMLR Proceedings, vol. 2, pp. 219–226. JMLR.org (2007)

39. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. AI Magazine
35(3), 48–60 (2014)

40. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm selection
for search problems. AI Communications 25(3), 257–270 (2012)

41. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in
inexact TSP solving using per-instance algorithm selection. In: Revised Selected Papers
of the 9th International Conference on Learning and Intelligent Optimization (LION 9),
Lecture Notes in Computer Science, vol. 8994, pp. 202–217. Springer (2015)

42. Lee, J.W., Giraud-Carrier, C.G.: Predicting algorithm accuracy with a small set of effective
meta-features. In: Proceedings of the 7th International Conference on Machine Learning
and Applications (IEEE ICMLA 2008), pp. 808–812. IEEE Computer Society (2008)

43. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active testing.
In: Proceedings of the 8th International Conference on Machine Learning and Data Mining
in Pattern Recognition (MLDM 2012), Lecture Notes in Computer Science, vol. 7376, pp.
117–131. Springer (2012)

44. Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu, L.: Understanding the empirical hardness
of NP-complete problems. Commun. ACM 57(5), 98–107 (2014)

45. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of opti-
mization problems: The case of combinatorial auctions. In: 8th International Conference
on Principles and Practice of Constraint Programming (CP 2002), Lecture Notes in Com-
puter Science, vol. 2470, pp. 556–572. Springer (2002)

46. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM 56(4) (2009)

47. Lindauer, M.T., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: An automatically config-
ured algorithm selector. Journal of Artificial Intelligence Research 53, 745–778 (2015)

48. Lobjois, L., Lemâıtre, M.: Branch and bound algorithm selection by performance predic-
tion. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI
1998), pp. 353–358. AAAI Press (1998)

49. Madigan, D., York, J.: Bayesian graphical models for discrete data. International Statis-
tical Review 63, 215–232 (1995)

50. Malone, B., Järvisalo, M., Myllymäki, P.: Impact of learning strategies on the quality of
Bayesian networks: An empirical evaluation. In: Proceedings of the 31st Conference on
Uncertainty in Artificial Intelligence (UAI 2015), pp. 362–371. AUAI Press (2015)

51. Malone, B., Kangas, K., Järvisalo, M., Koivisto, M., Myllymäki, P.: Predicting the hard-
ness of learning Bayesian networks. In: Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI 2014), pp. 2460–2466. AAAI Press (2014)

52. Malone, B.M., Yuan, C.: Evaluating anytime algorithms for learning optimal Bayesian
networks. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence
(UAI 2013). AUAI Press (2013)

Empirical Hardness of Finding Optimal Bayesian Network Structures 37

53. Ott, S., Imoto, S., Miyano, S.: Finding optimal models for small gene networks. In: Pro-
ceedings of the Pacific Symposium on Biocomputing 2004, pp. 557–567. World Scientific
(2004)

54. Parviainen, P., Koivisto, M.: Finding optimal Bayesian networks using precedence con-
straints. Journal of Machine Learning Research 14, 1387–1415 (2013)

55. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann (1988)

56. Perrier, E., Imoto, S., Miyano, S.: Finding optimal Bayesian network given a super-
structure. Journal of Machine Learning Research 9, 2251–2286 (2008)

57. Pulina, L., Tacchella, A.: Treewidth: A useful marker of empirical hardness in quantified
Boolean logic encodings. In: Proceedings of the 15th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR 2008), Lecture Notes in
Computer Science, vol. 5330, pp. 528–542. Springer (2008)

58. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)
59. Rijn, J.N., Abdulrahman, S.M., Brazdil, P., Vanschoren, J.: Fast algorithm selection using

learning curves. In: Proceedings of the 14th International Symposium on Advances in
Intelligent Data Analysis (IDA 2015), Lecture Notes in Computer Science, vol. 9385, pp.
298–309. Springer (2015)

60. Saikko, P., Malone, B., Järvisalo, M.: MaxSAT-based cutting planes for learning graphical
models. In: Proceedings of the 12th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR
2015), Lecture Notes in Computer Science, vol. 9075, pp. 345–354. Springer (2015)

61. Shapley, L.S.: A value for n-person games. Contributions to the theory of games 2, 307–317
(1953)

62. Silander, T., Myllymäki, P.: A simple approach for finding the globally optimal Bayesian
network structure. In: Proceedings of the 22nd Conference in Uncertainty in Artificial
Intelligence (UAI 2006), pp. 445–452. AUAI Press (2006)

63. Singh, A., Moore, A.: Finding optimal Bayesian networks by dynamic programming. Tech.
rep., Carnegie Mellon University (2005)

64. Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic relationships.
The University of Kansas Science Bulletin 38(2), 1409–1438 (1958)

65. Spirtes, P., Glymour, C., Schemes, R.: Causation, Prediction, and Search. Springer, New
York (1993)

66. Tamada, Y., Imoto, S., Miyano, S.: Parallel algorithm for learning optimal Bayesian net-
work structure. Journal of Machine Learning Research 12, 2437–2459 (2011)

67. Teyssier, M., Koller, D.: Ordering-based search: A simple and effective algorithm for learn-
ing Bayesian networks. In: Proceedings of the 21st Conference in Uncertainty in Artificial
Intelligence (UAI 2005), pp. 584–590. AUAI Press (2005)

68. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in ma-
chine learning. SIGKDD Explorations 15(2), 49–60 (2013)

69. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis,
Technische Universität Berlin (1996)

70. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm se-
lection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

71. Yuan, C., Malone, B.: An improved admissible heuristic for finding optimal Bayesian
networks. In: Proceedings of the 27th Conference in Uncertainty in Artificial Intelligence
(UAI 2012), pp. 924–933. AUAI Press (2012)

72. Yuan, C., Malone, B.: Learning optimal Bayesian networks: A shortest path perspective.
Journal of Artificial Intelligence Research 48, 23–65 (2013)

Appendix A Details on the Data Sets

The numbers of variables and records in each of the data sets used in the experi-
ments are shown in Tables 9 and 10 for Real and Sampled, respectively.

38 Malone et al.

Table 9 Sizes of the datasets in Real.

Dataset #Variables #Records
letter 17 20,000
voting 17 435
zoo 17 101
lymph 19 148
eucalyptus 20 736
hepatitis 20 155
credit-g 21 1,000
hypothyroid 22 3,772
mushroom 22 8,124
spect 23 267
autos 26 205
colic 28 368
pyrim 28 74
flag 29 194
trains 30 10
anneal 32 898
backache 32 180
marketing 33 364
student-mat 33 395
student-por 33 649
turkiye 33 5,820
dermatology 35 366
soybean 36 307
kr-vs-kp 37 3,196
stemmatology 37 1,208
abscisic 41 5,456
diabetes 41 60,000
connect-4 6000 43 6,000
connect-4 60000 43 60,000
covtype 60000 43 60,000
sponge 45 76
wiki4he 53 913
lung-cancer 57 32
promoters 58 106
triazines 59 186
splice 61 3,190
audiology 63 63 226
optdigits 63 5,620
plants 63 63 34,781

Table 10 Sizes of the datasets in Sampled.

Dataset #Variables #Records
kredit 18 1,000
insurance 27 100; 1,000; 10,000
water 32 100; 1,000; 10,000
mildew 35 100; 1,000; 10,000
alarm 37 100; 1,000; 10,000
hailfinder 56 100; 1,000; 10,000
carpo 60 100; 1,000; 10,000

