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Abstract. Going beyond the more classically studied reasoning

problems over argumentation frameworks (AFs), the study of dy-

namics in argumentation gives rise to new types of computational

challenges. This work studies ways of extending the scalability

of computational approaches to reasoning about dynamics of ab-

stract argumentation frameworks. In particular, we focus on three

recently proposed optimization problems underlying AF dynamics—

two variants of enforcement in abstract argumentation and the syn-

thesis of argumentation frameworks from examples—for semantics

under which the problems are (presumably) complete for the sec-

ond level of the polynomial hierarchy. As the main contributions, we

show that by bridging recent theoretical results on the persistence of

extensions under changes to the structure of AFs with Boolean satis-

fiability (SAT) counterexample-guided abstraction refinement algo-

rithms for the considered problems, the scalability of state-of-the-art

practical algorithms for each of the three problems can be signifi-

cantly improved.

1 INTRODUCTION

The study of representational and computational aspects of argumen-

tation has become a core topic in artificial intelligence research [1].

Dung’s argumentation frameworks (AFs) [30], taking the form of di-

rected graphs in which nodes represent abstract arguments and edges

attacks between arguments, provide a central formal model for argu-

mentation in AI via extension-based semantics [30, 4], expressed as

sets of jointly acceptable arguments.

The development of computational approaches to various fun-

damental reasoning tasks underlying aspects of argumentation is a

major research direction with AI argumentation. A main focus in

this line of research has until recently been on developing practi-

cal systems for efficiently solving various reasoning tasks over a

given fixed argumentation framework [13]—in particular, skeptical

and credulous acceptance of prescribed arguments under different

AF semantics. However, argumentation is intrinsically a dynamic

process. Motivated by this, computational approaches to reason-

ing about dynamic aspects of AFs have recently received attention

from various different viewpoints, such as expansions [7, 5, 8], re-

vision [12, 18, 19, 43, 8, 25], enforcement [7, 6, 10, 20, 46, 28],

update [10, 26, 21, 27], aggregation [17, 32, 23, 22, 24, 14] (see [11]

for a survey on aggregation issues), synthesis [42], among other ap-

proaches [29].

Similarly as in the case of static reasoning tasks such as acceptance

of arguments in a fixed AF [33], the various types of reasoning prob-

lems underlying argumentation dynamics are often computationally
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challenging, surpassing in complexity the first level of the polyno-

mial hierarchy for specific semantics such as the central preferred

semantics [46, 40, 42]. As dynamic problems naturally give rise to

optimization problems—in contrast to “mere” decision problems as

in the case of deciding acceptance of arguments—the problem vari-

ants with beyond-NP complexity pose great challenges from the per-

spective of developing scalable practical algorithms.

In this work we focus on improving the scalability of current state-

of-the-art declarative approaches to several types of problems arising

from the study of AF dynamics. In terms of the computational prob-

lems, we focus of two different forms of enforcement problems—

namely, extension enforcement [7, 20, 46, 41] and status enforce-

ment [40]—and AF synthesis [42]. In enforcement problems, the

goal is to structurally adjust a given AF in a smallest possible way so

that a given subset of its arguments becomes an extension (extension

enforcement) or so that the AF will support given positive and neg-

ative acceptance statuses of its arguments (status enforcement). On

the other hand, generalizing the notion of realizability [31], AF syn-

thesis deals with finding (or synthesizing) an AF that is semantically

closest to a given set of potentially conflicting positive and negative

examples of extensions and non-extensions.

For each of the problems, the current state-of-the-art practical

algorithms are based on harnessing Boolean satisfiability (SAT)

solvers and their optimization-extensions, i.e., maximum satisfiabil-

ity (MaxSAT) solvers, for finding optimal solutions to the task at

hand [46, 40, 42]. Common to each of the problems is that, un-

der specific central AF semantics and reasoning modes, the prob-

lems are complete for the second level of the polynomial hierarchy,

which rules out direct compact encodings of the problems in terms

of (Max)SAT. Indeed, the current state-of-the-art approaches to the

second-level variants of these problems are based on the general prin-

ciple of SAT-based counterexample-guided abstraction refinement

(CEGAR) [15, 16]. The CEGAR approaches work iteratively by op-

timally solving an over-abstraction of the problem via considering a

different, easier (in particular NP-complete) variant of the problem,

and using a SAT solver to check for possible counterexamples for

the found solution candidates, until a provably optimal solution to

the original second-level complete problem variant is found.

Central to scaling up SAT-based CEGAR for such beyond-NP AF

dynamics problems is the ability to strongly refine the NP-abstraction

during the iterations of the algorithms. In this respect, the current

state-of-the-art CEGAR approaches to extension enforcement, status

enforcement, and AF synthesis fall somewhat short.

As the main contributions of this work, we show that recent re-

sults on the persistence of labelings under adding and removing at-

tacks in AFs [44] yield a uniform way of noticeably improving the

scalability of CEGAR algorithms to extension enforcement, status



enforcement, and AF synthesis. In particular, bringing the theoretical

results on the persistence of extensions under updates to AFs into the

practical algorithmic realm by applying the theoretical results to ob-

tain noticeably stronger refinements in the CEGAR approaches, we

show that significantly larger sets of solution candidates can be ruled

out at each iteration of the CEGAR approaches based on a single

counterexample. This results in obtaining significant improvements

in terms of running times and scalability to larger instance sizes over

the current state of the art in practical algorithms to second-level

complete variants of extension enforcement, status enforcement, and

AF synthesis.

The rest of the paper is organized as follows. After necessary back-

ground on argumentation frameworks (Section 2) and the extension

enforcement, status enforcement, and AF synthesis problems (Sec-

tion 3), we describe in a uniform way the SAT-based CEGAR ap-

proaches for the three problems (Section 4). We then explain how

the more naive refinements applied in the current CEGAR imple-

mentations can be generalized to obtain noticeably stronger refine-

ment steps (Section 5) and show that the strong refinements yield

significant scalability improvements (Section 6).

2 ABSTRACT ARGUMENTATION

We start by recalling argumentation frameworks [30] and the argu-

mentation semantics [3, 4]) used in this work.

Definition 1. An argumentation framework (AF) is a pair F =
(A,R), where A is a finite, non-empty set of arguments and R ⊆
A × A an attack relation. An arguments a attacks b if (a, b) ∈ R.

An argument a ∈ A is defended (in F ) by a set S ⊆ A if, for each

b ∈ A such that (b, a) ∈ R, there is a c ∈ S such that (c, b) ∈ R.

Example 1. Let F = (A,R) be an AF with the set of ar-

guments A = {a, b, c, d, e} and the attack relation R =
{(a, b), (b, a), (c, b), (c, d), (d, e), (e, c)}. The AF F is represented

as a directed graph in Figure 1.

Semantics for AFs are functions σ which map each AF F =
(A,R) to a set σ(F ) ⊆ 2A of extensions. We consider σ ∈
{cf , adm, com, prf , stb}, which stand for conflict-free, admissible,

complete, preferred, and stable, respectively.

Definition 2. Given an AF F = (A,R), the characteristic function

FF : 2A → 2A of F is FF (S) = {x ∈ A | x is defended by S}.
Moreover, for a set S ⊆ A, the range of S is S+

R = S ∪ {x ∈ A |
(y, x) ∈ R, y ∈ S}.

The semantics we consider can now be defined as follows.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free

(in F ) if there are no a, b ∈ S such that (a, b) ∈ R. We denote the

collection of conflict-free sets of F by cf (F ). For a conflict-free set

S ∈ cf (F ), it holds that

• S ∈ adm(F ) iff S ⊆ FF (S),
• S ∈ com(F ) iff S = FF (S),
• S ∈ prf (F ) iff S ∈ adm(F ) and 6 ∃S′ ∈ adm(F ) with S ⊂ S′,

a b c d e

Figure 1. Argumentation framework from Example 1.

• S ∈ stb(F ) iff S+
R = A.

If S ∈ σ(F ), then S is called a σ-extension.

For any AF F , the semantics satisfy the subset relations cf (F ) ⊇
adm(F ) ⊇ com(F ) ⊇ prf (F ) ⊇ stb(F ).

Example 2. For the AF F in Example 1, it holds that adm(F ) =
com(F ) = {∅, {a}}, prf (F ) = {{a}}, and stb(F ) = ∅.

3 DYNAMIC PROBLEMS

We focus on the optimization problems underlying (argument-fixed)

extension enforcement [20, 46], status enforcement [40], and argu-

mentation framework synthesis [42], and in particular, variants of

these problems that are (presumably) hard for the second level of the

polynomial hierarchy. Briefly put, extension and status enforcement

aim to update a given input AF in order to reach a goal while min-

imizing the number of changes, and the goal of AF synthesis is to

construct an AF that optimally represents given sets of potentially

conflicting examples as extensions.

3.1 Extension Enforcement

Strict extension enforcement aims to modify the attack structure of

an AF in order to make a subset of arguments provided as input a

σ-extension, while the non-strict version requires only that the input

set is a subset of a σ-extension [20]. Whereas the non-strict version is

NP-complete for several AF semantics, the strict version under pre-

ferred semantics is complete for the second level of the polynomial

hierarchy, in particular, ΣP

2 -complete [46]. We focus on the latter,

computationally more challenging problem variant.

Given an AF F = (A,R) and a subset T ⊆ A of arguments,

the task is to modify the attack structure R such that T becomes a

preferred extension. Denote by

strict(F, T, prf ) = {R′ | F ′ = (A,R′), T ∈ prf (F ′)}

the solution set of attack structures. Further, denote the number of

changes between two attack structures R and R′ as |R∆R′| = |R \
R′|+ |R′ \R|. Strict extension enforcement is then the optimization

problem of minimizing the number of changes to the input attack

structure:

Strict Extension Enforcement under Preferred Semantics

INPUT: AF F = (A,R), T ⊆ A.

TASK: Find an AF F ∗ = (A,R∗) with

R∗ ∈ argmin
R′∈strict(F,T,prf )

|R∆R′|.

Example 3. Consider again the AF in Example 1. Suppose we want

to enforce T = {d} strictly under preferred semantics. Clearly some

changes to the attack structure are needed, as the unique preferred

extension is {a}. Removing the attack (c, d) results in an AF in

which T is admissible. However, the resulting AF also has an ad-

missible superset {a, c, d} since {a} is still admissible, d now de-

fends c against the attack from e, and there are no conflicts between

a, c, d, so this does not suffice. Further removing the attack (a, b)
and adding a self-attack (c, c) results in the AF F ′ = (A,R′) with

R′ = {(b, a), (c, b), (c, c), (d, e), (e, c)} in which {d} is the unique

non-empty admissible extension and hence the unique preferred ex-

tension. One can verify that this is indeed an optimal solution, i.e.,

one needs at least three changes in order to enforce T under pre-

ferred.



3.2 Status Enforcement

Status enforcement problem aims to modify an input AF with

the goal that certain input arguments are—either credulously or

skeptically–accepted, i.e., enforced positively, and others are not, that

is, enforced negatively [40]. While credulous status enforcement is

NP-complete for several AF semantics when there are no arguments

that are enforced negatively, the credulous status enforcement prob-

lem (without restrictions) is complete for the second level, and so

is skeptical status enforcement under stable semantics (even without

negatively enforced arguments) as well [40]. Again, we will focus on

these computationally more challenging problem variants.

Formally, in the credulous (resp. skeptical) status enforcement

problem we are given an initial AF F = (A,R), with two disjoint

subsets of arguments P,N ⊆ A, P ∩ N = ∅. The task is now to

modify the attack structure R in such a way that all arguments in

P are credulously (resp. skeptically) accepted and all arguments in

N are not (resp. skeptically) accepted under σ. For credulous status

enforcement, denote the set of solution attack structures

{R′ | F ′ = (A,R′), P ⊆
⋃

σ(F ′), N ∩
⋃

σ(F ′) = ∅}

as cred(F, P,N, σ), and for skeptical status enforcement by

skept(F, P,N, σ), defined as

{R′ | F ′ = (A,R′), P ⊆
⋂

σ(F ′), N ∩
⋂

σ(F ′) = ∅}.

We set the additional constraint for skeptical status enforcement

that a solution AF F ′ has at least one extension, as otherwise by

definition all arguments are skeptically accepted. Again, status en-

forcement is considered as an optimization problem, where the goal

is to minimize the number of changes to the original attack structure.

Credulous Status Enforcement

Input: AF F = (A,R), P,N ⊆ A, P ∩N = ∅, semantics σ.

Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ argmin
R′∈cred(F,P,N,σ)

|R∆R′|.

Skeptical Status Enforcement

Input: AF F = (A,R), P,N ⊆ A, P ∩N = ∅, semantics σ.

Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ argmin
R′∈skept(F,P,N,σ)

|R∆R′|.

More formally, skeptical status enforcement under stable is ΣP

2 -

complete even if N = ∅. Furthermore, for an arbitrary N , cred-

ulous status enforcement under admissible and stable is also ΣP

2 -

complete [40].

Example 4. Consider again the AF in Example 1, with a unique

non-empty admissible extension {a}. Suppose we want to enforce

P = {d} and N = {a} credulously under admissible, i.e., we

want d to be included in at least one admissible extension, and a
not to appear in any of them. Removing the attack (c, d) results in

an AF with {d} as an admissible extension. However, the result-

ing AF also has {a} as an admissible extension, so this is not a

valid solution. Adding or removing any other attacks does not re-

sult in valid solutions, either. However, if we additionally add the

self-attack (a, a), resulting in the AF F = (A,R′) with R′ =
{(a, a), (a, b), (b, a), (c, b), (d, e), (e, c)}, a is no longer in any ad-

missible set and {d} is still admissible. One can verify that this solu-

tion is optimal.

3.3 AF Synthesis

Realizability of AFs is the problem of deciding whether there exists

an AF the extensions of which is exactly the collection of subsets

of arguments given as input [31]. AF synthesis generalizes realiz-

ability by relaxing the requirement of exact knowledge of extensions

and non-extensions, aiming to construct an AF which is semantically

closest to the knowledge provided in the form of weighted exam-

ples [46]. Again, under various central AF semantics, such as com-

plete and stable, AF synthesis is in NP. However, AF synthesis under

preferred semantics is conjectured to be ΣP

2 -complete and is also no-

ticeably challenging to solve in practice [46].

Formally, in the AF synthesis problem, we are given a non-empty

set of arguments A, and two sets of positive and negative examples

E+ and E− over A. An example (over A) is a pair (S,w) with S ⊆
A and w > 0 an integer representing the weight of the example. An

AF synthesis instance is of the form P = (A,E+, E−, σ) with σ
an AF semantics. For a fixed example e = (S,w), denote Se = S
and we = w. Given an AF F = (A,R), a positive (resp. negative)

example e is satisfied if Se ∈ σ(F ) (resp. Se 6∈ σ(F )). The cost of

an AF F is

cost(P, F ) =
∑

e∈E+

we · I(Se /∈ σ(F ))+
∑

e∈E−

we · I(Se ∈ σ(F )),

i.e., the sum of the weights of the examples that are not satisfied by

F . The goal of the AF synthesis problem is to find an AF of minimum

cost, i.e., that optimally represents the examples given as input.

AF Synthesis

INPUT: P = (A,E+, E−, σ)
TASK: Find an AF F ∗ with

F ∗ ∈ argmin
F=(A,R∗)

(cost(P, F )).

Example 5. Consider the AF synthesis instance P =
(A,E+, E−, prf ) with A = {a, b, c, d, e}, E+ =
{({a, b}, 1), ({b, c}, 1)}, and E− = {({d, e}, 1)}. In this

case, it is possible to construct an optimal solution AF with zero

cost, namely, via R = {(a, c), (c, a), (d, d), (e, e)}. The preferred

extensions of the AF F = (A,R) are exactly the sets of the positive

examples {a, b} and {b, c}.

4 COUNTEREXAMPLE-GUIDED
ABSTRACTION REFINEMENT

Counterexample-guided abstraction refinement (CEGAR), originally

proposed in the context of model checking [15, 16], is a general

framework suitable for iteratively solving hard decision and opti-

mization problems. The idea is to start with an abstraction, i.e., an

overapproximation of the problem, of lesser computational complex-

ity. At each iteration, a solution to the currrent abstraction is obtained,

and checked whether the solution to the abstraction is an actual solu-

tion to the original problem. If it is not, a counterexample witnessing

this fact is obtained, and based on the counterexample the abstrac-

tion is refined by excluding at least the solution candidate from fur-

ther consideration. Finally, a solution to the abstraction which has no

counterexamples will correspond to a solution of the original prob-

lem, or, in case the abstraction is determined to have no more solu-

tions, it follows that there are no solutions to the actual instance being

solved. A critical aspect in constructing practically efficient CEGAR

algorithms is the development of strong refinements, i.e., ideas for



ruling out not only the latest solution candidate, but also many other

ones from further consideration, based on a single counterexample to

the latest solution candidate in order to limit the number of iterations

and avoid bloating up the size of the abstraction unnecessarily. This

is also our focus in the context of the three AF dynamics problems.

Employing CEGAR has been shown to be effective in various do-

mains, including nonmonotonic reasoning [37], QBF solving [38],

classical planning [45], and, more importantly, for solving static [34]

and dynamic [46, 42] reasoning problems in abstract argumentation.

Here we focus on MaxSAT-based CEGAR algorithms for problems

hard for the second level, where the abstraction is solved using a

MaxSAT solver, and the search for a counterexample employs a SAT

solver. This means that our abstractions must be problems in NP in

order to obtain succinct encodings.

For background on MaxSAT, recall that for a Boolean variable

x, there are two literals, x and ¬x. A clause is a disjunction (∨)

of literals. A truth assignment τ is a function from variables to true

(1) and false (0). Satisfaction is defined as usual. A weighted partial

MaxSAT (or simply MaxSAT) instance consists of hard clauses ϕh,

soft clauses ϕs, and a weight function w associating to each soft

clause C ∈ ϕs a positive weight w(C). An assignment τ is a solution

to a MaxSAT instance (ϕh, ϕs, w) if τ satisfies ϕh. The cost of τ ,

c(τ), is the sum of weights of the soft clauses not satisfied by τ . A

solution τ to MaxSAT instance ϕ is optimal if c(τ) ≤ c(τ ′) for any

solution τ ′ to ϕ.

4.1 CEGAR for Enforcement

We start by describing the CEGAR approaches to extension en-

forcement [46] and status enforcement [40] in a uniform way. The

CEGAR algorithm proceeds as follows (outlined in pseudocode as

Algorithm 1). Suppose M ∈ {strict , cred , skept}, an AF F =
(A,R), and a semantics σ are given as input, along with a set

S = T in the case of strict extension enforcement (M = strict)

or a pair of sets S = (P,N) in the case of status enforcement

(M = cred , skept).
For extension and status enforcement, changes to the attack struc-

ture are encoded using variables ra,b for each a, b ∈ A, with the

interpretation that (a, b) ∈ R∗ for an optimal attack structure R∗

iff τ(ra,b) = 1 for an optimal truth assignment τ . Now, using soft

clauses (line 2)

NOCHANGE(F ) =
∧

(a,b)∈R

ra,b ∧
∧

(a,b)∈(A×A)\R

¬ra,b

with unit weights, the number of changes to the original attack struc-

ture is minimized.

The NP-abstractions ABSTRACTION(M,F, S, σ) are encoded us-

ing hard clauses (line 1). For strict extension enforcement under pre-

Algorithm 1 CEGAR for extension and status enforcement. Input:

M ∈ {strict , cred , skept}, AF F = (A,R), S = T if M = strict

and S = (P,N) otherwise, semantics σ.

1: ϕh ← ABSTRACTION(M,F, S, σ)
2: ϕs ← NOCHANGE(F )
3: while true do

4: (c, τ)← MAXSAT(ϕh, ϕs)

5: Fτ ← (A,Rτ )
6: (r , τ ′)← SAT(COUNTEREXAMPLE(Fτ , S, σ))
7: if r = unsat then return Fτ

8: else ϕh ← ϕh ∧ REFINE(Fτ )

ferred, a suitable abstraction is to instead enforce a complete exten-

sion [46]. For credulous status enforcement under σ ∈ {adm, stb},
the complexity drops to NP for N = ∅, and hence as an abstrac-

tion only the arguments in P are enforced, and for skeptical status

enforcement under σ = stb, likewise only the arguments in N are

enforced [40].

A MaxSAT solver is called iteratively (line 4) in order to ob-

tain a candidate attack structure from the optimal truth assign-

ment τ via Rτ = {(a, b) ∈ A × A | τ(ra,b) = 1} (line 5).

The validity of this solution is checked by asking a SAT solver

for a counterexample (line 6), encoded as a Boolean formula

COUNTEREXAMPLE(Fτ , S, σ) utilizing the standard SAT encodings

of argumentation semantics [9]. For strict extension enforcement un-

der preferred, a counterexample is an admissible extension of Fτ that

is a superset of the set T to be enforced [46]. On the other hand, for

credulous status enforcement, a counterexample is a σ-extension that

contains an argument in N , and for skeptical status enforcement, a

σ-extension that does not contain an argument in P [40].

If a counterexample is found, according to [46, 40] the abstraction

is refined by adding the clause

REFINE(Fτ ) =
∨

(a,b)∈(A×A)\Rτ

ra,b ∨
∨

(a,b)∈Rτ

¬ra,b (1)

which simply excludes the current attack structure (line 8). In this

work, we refer to this clause as the trivial refinement.

4.2 CEGAR for AF Synthesis

In the CEGAR approach to AF synthesis under preferred seman-

tics [42], the output attack structure is likewise encoded using vari-

ables ra,b for each a, b ∈ A, additionally making use of variables

Exte for each example e ∈ E+ ∪ E−, with the interpretation that

Se ∈ σ(F ) for an optimal AF F iff τ(Exte) = 1 for an optimal truth

assignment τ . The presumed second-level hardness of AF synthesis

under preferred is due to positive examples, since negative examples

can be encoded succintly in SAT, as described in [42]. In terms of

positive examples, the abstraction is formed using the complete se-

mantics via hard clauses of the form Exte → ϕcom(Se) for each

e ∈ E+, where ϕcom(Se) encodes using the ra,b variables that Se is

a complete extension, and a soft clause (Exte) is introduced for each

e ∈ E+ with weights corresponding to the weights of the examples.

In terms of negative examples, the encoding follows similar lines of

reasoning but is somewhat more complicated, and detailed in [42].

In the CEGAR loop, a MaxSAT solver is called iteratively, ob-

taining a candidate solution AF Fτ = (A,Rτ ). Then, the algorithm

iterates over all satisfied positive examples e, and for each of these,

checks whether there exists a counterexample, i.e., an admissible ex-

tension that is a superset of Se. If such a counterexample is found,

the algorithm proceeds by adding the clause

Exte →





∨

(a,b)∈(A×A)\Rτ

ra,b ∨
∨

(a,b)∈Rτ

¬ra,b





to the abstraction, stating that if one wants to satisfy e, one needs

a different attack structure. Note that the consequent of the impli-

cation is exactly the trivial refinement in the CEGAR algorithm for

enforcement (Equation 1).

5 STRONG REFINEMENTS

For each of the three problems we consider, the counterexample pro-

vided by the SAT solver in the CEGAR algorithm comes in terms



of an admissible or a stable extension of the candidate solution AF.

In the original CEGAR approaches, the refinement used straightfor-

wardly rules out exactly the attack structure of the candidate solu-

tion. This can be a considered as a weakest possible—or “trivial”—

refinement, since it is guaranteed that no other attack structures are

ever ruled out by a refinement step. This means that in the worst case

the number of CEGAR iterations will equal the number of solutions

to the original abstraction, the number of which can be very large.

Thus the quest for stronger refinements is essential towards improv-

ing the scalability of the CEGAR algorithm for each of the three

problems.

In particular, we may interpret the trivial refinement clause as stat-

ing “remove an existing attack or add a non-existing attack”. Thus

a natural way to seek for stronger refinements is to aim to exclude

from the refinements literals that correspond to removing or adding

attacks which do not change the counterexample extension.

So-called {IN, OUT, UNDEC}-labelings provide an alternative way

of defining the standard AF semantics [4]. The persistence of a label-

ing, i.e., whether a labeling is still a labeling in an AF that has been

updated via adding or removing attacks, was recently studied from

a representational point of view [44] under the complete, preferred,

grounded, stable, and semi-stable semantics. Under these semantics,

labelings are in one-to-one correspondence with extensions [4]. We

put the results for stable semantics into action computationally by

taking into account the labels of the endpoints of each attack in the

counterexample AF.

Most recently, the results of [44] for the persistence of a stable

labeling, i.e., a stable extension, was extended to admissible seman-

tics in the context of incomplete argumentation frameworks [39]. In

the context of plain AFs, the results are summarized in the follow-

ing propositions. For an extension E ∈ σ(F ) for an AF F , denote

IN(E) = E, OUT(E) = {a ∈ A | (b, a) ∈ R, b ∈ E}, and

UNDEC(E) = A \ (IN(E) ∪ OUT(E)). Consider first adding an at-

tack to an AF.

Proposition 1. Let F = (A,R) be an AF, E ∈ σ(F ), σ ∈
{adm, stb}, and (a, b) ∈ (A×A)\R. If a ∈ OUT(E) or b 6∈ IN(E),
then E ∈ σ(F+) for F+ = (A,R ∪ {(a, b)}).

That is, adding an attack with the source already attacked by E, or

the target outside E, has no effect on E being an extension.

Now consider removing an attack from an AF.

Proposition 2. Let F = (A,R) be an AF, E ∈ σ(F ), σ ∈
{adm, stb}, and (a, b) ∈ R. If a 6∈ IN(E) or b 6∈ OUT(E), then

E ∈ σ(F−) for F− = (A,R \ {(a, b)}).

In words, removing an attack from an argument that is not in E or

removing an attack to an argument that is not attacked by E has no

effect on E being an extension.

Based on these propositions, we define in the context of the CE-

GAR algorithms a strong refinement clause REFINE(Fτ , E) for the

enforcement and synthesis problems, where Fτ is the candidate AF

provided by the MaxSAT solver and E is the counterexample exten-

sion provided by the SAT solver, defined as

∨

(a,b)∈((A×A)\Rτ )∩
((IN(E)∪UNDEC(E))×IN(E))

ra,b ∨
∨

(a,b)∈Rτ∩
(IN(E)×OUT(E))

¬ra,b. (2)

Due to Propositions 1 and 2, this refinement clause is also valid

in the sense that it does not exclude any solutions of the problem at

hand. For extension and status enforcement, this can be formalized

as follows.

Theorem 3. Consider the algorithm resulting from replacing

REFINE(Fτ ) (line 8 in Algorithm 1) with REFINE(Fτ , E) as defined

in Equation 2, where E = {a ∈ A | τ ′(a) = 1} is the counterex-

ample extension extracted from the satisfying truth assignment τ ′ of

the SAT solver call on line 6. This algorithm is correct for both the

extension and status enforcement problem.

Proof. (sketch) Let χ = adm for strict extension enforcement un-

der preferred and credulous status enforcement under admissible, and

χ = stb otherwise (status enforcement under stable). At any itera-

tion, suppose that both the MaxSAT and SAT calls were satisfiable

and that we have extracted both a counterexample AF Fτ = (A,Rτ )
and a counterexample extension E ∈ χ(Fτ ). If we add a literal ra,b
with (a, b) ∈ OUT(E) × (A \ IN(E)) to the refinement clause, and

during a subsequent iteration the AF F+ = (A,R ∪ {(a, b)}) is an

optimal solution to the current abstraction, the MaxSAT solver may

provide a truth assignment corresponding to F+, since R ∪ {(a, b)}
satisfies the refinement clause by construction. By Proposition 1,

E ∈ χ(F+) and thus E is still a counterexample. The same holds

for any literal ¬ra,b with (a, b) ∈ (A \ IN(E)) × (A \ OUT(E))
and the AF F− = (A,R \ {(a, b)}) by Proposition 2. That is, all

literals ra,b with (a, b) ∈ OUT(E) × (A \ IN(E)) and ¬ra,b with

(a, b) ∈ (A \ IN(E)) × (A \ OUT(E)) are redundant in the clause

in Equation 1, and hence may be removed, resulting in the strong re-

finement clause (Equation 2). Since Algorithm 1 is correct [46, 40],

the modified algorithm is also correct.

The result of Theorem 3 extends to the CEGAR algorithm for AF

synthesis under preferred [42].

Corollary 4. Consider the algorithm resulting from replacing

Exte → REFINE(Fτ ) (as described in Section 4.2) with Exte →
REFINE(Fτ , E), where Fτ is the candidate AF and E is an admis-

sible superset of a positive example Se extracted from the satisfiyng

truth assignment of the SAT solver. This algorithm is correct for AF

synthesis under preferred semantics.

We illustrate the effect of the strong refinement clause in the con-

text of status enforcement.

Example 6. Consider Example 3 with the input AF F = (A,R)
from Example 1, and enforcing P = {d} and N = {a} credu-

lously under admissible. Suppose the optimal truth assignment of the

MaxSAT solver τ corresponds to the candidate AF Fτ = (A,R ∪
{(b, c)}), where {b, d} is an admissible extension. However, {a} is

still in an admissible extension according to the satisfying truth as-

signment of the SAT solver, so we need to exclude this AF from con-

sideration. The trivial refinement (Equation 1) gives the clause

ra,a ∨ ra,c ∨ ra,d ∨ ra,e ∨ rb,b ∨ rb,d ∨ rb,e ∨ rc,a ∨ rc,c ∨ rc,e

∨ rd,a ∨ rd,a ∨ rd,b ∨ rd,c ∨ rd,d ∨ re,a ∨ re,b ∨ re,d ∨ re,e

∨ ¬ra,b ∨ ¬rb,a ∨ ¬rb,c ∨ ¬rc,b ∨ ¬rc,d ∨ ¬rd,e ∨ ¬re,c

consisting of 52 = 25 literals. Clearly, e.g., adding the attack (a, c)
satisfies the clause via the literal ra,c, but has no effect on {a} being

admissible. If we instead compute IN(E) = {a}, OUT(E) = {b}
and UNDEC(E) = {c, d, e}, we obtain via Equation 2 the stronger

refinement clause ra,a∨rc,a∨rd,a∨re,a∨¬ra,b with only 5 literals.

6 EXPERIMENTS

We overview results from an empirical evaluation on the im-

pact of employing strong refinements on the practical efficiency
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Figure 2. Trivial vs. strong refinement: strict extension enforcement (left) and AF synthesis (right) under prf .
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Figure 3. Trivial vs. strong refinement for status enforcement: credulous under adm (left), credulous under stb (center), skeptical under stb (right).

of the state-of-the-art CEGAR approaches to extension en-

forcement, status enforcement, and AF synthesis variants with

second-level complexity. For the evaluation, we reimplemented

the CEGAR algorithms for the variants of enforcement [46, 40]

and AF synthesis [42] under the PySAT framework [35] (version

0.1.4.dev19), using RC2 [36] as the MaxSAT solver and Glu-

cose [2] as the SAT solver. This reimplementation turned out to

outperform the previous implementations (Pakota and AFSynth)

of the CEGAR algorithms. The reimplementations are avail-

able via https://www.helsinki.fi/en/researchgroups/

constraint-reasoning-and-optimization/software.

For extension and status enforcement, we used as benchmarks AFs

from the 3rd International Competition on Computational Models of

Argumentation (ICCMA 2019)2 with up to 500 arguments. For each

of these 221 AFs, we generated six extension enforcement instances

for each |T |/|A| = 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, following [46].

For each AF with at most 200 arguments (a total of 154), we gen-

erated nine status enforcement instances for each |P |, |N | = 1, 3, 5,

following [40]. This resulted in a total of 1326 extension enforcement

instances and 1386 status enforcement instances. For AF synthesis,

we employed the exact same random instance generation method as

in [42], with parameters |A| = 20, 30, 40, 50, |E+| = 5, 10, and

|E−| = 10, 20, 30, 40, 50, resulting in a total of 400 instances.

All experiments were run on Intel Xeon E5-2680 v4 2.4-GHz,

256-GB machines running CentOS 7. We enforced a per-instance

2 https://www.iccma2019.dmi.unipg.it

time limit of 1800 seconds and a memory limit of 64 GB.

Results Overviews of the results, comparing for each of the prob-

lems the performance of the corresponding CEGAR algorithm em-

ploying the “trivial” (instance-specific running times on x-axis) and

strong refinements (instance-specific running times on y-axis), are

shown in Figure 2 left (for extension enforcement), Figure 2 right

(for AF synthesis), and in Figure 3 (for variants of status enforce-

ment). In summary, the strong refinements improve the overall per-

formance of the CEGAR approach for each problem and problem

variant. The most noticeable and one-sided improvements are ob-

tained on AF synthesis. We will discuss the results in more detail

individually for each of the problems.

Table 1. Mean running times (with timeouts as 1800 s) and number of time-

outs (out of 221 instances): strict extension enforcement under preferred.

Refinement type

|T |/|A| trivial strong

0.025 1023.32 (121) 798.11 (94)

0.05 830.51 (95) 666.93 (78)

0.075 748.53 (87) 671.96 (79)

0.1 717.16 (82) 676.62 (81)

0.2 463.21 (54) 433.36 (51)

0.3 325.47 (38) 301.14 (34)

For extension enforcement (see Figure 2 left), the number of time-

outs drops by 60 when employing the strong refinement instead

of the trivial one. The performance-improving effects of using the



strong refinement is especially evident on instances on which the

set of arguments is relatively small, in particular for |T |/|A| =
0.025, 0.05, 0.075. Interestingly, there are also instances which time

out for the strong refinement but not for the trivial one, but this hap-

pens on a clear minority of the instances. Why this happens is an

interesting question to consider; at present, we hypothesize this to

be due to non-deterministic effects in how the internal heuristics of

the MaxSAT solver is influenced by the specific order and structure

of the added refinement clauses. More details on the comparison are

provided in Table 1 in light of the mean running times and numbers of

timeouts resulting from using the different refinements. We observe

that instances with a smaller |T |/|A| ratio are significantly harder

to solve. The strong refinement improves performance especially on

these harder instances, resulting in considerably fewer timeouts, e.g.,

dropping from 121 to 94 for |T |/|A| = 0.025.

Table 2. Mean running times (with timeouts as 1800 s) and number of time-

outs (out of 462 instances): status enforcement

Refinement type

Mode Semantics Parameter trivial strong

cred adm |P | = 1 881.27 (214) 22.51 (5)
cred adm |P | = 3 971.08 (234) 75.45 (14)

cred adm |P | = 5 1059.88 (260) 143.27 (32)

cred adm |N | = 1 125.00 (22) 72.88 (15)

cred adm |N | = 3 1209.24 (283) 80.17 (18)

cred adm |N | = 5 1577.98 (403) 88.18 (18)

cred stb |P | = 1 218.11 (44) 80.13 (13)

cred stb |P | = 3 314.88 (67) 156.13 (32)

cred stb |P | = 5 336.72 (69) 207.08 (43)

cred stb |N | = 1 88.89 (17) 74.52 (15)

cred stb |N | = 3 235.09 (44) 122.02 (24)

cred stb |N | = 5 545.74 (119) 246.80 (49)

skept stb |P | = 1 285.31 (53) 95.66 (20)

skept stb |P | = 3 690.63 (150) 263.35 (53)

skept stb |P | = 5 854.41 (189) 369.42 (72)

skept stb |N | = 1 504.65 (103) 212.56 (41)

skept stb |N | = 3 621.36 (133) 244.49 (50)
skept stb |N | = 5 703.83 (156) 271.11 (54)

Turning to status enforcement, a comparison of the trivial and

strong refinement are shown for credulous enforcement under admis-

sible and stable in Figure 3 left and center, and skeptical enforcement

under stable in Figure 3 right. The positive impact of employing the

strong refinement is here even more pronounced than in the case of

extension enforcement. In particular, the number of timeouts drops

considerably, and the running times improve quite consistently. For

example, for credulous status enforcement under admissible and in-

stances with |N | = 3, 5 (Figure 3 left), a considerable number of

instances on which CEGAR times out when employing the trivial re-

finement are solved in under 50 seconds when employing the strong

refinement. The mean running times and numbers of timeouts for

the variants of status enforcement are provided in Table 2. For the

credulous problem variants, the positive impact of using the strong

refinement increases for larger |N |, which also results in the most

difficult-to-solve instances especially for admissible. This may be ex-

plained by the fact that negatively enforced arguments are the source

of second-level hardness for the credulous status enforcement prob-

lem [40]. For the skeptical variant of status enforcement, the number

of timeouts is cut by more than a half for all parameter choices by

employing the strong refinement. Interestingly, the choices of |P |
and |N | clearly affect the empirical difficulty of the instances. In

fact, it appears that a contrary observation was made in [40] due the

fact that with the trivial refinement the instances that reveal a depen-

dency on runtimes on the choices of |P | and |N | turned out to be too

difficult to solve for all choices of the parameters.

Finally, we overview results for the AF synthesis problem under

preferred, which to-date is the most challenging one among the con-

sidered three problems in practice in terms of scalability wrt. the

number of arguments. Here the positive impact of employing the

strong refinement is the most pronounced, considerably pushing fur-

ther the scalability of the CEGAR algorithm in practice. As shown

in Figure 2 (right), with the trivial refinement only 6 instances out

of 200 with 10 positive examples are solved in the time limit. In

contrast, by employing the strong refinement a majority of the in-

stances with 10 positive examples can now be solved. Interestingly,

solving these instances gets easier when employing the strong refine-

ment with increasing |A|, which is also witnessed by the number of

timeouts in Table 3. We observed that this is due to the fact that the

cost of optimal solutions decreases significantly with increasing |A|
as the probability of generating conflicting examples decreases with

increasing |A|. This effect was not observed in the original work

proposing the CEGAR algorithm for AF synthesis using the trivial

refinement [42] due to its poor scalability.

Table 3. Mean running times (with timeouts as 1800s) and number of time-

outs (out of 50 instances): AF synthesis under preferred

Refinement type

|A| |E+| trivial strong

20 5 416.04 (10) 53.21 (1)

20 10 1676.23 (45) 1280.45 (33)

30 5 1133.46 (26) 18.52 (0)

30 10 1777.27 (49) 1034.65 (25)

40 5 1392.90 (30) 68.01 (1)

40 10 1800.00 (50) 549.27 (8)

50 5 1643.90 (40) 90.09 (0)

50 10 1800.00 (50) 586.75 (8)

7 CONCLUSIONS

The study of AF dynamics gives rise to noticeably hard optimization

problems. Focusing on three recently proposed and studied aspects

of dynamics—extension enforcement, status enforcement, and AF

synthesis—we address the challenge of scaling up the performance

of the current state of the art in practical algorithms for the problems

for semantics and reasoning modes under which the problems have

beyond-NP complexity. Specifically, we showed that by applying re-

cent results on the persistence of extensions under changes to an ar-

gumentation framework, the performance of the currently best SAT-

based counterexample-guided abstraction refinement algorithms for

these problems can be noticeably improved. Regarding further work,

we aim to study whether strong refinements can be applied to other

problems over AFs that are hard for the second level of the polyno-

mial hierarchy.
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[19] Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and
Pierre Marquis, ‘A translation-based approach for revision of argumen-
tation frameworks’, in Proc. JELIA, volume 8761 of LNCS, pp. 397–
411. Springer, (2014).
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Stefan Woltran, ‘An extension-based approach to belief revision in ab-
stract argumentation’, Int. J. Approx. Reasoning, 93, 395–423, (2018).

[26] Sylvie Doutre, Andreas Herzig, and Laurent Perrussel, ‘A dynamic
logic framework for abstract argumentation’, in Proc. KR. AAAI Press,
(2014).

[27] Sylvie Doutre, Faustine Maffre, and Peter McBurney, ‘A dynamic
logic framework for abstract argumentation: Adding and removing ar-
guments’, in Proc. IEA/AIE, volume 10351 of LNCS, pp. 295–305.
Springer, (2017).

[28] Sylvie Doutre and Jean-Guy Mailly, ‘Semantic change and extension
enforcement in abstract argumentation’, in Proc. SUM, volume 10564
of LNCS, pp. 194–207. Springer, (2017).

[29] Sylvie Doutre and Jean-Guy Mailly, ‘Constraints and changes: A sur-
vey of abstract argumentation dynamics’, Argument & Computation,
9(3), 223–248, (2018).

[30] Phan Minh Dung, ‘On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games’, Artif. Intell., 77(2), 321–358, (1995).

[31] Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, and Stefan
Woltran, ‘Characteristics of multiple viewpoints in abstract argumen-
tation’, Artif. Intell., 228, 153–178, (2015).

[32] Paul E. Dunne, Pierre Marquis, and Michael J. Wooldridge, ‘Argument
aggregation: Basic axioms and complexity results’, in Proc. COMMA,
eds., Bart Verheij, Stefan Szeider, and Stefan Woltran, volume 245 of
FAIA, pp. 129–140. IOS Press, (2012).

[33] Wolfgang Dvorák and Paul E. Dunne, ‘Computational problems in for-
mal argumentation and their complexity’, in Handbook of Formal Argu-

mentation, eds., Pietro Baroni, Dov Gabbay, Massimiliano Giacomin,
and Leendert van der Torre, chapter 13, 631–687, College Publications,
(2018).

[34] Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan
Woltran, ‘Complexity-sensitive decision procedures for abstract argu-
mentation’, Artif. Intell., 206, 53–78, (2014).

[35] Alexey Ignatiev, António Morgado, and João Marques-Silva, ‘Pysat: A
Python toolkit for prototyping with SAT oracles’, in Proc. SAT, volume
10929 of LNCS, pp. 428–437. Springer, (2018).

[36] Alexey Ignatiev, António Morgado, and João Marques-Silva, ‘RC2: An
efficient MaxSAT solver’, JSAT, 11, 53–64, (2019).

[37] Mikolás Janota, Radu Grigore, and João Marques-Silva, ‘Counterex-
ample guided abstraction refinement algorithm for propositional cir-
cumscription’, in Proc. JELIA, volume 6200 of LNCS, pp. 195–207.
Springer, (2010).

[38] Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M.
Clarke, ‘Solving QBF with counterexample guided refinement’, Artif.

Intell., 234, 1–25, (2016).
[39] Andreas Niskanen, Daniel Neugebauer, Matti Järvisalo, and Jörg

Rothe, ‘Deciding acceptance in incomplete argumentation frame-
works’, in Proc. AAAI, (2020, in press).

[40] Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo, ‘Opti-
mal status enforcement in abstract argumentation’, in Proc. IJCAI, pp.
1216–1222. IJCAI/AAAI Press, (2016).

[41] Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo, ‘Ex-
tension enforcement under grounded semantics in abstract argumenta-
tion’, in Proc. KR, pp. 178–183. AAAI Press, (2018).

[42] Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo, ‘Syn-
thesizing argumentation frameworks from examples’, J. Artif. Intell.

Res., 66, 503–554, (2019).
[43] Farid Nouioua and Eric Würbel, ‘Removed set-based revision of ab-

stract argumentation frameworks’, in Proc. ICTAI, pp. 784–791. IEEE
Computer Society, (2014).

[44] Tjitze Rienstra, Chiaki Sakama, and Leendert W. N. van der Torre,
‘Persistence and monotony properties of argumentation semantics’, in
Proc. TAFA, volume 9524 of LNCS, pp. 211–225. Springer, (2015).

[45] Jendrik Seipp and Malte Helmert, ‘Counterexample-guided cartesian
abstraction refinement for classical planning’, J. Artif. Intell. Res., 62,
535–577, (2018).

[46] Johannes Peter Wallner, Andreas Niskanen, and Matti Järvisalo, ‘Com-
plexity results and algorithms for extension enforcement in abstract ar-
gumentation’, J. Artif. Intell. Res., 60, 1–40, (2017).


	INTRODUCTION
	ABSTRACT ARGUMENTATION
	DYNAMIC PROBLEMS
	Extension Enforcement
	Status Enforcement
	AF Synthesis

	COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
	CEGAR for Enforcement
	CEGAR for AF Synthesis

	STRONG REFINEMENTS
	EXPERIMENTS
	CONCLUSIONS

