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Abstract

Reasoning under incomplete information is an important re-
search direction in AI argumentation. Most computational
advances in this direction have so far focused on abstract ar-
gumentation frameworks. Development of computational ap-
proaches to reasoning under incomplete information in struc-
tured formalisms remains to date to a large extent a chal-
lenge. We address this challenge by studying the so-called
stability and relevance problems—with the aim of analyzing
aspects of resilience of acceptance statuses in light of new
information—in the central structured formalism of ASPIC+.
Focusing on the case of the grounded semantics and an
ASPIC+ fragment motivated through application scenarios,
we develop exact ASP-based algorithms for stability and rel-
evance in incomplete ASPIC+ theories, and pinpoint the com-
plexity of reasoning about stability (coNP-complete) and rel-
evance (ΣP

2 -complete), further justifying our ASP-based ap-
proaches. Empirically, the algorithms exhibit promising scal-
ability, outperforming even a recent inexact approach to sta-
bility, with our ASP-based iterative approach being the first
algorithm proposed for reasoning about relevance in ASPIC+.

1 Introduction
The study of computational aspects of argumentation is an
important research direction in knowledge representation
and reasoning (Atkinson et al. 2017; Baroni et al. 2018).
Argumentation is intrinsically a dynamic process: justi-
fications for different claims may arise or be withdrawn
in light of new information, and the conclusions drawn
may subsequently be altered. Indeed, going beyond the
thoroughly-studied acceptance problems in static contexts,
the study of computational aspects of dynamics in argu-
mentation, with the aim of developing techniques for rea-
soning in argumentative settings under incomplete informa-
tion, has recently attracted significant attention. A major-
ity of works in this direction have so far focused on dy-
namics in abstract argumentation (Baumann and Brewka
2010; Cayrol, de Saint-Cyr, and Lagasquie-Schiex 2010;
Maher 2016; Wallner, Niskanen, and Järvisalo 2017; Al-
fano, Greco, and Parisi 2017; Niskanen and Järvisalo 2020;
Mailly and Rossit 2020; Odekerken, Borg, and Bex 2022;
Cayrol, Devred, and Lagasquie-Schiex 2007; Baumeister et
al. 2018; Baumeister et al. 2021) with fewer computational
advances made for the arguably more complex structured

argumentation formalisms (Maher 2016; Testerink, Odek-
erken, and Bex 2019; Odekerken, Borg, and Bex 2020;
Borg and Bex 2021; Alfano et al. 2021; Rapberger and Ul-
bricht 2022; Odekerken et al. 2022a).

We focus on computational aspects of the recently-
proposed notions of stability (Testerink, Odekerken,
and Bex 2019) and relevance (Odekerken, Borg, and
Bex 2022)—capturing forms of argumentation dynam-
ics motivated by real-world application scenarios (Par-
sons, Wooldridge, and Amgoud 2002)—in the context of
ASPIC+ (Prakken 2010) as one the key structured argu-
mentation formalisms (Besnard et al. 2014). The two no-
tions provide perspectives to reasoning about justifiability
of conclusions under incomplete information. Specifically,
stability refers to checking whether the justification status
of a conclusion cannot be altered by adding new informa-
tion. Stability hence provides a key point of view, e.g., to
argument-based inquiry, where the goal is to gather infor-
mation on a possible conclusion: once a conclusion is sta-
ble, gathering additional information is no longer necessary.
Relevance provides a point of view to reasoning about not
(yet) stable conclusions. In such cases the choice of which
additional information is gathered can play an important role
in the efficiency of an inquiry application: to determine
which yet unknown information should be investigated to
ensure stability of a conclusion, only information that can
change the stability status of a conclusion is relevant.

While the notion of stability was originally defined for
ASPIC+ (Testerink, Odekerken, and Bex 2019; Odekerken,
Borg, and Bex 2020; Odekerken et al. 2022a) and sub-
sequently studied also in the abstract setting (Mailly and
Rossit 2020; Odekerken, Borg, and Bex 2022), relevance
has to date only been studied in the abstract setting (Odek-
erken, Borg, and Bex 2022). From a formal perspective,
the notions are naturally defined over incomplete ASPIC+

theories which, in analogy with incomplete abstract ar-
gumentation frameworks (Cayrol, Devred, and Lagasquie-
Schiex 2007; Baumeister et al. 2018; Baumeister et al.
2021), allow for modeling a set of possible “future theo-
ries”, thereby enabling argumentative reasoning under in-
complete information. From an application perspective, sta-
bility and relevance have been identified as fundamental rea-
soning problems underlying argument-based inquiry (Par-



sons, Wooldridge, and Amgoud 2002) in crime investigation
where structured argumentation provides a natural model
to practical and legal rules concerning crime (Odekerken,
Borg, and Bex 2020; Odekerken et al. 2022a). For ex-
ample, in investigating online trade fraud cases, investiga-
tive actions come with cost and understanding which ac-
tions may yield new information is important (Odekerken et
al. 2022a). Despite such concrete application settings, cur-
rently the only algorithmic approach to stability in ASPIC+

is a recently-proposed approximative approach which is not
guaranteed to identify stability (Odekerken et al. 2022a).
Furthermore, to the best of our knowledge, no practical algo-
rithmic approaches to reasoning about relevance have been
proposed, and the exact complexity of deciding stability
and relevance in ASPIC+ fragments with rule preferences
is widely open.

With the main focus on a fragment of ASPIC+ under
grounded semantics motivated by applications of stability
and relevance in crime investigation, the main contributions
of this work encompass both theoretical and algorithmic ad-
vances. In terms of theory, we pinpoint the computational
complexity of deciding stability and relevance, establishing
coNP-completeness and ΣP

2 -completeness, respectively. In
terms of algorithms, we develop the first exact approaches
to reasoning about stability and relevance in ASPIC+, based
on the declarative paradigm of answer set programming
(ASP) (Gelfond and Lifschitz 1988; Niemelä 1999), moti-
vated by recent successful ASP-based approaches to reason-
ing about acceptance in (static) ASPIC+ (Lehtonen, Wall-
ner, and Järvisalo 2020; Lehtonen, Wallner, and Järvisalo
2022). Furthermore, we empirically evaluate an open-source
implementation of the algorithms on both real-world and
synthetic data, showing promising scalability, with our ex-
act approach to stability outperforming the earlier proposed
inexact approach. Formal proofs not included in the paper
due to the page limit are available in an online supplement.

2 ASPIC+

We recall ASPIC+ as relevant for our discussion. The basic
notion of ASPIC+ is that of an argumentation system. We
follow definitions by Modgil and Prakken (2013), incorpo-
rating a preorder ≤ as defined by Prakken (2010).
Definition 1 (Argumentation system). An argumentation
system (AS) is a pair AS = (L, ,R,≤) with
• L a finite set of literals,
• a contradiction function from L to 2L,
• R a finite set of defeasible rules of the form a1, . . . , am ⇒
c with {a1, . . . , am, c} ⊆ L, and

• ≤ a partial preorder (i.e., a reflexive and transitive binary
relation) onR.
We say that l is a contradictory of m iff m ∈ l and l ∈

m. Each l ∈ L has at least one contradictory and l ̸∈ l.
In examples we will use classical negation as contradiction
function: for each x ∈ L, x = {¬x} and ¬x = {x}.

For a defeasible rule r : a1, . . . , am ⇒ c, ants(r) =
{a1, . . . , am} are the antecedents and cons(r) = c is the
consequent of r.

l ¬l

¬q3 q3

¬q1 q1 q2 ¬q2 q4 ¬q4

Figure 1: Example AT T = (AS,K). Each square is a literal in
L: rounded squares are queryable literals, literals in K are shaded,
double-lined arrows are rules, single-lined arrows negations.

An argumentation system gives rise to arguments with re-
spect to a knowledge base. Here we assume that knowledge
bases consist of axioms and are therefore consistent.

Definition 2 (Knowledge base). A knowledge base K ⊆ L
over an argumentation system AS = (L, ,R,≤) is a con-
sistent set of literals, i.e., for any l,m ∈ K we have l ̸∈ m.

Definition 3 (Argumentation theory). An argumentation
theory (AT) T = (AS,K) consists of an argumentation sys-
tem AS and a knowledge base K over AS.

An argumentation theory gives rise to arguments as fol-
lows.

Definition 4 (Arguments). The set of arguments ArgT that
an AT T gives rise to contains the arguments obtained ap-
plying the following implications finitely many times.

• If c ∈ K, then c ∈ ArgT is an observation-based argu-
ment.

• If there is a rule r : c1, . . . , cm ⇒ c in R and Ai ∈
ArgT with conc(Ai) = ci for each i = 1..m, then
A1, . . . , Am ⇒ c is a rule-based argument in ArgT.

For an observation-based argument c, the set of premises
is prem(c) = {c} the set of (defeasible) rules
defrules(c) = ∅, the conclusion is conc(c) = c, and
the set of subarguments is sub(A) = {c}. For a rule-
based argument A, we have prem(A) = prem(A1)∪ · · · ∪
prem(Am); defrules(A) = {r} ∪ defrules(A1) ∪
· · ·defrules(Am); conc(A) = c; and sub(A) =
sub(A1) ∪ · · · ∪ sub(Am) ∪ {A}. Furthermore, the top
rule top-rule(A) is r.

An argument with conclusion c is referred to as “an argu-
ment for c” and an argument with defrules(A) ⊆ R ⊆ R
by “an argument based on R”.

Example 1. Let T = (AS,K) (see Figure 1) be the AT
over AS = (L, ,R,≤) where L consists of the literals
q1, q2, q3, q4, l and their negations, K = {q1}, R consists
of q1 ⇒ q3, q3 ⇒ l, q2 ⇒ l, q4 ⇒ ¬l, and ≤ = ∅.
The set of arguments ArgT consists of the observation-based
argument q1 and the rule-based arguments q1 ⇒ q3 and
[q1 ⇒ q3]⇒ l.

In ASPIC+, attacks between arguments are based on the
structure of the arguments. We consider rebuttal attacks,
where arguments attack each other on the conclusion of a
defeasible inference.



Definition 5 (Rebuttal attack). Argument A rebuts argument
B (on B′) iff conc(A) ∈ conc(B′) for some rule-based
argument B′ ∈ sub(B).

Example 2. Recall the AT T = (AS,K) from Example 1.
None of the arguments in ArgT attack any other argument in
ArgT. Alternatively, in the AT T ′ = (AS,K∪ {¬q3}), there
is an argument for ¬q3 that attacks the argument for l (on
the argument for q3) and is not attacked by any argument in
ArgT ′ . Further, T ′′ = (AS,K ∪ {q4}). contains two addi-
tional arguments compared to ArgT: q4 and q4 ⇒ ¬l. The
argument for ¬l attacks the argument for l and vice versa.

Not all rebuttals succeed as defeats: in ASPIC+, this de-
pends on the preference relation between arguments.

Definition 6 (Defeat). Argument A defeats argument B iff
A rebuts B on B′ and A ̸≺ B.

To compare arguments using ≺ (where A ≺ B iff A ⪯ B
and B ̸⪯ A), a notion for orderings that uses the partial
preorder ≤ on R is needed. Four orderings were proposed
by Modgil and Prakken (2013), based on combinations of
the weakest and last-link principles and the choice of elitist
or democratic comparisons on sets. For the ASPIC+ frag-
ment we consider, the elitist and democratic coincide. Here
we focus on the last-link ordering.

Definition 7 (Last-link principle). Let A and B be two ar-
guments on the basis of an AT. Under the last-link principle,
B ⪯ A iff A is observation-based, or both A and B are
rule-based and top-rule(B) ≤ top-rule(A).

Each argumentation theory gives rise to an abstract ar-
gument framework. Semantics for argumentation theo-
ries are defined through semantics for the abstract frame-
works (Dung 1995).

Definition 8 (AFs corresponding to ATs). An abstract argu-
mentation framework (AF) defined by an AT T = (AS,K) is
a pair ⟨A, C⟩ withA = ArgT and C the defeat relation onA
determined by T.

The specific ASPIC+ instantiation we focus on in this
work is motivated through applications in criminal investiga-
tion, as an extension of the instantiation used for inquiry dia-
logue at the Netherlands Police (Odekerken et al. 2022a). In
such inquiry dialogues it is essential that reasoning is based
on observations that are considered certain, which justifies
only considering axioms and no attackable premises in the
knowledge base. Furthermore, excluding strict rules makes
it more feasible for police employees without background in
computational argumentation to adapt or create rule sets—
the design of argumentation theories with strict rules would
require in-depth expertise to ensure that the rationality pos-
tulates (Caminada and Amgoud 2007) are satisfied. Requir-
ing literals and rules to be finite is not restrictive for ap-
plications in e.g. criminal investigation where it is natural
that only a limited number of rules and literals are used for
capturing domain-specific information. Finally, all notions
of conflict in the police use-case (Odekerken et al. 2022a)
can be modelled using rebuttal attacks. It should be noted
that, generalizing on (Odekerken et al. 2022a), we also al-
low preferences on rules in the instantiation considered in

this work. Furthermore, we focus on grounded semantics.
This is again motivated by practical applications: in criminal
investigation, it is convenient to adopt a single-status seman-
tics with a strong sceptical flavour, which is how grounded
semantics can be intuitively characterized.
Definition 9 (Grounded extension). Let F = ⟨A, C⟩ be an
AF and S ⊆ A.
• S is conflict-free in F iff (X,Y ) ̸∈ C for each X,Y ∈ S.
• S defends X ∈ A in F iff for each Y ∈ A with (Y,X) ∈
C, there is a Z ∈ S with (Z, Y ) ∈ C.

• S is admissible in F iff S is conflict-free and S defends
each X ∈ S.

• S is a complete extension of F iff S is admissible and, for
each X ∈ A, X ∈ S if S defends X .

• The (unique) grounded extension S of F is the subset-
minimal complete extension of F .

For an AT T and corresponding argumentation framework
F , G(T ) denotes the grounded extension of F .
Example 3. In the AT T = (AS,K) of Example 1, all argu-
ments in ArgT are undefeated and therefore in the grounded
extension. Adding ¬q3 to the knowledge base results in
T ′ = (AS,K ∪ {¬q3}): in this AT, the arguments for q1
and ¬q3 are undefeated and therefore in the grounded ex-
tension, while the argument for l is defeated by an argument
in the grounded extension. As for T ′′ = (AS,K ∪ {q4}),
neither the argument for l, nor the argument for ¬l is in the
grounded extension.

In ASPIC+, a statement is justified under grounded se-
mantics if and only if there is a justified argument for the
statement (Modgil and Prakken 2013, Definition 15). How-
ever, applications may in cases require a more fine-grained
distinction between different types of justifications (Odek-
erken et al. 2022a). To this end, we consider four distinct
justification statuses, including the special status unsatisfi-
able for literals for which there is no argument.
Definition 10 (Justification status). Let T = (AS,K) be an
AT where AS = (L, ,R,≤) and let ⟨A, C⟩ be the AF de-
fined by T . The justification status of l ∈ L in T is
• unsatisfiable iff there is no argument for l in A;
• defended iff there is an argument for l in A that is in the

grounded extension G(T );
• out iff there exists an argument for l in A, but each argu-

ment for l in A is defeated by an argument in G(T );
• blocked iff there is an argument for l in A, no argument

for l is in G(T ), and there is an argument for l that is not
defeated by any argument in G(T ).
The defended status corresponds to the justified status of

conclusions of arguments (Modgil and Prakken 2013, Def-
inition 15). Conclusions of arguments that are not justified
can be either out or blocked. For some intuition, a literal that
is out is not justifiable (every argument for the literal is de-
feated by the grounded extension). A literal that is blocked
is not justified under the grounded semantics we focus in
this paper, but might be justifiable for semantics other than
grounded (Baroni, Caminada, and Giacomin 2011).



Example 4 (Justification statuses). For argumentation sys-
tem AS from Example 1, ¬l is unsatisfiable wrt T =
(AS, {q1}); l is defended wrt T = (AS, {q1}); l is out
wrt T ′ = (AS, {q1,¬q3}); and l is blocked wrt T ′′ =
(AS, {q1, q4}).

3 Stability and Relevance
We turn to the main focus of this work: stability and rele-
vance. Stability can be seen as a dynamic variant on the jus-
tification status defined in the previous section: the justifica-
tion status determines if a literal l is justified given current
information. However, there are situations in which more in-
formation can be added, which possibly results in a change
of l’s justification status. If additional information cannot
influence l’s justification status, then we say that l is sta-
ble. We impose some restrictions on the allowed additions
on the knowledge base, by distinguishing between queryable
and non-queryable literals. Queryables are a specific set of
literals that can be obtained (i.e. added to the axioms of the
knowledge base) by querying the environment.

Definition 11 (Queryables). Given an AT T = (AS,K) with
AS = (L, ,R,≤), a set of queryablesQ is a set of literals
such that K ⊆ Q ⊆ L and if q ∈ Q then q ⊆ Q.

A set of queryables restricts the literals that can be added
to the axioms of a knowledge base. Note that Definition 11
requires that all contradictories of each literal in Q are also
in Q. Adding a queryable literal q to the knowledge base of
an AT T = (AS,K) (where q ∩ K = ∅) results in a new AT
T ′ = (AS,K ∪ {q}). The set of all argumentation theories
that can be obtained by adding queryables to the knowledge
base is the set of future argumentation theories.

Definition 12 (Future argumentation theories). Let T =
(AS,K) be an AT and Q a set of queryables. We say that
AT T ′ = (AS,K′) is a future argumentation theory of T ,
denoted by T ⊑Q T ′, if K ⊆ K′ ⊆ Q.

We define a strict variant T ⊏Q T ′ by T ⊑Q T ′ and
T ′ ̸⊑Q T . By definition, T ⊑Q T . Also note that, since
all future argumentation theories are argumentation theories
in the sense of Definition 3, the axioms in their knowledge
base must be consistent.

We distinguish four types of stability, relative to the four
justification statuses from Definition 10.

Definition 13 (j-stability). Let T = (AS,K) be an AT and
Q is a set of queryables. Given a literal l ∈ L and a justifi-
cation status j in {unsatisfiable, defended, out, blocked}, l is
stable-j in T wrtQ iff l is j in T ′ for each T ′ with T ⊑Q T ′.

Example 5 (Stability statuses). Consider the argumen-
tation system AS from Example 1 and let Q =
{q1, q2, q3, q4,¬q1,¬q2,¬q3,¬q4}. We have that ¬l is
stable-unsatisfiable wrt (AS, {q1,¬q4}) and Q; l is stable-
defended wrt (AS, {q1, q3,¬q4}) and Q; l is stable-out wrt
(AS, {q1,¬q2,¬q3}) and Q; and l is stable-blocked wrt
(AS, {q1, q3, q4}) and Q.

When a literal does not have a stable status, i.e., there is a
future AT that changes the justification status of the literal,
a natural question to ask is which queryables are relevant

for making the literal stable, i.e., which queryables should
be added to the knowledge base in order to obtain an AT
where this literal is stable. This is captured by the notion of
relevance, recently introduced in the context of incomplete
(abstract) argumentation frameworks (Odekerken, Borg, and
Bex 2022). Here we propose an analogous definition of rel-
evance for ASPIC+, based on the notion of minimal stable
future ATs, i.e., future ATs where the knowledge base is
minimally expanded and the considered literal is stable.
Definition 14 (Minimal stable-j future theory). Let T =
(AS,K) be an AT, Q be a set of queryables, and j be a jus-
tification status. Given an l ∈ L, a minimal stable-j future
theory for l wrt T and Q is an AT T ′ with T ⊑Q T ′ s.t.
(i) l is stable-j in T ′, and (ii) there is no T ′′ such that l is
stable-j in T ′′ and T ⊑Q T ′′ ⊏Q T ′.

Example 6 (Minimal stable-j future theory). Consider
again the AT T = (AS,K) from Example 1 with Q =
{q1, q2, q3, q4,¬q1,¬q2,¬q3,¬q4}. We have that ¬l is
stable-unsatisfiable wrt T ′ = (AS, {q1, q2,¬q4}) and Q,
but T ′ is not a minimal stable-unsatisfiable future theory
for ¬l wrt T and Q, since ¬l would also be stable with-
out q2. The future AT (AS, {q1,¬q4}) is minimal stable-
unsatisfiable. There are two minimal stable-defended future
theories for l wrt (AS, {q1}) and Q: (AS, {q1, q3,¬q4})
and (AS, {q1, q2,¬q4}).

Literals in the knowledge base of a minimal stable-j fu-
ture theory that do not occur in the original knowledge base
are considered relevant.
Definition 15 (j-relevance). Let T = (AS,K) be an AT with
AS = (L, ,R,≤), let Q be a set of queryables and let j
be a justification status. Given l ∈ L and q ∈ Q with q /∈ K
and q ∩ K = ∅, we say that q is j-relevant for l wrt T and
Q iff there is a minimal stable-j future theory T ′ = (AS,K′)
for l wrt T and Q. such that q ∈ K′.
Example 7 (j-relevance). Continuing Example 1, for the AT
T = (AS,K) and Q = {q1, q2, q3, q4,¬q1,¬q2,¬q3,¬q4}
we find that ¬q4 is the only literal that is unsatisfiable-
relevant for ¬l wrt T . The literals that are defended-relevant
for l wrt T and Q are {q2, q3,¬q4}.

Note that it is possible that a queryable and its negation
are both relevant for a given topic literal:
Example 8. Consider the AT T = (AS,K) where AS =
(L, ,R,≤), L = {q,¬q, l,¬l}, R = {q ⇒ l,¬q ⇒ l}
and K = ∅. Suppose thatQ = {q,¬q}. Then both q and ¬q
are defended-relevant for l wrt T since l is unsatisfiable in
T and defended in both (AS, {q}) and (AS, {¬q}).

4 Complexity Results
As the main complexity-theoretic contributions, we pinpoint
the complexity of deciding for a given literal the (i) justi-
fication status of the literal, (ii) stability of the literal and
(iii) relevance of the literal, under the four different justifi-
cation statuses in the ASPIC+ fragment considered. Specif-
ically, we show that the justification status of a literal is de-
cidable in polynomial time. Moreover, we show that the sta-
bility problems for the four justification statuses are coNP-



complete and establish ΣP
2 -completeness for deciding rel-

evance. We begin with the complexity of the justification
problem, which lays the ground for the other results.

4.1 Rephrasing Grounded Semantics
Note that P-membership for the justification problem is not
immediately clear from the definitions, since Definition 9
specifies the grounded extension in terms of arguments and
an AT can have a number of arguments that is not bounded
polynomially in the AT size. An example that exhibits an
exponential number of arguments for given rule based the-
ories is given by Strass, Wyner, and Diller (2019). In order
to provide polynomial-time decidability, we reformulate the
grounded extension, in terms of sets of rules rather than sets
of arguments. In order to do so, we use notions of applica-
bility, defeats and defence on sets of rules.

First, a rule is applicable by a set of rules if it is possible
to construct an argument using only rules from the set.
Definition 16 (Applicable by rule set). Given an AT T =
(AS,K) and a set of defeasible rules D ⊆ R, define
ArgT(D) as the set of all arguments that can be constructed
using K and D. We say that a rule r ∈ R is applicable
by D iff there is an argument A based on D ∪ {r} with
r ∈ defrules(A).

Turning to the general case with preferences included, we
now define defeat in terms of rule sets (which is comparable
to Definition 6 for defeat of arguments).
Definition 17 (Defeat by rule set). Given an AT T =
(AS,K), a set of defeasible rules D ⊆ R, and a rule r ∈ R,
we say that D defeats r iff (i) there is some r′ in D such that
cons(r′) ∈ cons(r), r′ is applicable by D, and r′ ≮ r; or
(ii) there is some l in K such that l ∈ cons(r).

In words, a set of defeasible rules D defeats a single rule r
if (i) there is a rule r′ applicable by D that has as consequent
a contradictory of the consequent of r and is not strictly less
preferred to r, or (ii) that the knowledge base contains an
axiom contradictory to the consequent of r. Intuitively, in
the former case, a rule-based argument with r as top rule is
defeated by a rule-based argument that has as its defeasible
rules only rules in D and r′ as its top rule. Then the rebut
succeeds as a defeat. In the latter case, an observation-based
argument directly defeats any argument with r as its top rule.
Example 9. Continuing Example 3, consider again AT
T ′′ = (AS,K ∪ {q4}). Then D = {(q1 ⇒ q3), (q3 ⇒ l)}
defeats rule q4 ⇒ ¬l, since the consequence of one of the
rules in D and the latter rule are contradictory to each other.
The set D′ = {q4 ⇒ ¬l} defeats q3 ⇒ l. If we strictly prefer
q3 ⇒ l to q4 ⇒ ¬l then D′ does not defeat q3 ⇒ l.

Stated as follows, there is a correspondence between de-
feats by rule sets and defeats by arguments.
Proposition 1. Given an AT T = (AS,K), the correspond-
ing AF ⟨A, C⟩, and a set of defeasible rules D and an argu-
ment A ∈ A, it holds that at least one B ∈ ArgT(D) defeats
A if and only if D defeats a rule r ∈ defrules(A).

Analogously to defeat, we also introduce a notion of de-
fence in terms of rule sets. An argument A is defended by

a set of arguments S if each argument B defeating A is de-
feated by some argument in S. In other words, each argu-
ment that is not defeated by any argument in S must not
defeat A. We rephrase this aspect into defence on rule sets.
Definition 18 (Defence by rule set). Given an T = (AS,K),
a set of defeasible rules D ⊆ R, and a rule r ∈ R, let U be
the set of rules in R that are not defeated by D. Then r is
defended by D iff U does not defeat r.

In the following formal results, we show the correspon-
dence between defence by arguments (Definition 9) and de-
fence by rule sets (Definition 18).
Proposition 2. Given an T = (AS,K), the corresponding
AF ⟨A, C⟩, and a set of defeasible rules D, and an argument
A ∈ A, it holds that ArgT(D) defends A if and only if D
defends every rule r ∈ defrules(A).

Based on the notion of defence for rule sets, we next
define a counterpart of Dung’s fundamental lemma (Dung
1995, Lemma 10) for rule sets rather than argument sets.
Proposition 3. Let T = (AS,K) be an AT where AS =
(L, ,R,≤), R ⊆ R be a set of defeasible rules such that
(i) each rule r ∈ R is applicable by R and (ii) ArgT(R) is
admissible. Let r and r′ be rules in R defended by R. Then
(1) ArgT(R∪{r}) is admissible and (2) R∪{r} defends r′.

Towards defining the grounded extension without com-
puting arguments, we define a characteristic function for rule
sets alternative to the “classical” version of the characteristic
function (Dung 1995, Definition 16).
Definition 19. Let T = (AS,K) be an AT where AS =
(L, ,R,≤) and D ⊆ R a rule set. Then def T (D) = {r ∈
R | r is applicable and defended by D}.

We denote i applications of def T on ∅ by def iT (∅) for
i > 0 and define def 0T (∅) = ∅.

By Proposition 4, iterating the characteristic function
starting from the empty set gives the grounded extension.
Proposition 4. Given an AT T = (AS,K) where AS =
(L, ,R,≤), let C be the least fixpoint of def T . Then
G(T ) = ArgT(C).
Example 10. Consider again Example 3 and AT T ′′ =
(AS,K ∪ {q4}). It holds that {q1 ⇒ q3} is the least fix-
point of def T ′′ . Therefore G(T ) contains arguments for q1
and q3, but not for, e.g., q4, l or ¬l.

4.2 Complexity of Justification
We show that one can compute the least fixpoint in |R|/2 it-
erations, starting with the empty set of rules. At the fixpoint
we conclude a rule to be defended or defeated.
Proposition 5. Given an AT T = (AS,K) where AS =
(L, ,R,≤), the least fixpoint of def T is reached in at most
|R|/2 iterations.

The least fixpoint of def T allows for directly inferring the
justification status of a literal.
Proposition 6. Given an AT T = (AS,K) where AS =
(L, ,R,≤), and C be the least fixpoint of def T . A literal
l ∈ L is



• unsatisfiable if there is no argument A ∈ ArgT with
conc(A) = l,

• defended if there is an argument A ∈ ArgT with
conc(A) = l and defrules(A) ⊆ C,

• out if no argument in ArgT with conclusion l is based on
U , where U is the set of rules not defeated by C, and

• blocked otherwise.
Putting our results together, it holds that we can infer the

justification status of a literal in polynomial time for each of
the four justification statuses.
Theorem 1. Let j be the unsatisfiable, defended, out,
or blocked justification status. The problem of deciding
whether a literal has justification status j is in P.

4.3 Complexity of Stability
Polynomial-time decidability of justification (Theorem 1)
has implications on the complexity of stability. Specifically,
to decide whether a literal is stable wrt a justification sta-
tus, we can proceed as follows: non-deterministically guess
a future theory and deterministically check (in polynomial
time by Theorem 1) the justification status of the targeted
literal. Thus, the complementary problem, i.e., a literal is
not stable wrt a justification status, is in NP. In addition to
membership in coNP, we can infer coNP-hardness from ear-
lier results (Odekerken et al. 2022a) which imply hardness
for the case without preferences.
Proposition 7. Deciding whether a literal is j-stable in
an AT is coNP-complete for each justification status j ∈
{unsatisfiable, defended, out, blocked}. Hardness holds
even without preferences.

4.4 Complexity of Relevance
We turn to the problem of deciding whether a given
queryable is j-relevant for a given literal for a justification
status j: the problem turns out to be ΣP

2 -complete for each
of the four justification statuses. We first show an auxil-
iary result that characterizes relevance of literals in terms
of checking (non-)stability. Intuitively, we can verify that a
queryable q is j-relevant for a literal l if we are able to find
an AT in which the literal is not stable-j, but when adding q
to the axioms, stability holds.
Lemma 1. Let T = (AS,K) be an AT, let Q be a set of
queryables and let j be a justification status. Given a literal
l ∈ L and a queryable literal q ∈ Q where q /∈ K and
q ∩ K = ∅, q is j-relevant for l wrt T and Q iff
• there is an AT T ′ = (AS,K′) with T ⊑Q T ′ such that l is

not stable-j wrt T ′ and
• l is stable-j wrt (AS,K′ ∪ {q}).

A direct use of Lemma 1 is to show membership results
in ΣP

2 for relevance for all justification statuses considered
in this paper. We also prove hardness via a reduction from
quantified Boolean formulas.
Theorem 2. Deciding whether a queryable is j-relevant for
a literal in an AT wrt a set of queryables is ΣP

2 -complete for
each j ∈ {unsatisfiable, defended, out, blocked}. Hard-
ness holds even without preferences.

tt
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x1 x1

y1 y1 c1 c2

y1 y1

Figure 2: Illustration of the reduction used in Theorem 2 for the
formula ϕ = (x1 ∨ y1) ∧ (xi ∨ ¬y1). The queryables y1 and y1
are displayed twice for readability.

Proof sketch for defended status. Membership in ΣP
2 fol-

lows from Lemma 1: a positive instance can be verified
with two calls to an oracle for stability, which is coNP-
complete by Proposition 7. For ΣP

2 -hardness, we detail here
a proof for the defended justification status. We reduce from
the Σ2-SAT problem of deciding for a formula ϕ in CNF,
quantified over X and Y where X = {x1, . . . , xn} and
Y = {y1, . . . , ym} are pairwise disjoint sets, if there is
an assignment τX to variables in X such that for each as-
signment τY to variables in Y , ϕ[τX , τY ] = False. Con-
struct the following AT T and queryables (see Figure 2),
with C = c1 ∧ · · · ∧ cp the set of clauses in ϕ, and
X = {x | x ∈ X}, Y = {y | y ∈ Y } and C = {c |
c ∈ C}. Let V = {vi | xi ∈ X} and V = {vi | xi ∈
X}. Define Q = X ∪ X ∪ Y ∪ Y ∪ {d, d}, language
L = Q ∪ C ∪ C ∪ V ∪ V ∪ {t, t}, K = ∅, contraries

= {(x, x), (x, x) | x ∈ X ∪ Y ∪ V ∪ C ∪ {d, t}}, and

R = {(d, v1, . . . , vn ⇒ t)} ∪
{(x⇒ c) | x ∈ c} ∪ {(x⇒ c) | ¬x ∈ c} ∪
{(y ⇒ c) | y ∈ c} ∪ {(y ⇒ c) | ¬y ∈ c} ∪
{(c1, . . . , cp ⇒ t)} ∪
{(xi ⇒ vi), (xi ⇒ vi) | xi ∈ X}
{(y ⇒ t), (y ⇒ t) | y ∈ Y }.

The AT T = (AS,K) and Q can be constructed in poly-
time wrt ϕ. In addition, (ϕ,X, Y ) is a satisfiable Σ2-SAT
instance iff d is defended-relevant for t wrt T .

Summarizing, the complexities of the justification, sta-
bility, and relevance problems exhibit a clear jump: from
“in P” to coNP-completeness and to ΣP

2 -completeness. We
note that our hardness results hold even without the use of
preferences. The result for deciding the justification status
required a reformulation in terms of defeasible rules, a rep-
resentation bounded polynomially in terms of a given AT.
The membership results all rely on this reformulation.

5 Algorithms for Stability and Relevance
Complementing our complexity results, we develop declar-
ative algorithms for deciding stability and relevance based
on the declarative paradigm of answer set programming
(ASP) (Gelfond and Lifschitz 1988; Niemelä 1999).



Listing 1: Module πcommon

1 literal(L) ← head(_,L). literal(L) ← body(_,L).

2 literal(L) ← axiom(L). literal(L) ← ctr(L,_).

3 rule(R) ← head(R,_).

4 ctr(X,Y) ← ctr(Y,X).

5 derivable(L) ← axiom(L).

6 derivable(L) ← head(R,L), applicable_rule(R).

7 applicable_rule ← rule(R), derivable(L) : body(R,L).

8 unsat(L) ← not derivable(L), literal(L).

5.1 Encoding Justification Status
In this section we present ASP encodings for deciding the
justification status of literals for a given AT T = (AS,K).
These encodings will be used for computing stability and
relevance. The AT (and queryable set Q) is represented as
the set of facts AT(T ), defined as follows:

{axiom(a). | a ∈ K} ∪
{queryable(a). | a ∈ Q} ∪
{head(r, b). | r ∈ R, b = head(r)} ∪
{body(r, b). | r ∈ R, b ∈ body(r)} ∪
{ctr(a, b). | b ∈ a, a ∈ L} ∪
{preferred(a, b). | b ≤ a, a, b ∈ R}.

Listing 1 is used by all encodings. Lines 1–3 collect literals
and rules in the AT, and Line 4 enforces that contradiction is
symmetric. Lines 5–7 determine which literals are derivable,
and Line 8 collects unsatisfiable literals. Line 7 uses a condi-
tional literal “derivable(L) : body(R,L)”, representing
a list of derivable(L) whenever body(R,L) holds.

We present two separate ASP encodings for deciding the
justification status of literals: one (π<-just ) taking rule pref-
erences into account, the other (πjust ) assuming that ≤= ∅.
Whereas πjust is conceptually simpler and can be used in a
comparison to the stability algorithm by (Odekerken et al.
2022a), π<-just is more generally applicable.

No preferences For ATs without rule preferences, argu-
ments can only be in the grounded extension if they are de-
fended by observation-based arguments:

Lemma 2 (Odekerken et al. 2022b, Lemmas 4–5). Given
an AT T = (AS,K) with AS = (L, ,R,≤) where ≤ =
∅, an argument A ∈ ArgT is in G(T ) iff each argument
defeating A is defeated by an observation-based argument,
and defeated by an argument in G(T ) iff A is defeated by an
observation-based argument.

This property is exploited in the following proposition, in
which we collect rules U not defeated by axioms and de-
fended rules def not defeated by arguments based on U .

Proposition 8. Given an T = (AS,K) with ≤ = ∅, let U =

{r ∈ R | cons(r) ∩ K = ∅}. A literal l is labelled

• defended if there is an argument A for l such that
defrules(A) ⊆ def , where def = {r ∈ R | there
is no argument for cons(r) based on U}, and

• out if l is not unsatisfiable and there is no argument A for
l with defrules(A) ⊆ U

The encoding for assigning the justification label of each
literal is the program πjust = πcommon∪∆just. The module
∆just (Listing 2) assigns the justification labels other than
unsatisfiable, following Proposition 8. Lines 1–4 of ∆just

collect the rules that are undefeated by axioms and the lit-
erals that can be concluded via them. Line 5 states that a
literal is out if it is derivable, but not concluded via unde-
feated rules. Lines 6–9 of ∆just collect defended literals
by considering derivations from rules that are undefeated by
rules undefeated by axioms. Finally, yet unlabelled literals
are labelled as blocked in Line 10 (Odekerken et al. 2022a).

Preferences For ATs with preferences, we present an en-
coding π<-just = πcommon ∪ ∆<-just based on the least
fixpoint of the defence operator (Definition 19), from which
one can infer the justification labels by Proposition 6. The
module ∆<-just (Listing 3) encodes a sequence of appli-
cations of the defence operator with explicit indices (up to
|R|/2, per Proposition 5). Line 1 encodes transitivity of
preferences and Lines 2–3 when a rule is not strictly less
preferred than another. Lines 4–6 set the iteration upper
bound. For clarity, for each iteration i we denote here the
set of defended rules by Di and rules not defeated by Di

by U i (corresponding to defended rule and undefeated in
∆<-just). On Lines 7–8, a literal is deemed defended on it-
eration i if it can be derived by only using rules from Di.
On Lines 9–10, Di is identified as the applicable rules that
are not defeated by U i−1, corresponding to the defence op-
erator. The rules that Di defeats are identified on Lines 11–
12, following Definition 17: r ∈ R is defeated if either an
axiom contradicts r or Di induces an argument whose top
rule is not less preferred than r and that concludes cons(r).
Based on rules defeated by Di, the undefeated rules U i and
the literals derivable from U i are identified on Lines 13–
15. Defeats from U i are identified on Lines 16–17. Finally,
Lines 18–21 label the literals based on the final iteration.

5.2 Encoding Stability
The stability status of a literal is obtained by checking if
there is a future AT where the literal is not j for a justifi-
cation status j. We implement this by conjoining our en-
codings for justification with a non-deterministic guess of
future ATs. This is achieved by guessing a future theory by

Listing 2: Module ∆just

1 defeated(R) ← head(R,X), axiom(Y), ctr(X,Y).

2 undefeated(L) ← axiom(L).

3 undefeated(L) ← head(R,L), undefeated_rule(R).

4 undefeated_rule(R) ← rule(R), not defeated(R),

undefeated(L) : body(R,L).

5 out(L) ← derivable(L), not undefeated(L).

6 defeated_by_undefeated(R) ← head(R,X), undefeated(Y),

ctr(X,Y).

7 defended(L) ← axiom(L).

8 defended(L) ← head(R,L), defended_rule(R).

9 defended_rule(R) ← not defeated_by_undefeated(R),

rule(R), defended(L) : body(R,L).

10 blocked(L) ← literal(L), not unsat(L),

not out(L), not defended(L).



Listing 3: Module ∆<-just

1 preferred(X,Z) ← preferred(X,Y), preferred(Y,Z).

2 strictly_less_preferred(X,Y) ← not preferred(X,Y),

preferred(Y,X).

3 no_less_preferred(X,Y) ← rule(X), rule(Y),

not strictly_less_preferred(X,Y).

4 n_rules(N) ← #count{X : rule(X)} = N.

5 max_iterations(N) ← n_rules(M), N=(M+1)/2.

6 iteration(0..N) ← max_iterations(N).

7 defended(X,I) ← axiom(X), iteration(I).

8 defended(X,I) ← head(R,X), defended_rule(R,I).

9 defended_rule(R,I) ← iteration(I), usable_rule(R,I),

rule(R), defended(X,I) : body(R,X).

10 usable_rule(R,I) ← iteration(J), rule(R),

not defeated_by_undefeated(R,J), J+1=I.

11 defeated(R,I) ← head(R,X), axiom(Y), ctr(X,Y),

iteration(I).

12 defeated(R,I) ← head(R,X), defended_rule(DR,I),

head(DR,Y), ctr(X,Y), no_less_preferred(DR,R).

13 derived_from_undefeated(X,I) ← axiom(X),

iteration(I).

14 derived_from_undefeated(X,I) ← head(R,X),

undefeated(R,I).

15 undefeated(R,I) ← iteration(I),

rule(R), not defeated(R,I),

derived_from_undefeated(X,I) : body(R,X).

16 defeated_by_undefeated(R,I) ← head(R,X), axiom(Y),

ctr(X,Y), iteration(I).

17 defeated_by_undefeated(R,I) ← head(R,X),

undefeated(IR,I), head(IR,Y), ctr(X,Y),

no_less_preferred(IR,R).

18 defended_rule(R) ← defended_rule(R,N),

max_iterations(N).

19 defended(X) ← defended(X,N), max_iterations(N).

20 out(L) ← derivable(L), max_iterations(N),

not derived_from_undefeated(L,N).

21 blocked(L) ← literal(L), not unsat(L), not out(L),

not defended(L).

{axiom(L)} ← queryable(L). Consistency is enforced
via the constraint ← axiom(L),axiom(N), ctr(L,N).
We refer to these rules as ∆stab. The encoding for check-
ing stability without preferences is πstab = ∆stab ∪ πjust ,
and for the case with preferences is π<-stab = ∆stab ∪
π<-just . One can obtain the stability statuses of all lit-
erals via the cautious reasoning mode readily available in
modern ASP solvers, directly computing the intersection
of all answer sets to a given program: the literals that
are j in the cautious solution are stable-j. If the stabil-
ity status of a single literal is of interest, it can be de-
cided with one ASP solver call. With the addition of the
constraint ← j(l) for literal l ∈ L and justification status
j ∈ {unsatisfiable, defended, out, blocked}, the resulting
program does not have an answer set iff l is stable-j.

5.3 ASP-Based Algorithm for Relevance
For j-relevance, we detail ASP-based counterexample-
guided abstraction refinement (CEGAR) (Clarke, Gupta,
and Strichman 2004; Clarke et al. 2003) algorithms, us-
ing our stability encodings as subprocedures. In CEGAR,
an NP-abstraction as an overapproximation of the solution

space is iteratively refined by drawing candidates from this
space and verifying if the candidate is an actual solution.
Candidate solutions are computed with an ASP solver. If
there is a candidate solution, another ASP solver call is made
to check if there is a counterexample to the candidate being
a solution. If there is no counterexample, the candidate is
an actual solution. Otherwise the abstraction is refined by
analyzing the counterexample and the search is continued.

We assume as input an T = (AS,K), a queryable q, a
literal l, and a justification status j. We present an algorithm
that decides if q is j-relevant for l wrt T . The idea is to find
a K′ such that q ∈ K′ and l is j-stable wrt (AS,K′) but not
wrt (AS,K′ \ {q}), in which case q is j-relevant for l by
Lemma 1. We first show properties based on which we can
narrow the search space upon finding counterexamples.

Proposition 9. Let T = (AS,K) be an AT, Q a set of
queryables and j a justification status. Given l ∈ L and
q ∈ Q where q /∈ K and q ∩ K = ∅,
• if T ′ = (AS,K′) ⊒Q T such that l is not stable-j wrt T ′,

then for each K′′ ⊆ K′, l is not stable-j wrt (AS,K′′);
• if T ′ = (AS,K′) ⊒Q T such that l is stable-j wrt T ′ and
q /∈ K′, then for each consistent K′′ ⊇ K′, l is stable-j
wrt (AS,K′′ \ {q}).
Our approach is presented as Algorithm 1. A candidate

is a consistent set of queryables Q ⊆ Q such that q ∈ Q
and K ⊆ Q (Line 3). Given Q (Line 4), it is checked if l is
stable-j with respect to (AS,Q) (Line 5). If so, it is checked
whether l is stable-j wrt Q \ {q} (Line 8). If the first con-
dition holds and the second does not, Q is a witnessing set
of queryables for q being j-relevant for l (Line 10). In other
cases, we refine the abstraction depending on which type
of counterexample is found, based on Proposition 9. If the
first check fails, all subsets of the counterexample obtained
in the check are refined out (Line 6). In particular, the call
produces a Q′ ⊃ Q such that l is not stable-j wrt (AS,Q′)
and no subset of Q′ can be the set of queryables K′ that
would show that q is j-relevant for l. If the second condition
holds, supersets of Q can be ruled out, because then Q \ {q}
is a counterexample for any superset of Q as well (Line
9). The refinements on Lines 6 and 9 are accomplished by

Algorithm 1: ASP-based CEGAR for relevance

Require: AT T = (AS,K), q ∈ Q, l ∈ L and j ∈
{defended , out , blocked , unsatisfiable}

Ensure: return YES if q is j-relevant for q, NO otherwise
1: πc := πcandidate

2: πv := π(<-)stab ∪ {← not j(l)}
3: while I := πc ∪ {← not axiom(q)} is satisfiable do
4: Q := {q′ ∈ Q | axiom(q′) ∈ I}
5: if C := πv ∪ {axiom(q′) | q′ ∈ Q} is satisfiable
6: then πc := πc ∪ no subsets(C)
7: else
8: if πv ∪{axiom(q′) | q′ ∈ Q\{q}} unsatisfiable
9: then πc := πc ∪ no supersets(Q)

10: else return YES
11: return NO



ASP constraints← not axiom(q1), ...,not axiom(qn) for
not axiom(qi) ∈ C, and ← axiom(q1), ...,axiom(qm)
for qi ∈ Q, respectively.

6 Empirical Evaluation
We empirically evaluate the ASP-based approaches to de-
ciding stability and relevance, using Clingo (Gebser et al.
2016) as the ASP solver and its incremental (multi-shot)
features for implementing the CEGAR algorithms for rel-
evance. Our implementation is available in open source at
https://bitbucket.org/coreo-group/raspic. Our approach pro-
vides the first algorithm for relevance in ASPIC+ and for
stability in ASPIC+ with preferences, and the first exact
algorithm for stability without preferences. For stability,
we compare the ASP approach to a polynomial-time inex-
act algorithm (Odekerken et al. 2022a, Algorithm 4) as the
key earlier approach proposed for the problem for instances
without rule preferences. The inexact approach is sound (all
stable results are indeed stable) but not complete (the algo-
rithm may report unstability for stable literals). The exper-
iments were run on 2.60-GHz Intel Xeon E5-2670 57-GB
machines with RHEL 8 under a per-instance 10-min time
and 16-GB memory limit.

As benchmarks, we consider both real-world and syn-
thetic data. The real-world benchmarks are based on the
argumentation system AS = (L, ,R,≤) and queryables
Q used in an inquiry system for the intake of online trade
fraud at the Netherlands Police (Odekerken et al. 2022a)
with |L| = 60, |Q| = 30, |R| = 43 and ≤ = ∅. The
rules form a tree-like structure, without cycles. To gen-
erate stability instances, we obtained knowledge bases by
randomly sampling 25 subsets of each size between 1 and
15 from Q and the empty knowledge base, for a total of
376 instances. We computed the stability status of each
literal. For relevance, we randomly selected one literal
from a set of “topics” (literals whose status is of interest)
and one queryable. For a further scalability study, we also
consider synthetic data. For this, we generated ATs and
queryable sets that are parametrised by the size of the lan-
guage |L| ∈ {50, 100, 150, 200, 250, 500, 1000, 2500} and
rule set size |R| ∈ { 12 |L|, |L|,

3
2 |L|}. These ATs have a

similar tree-like structure as the real-world benchmarks with
1125 instances per |L|.

Results Table 1 provides an overview of the performance of
our ASP approach (with and without preferences) on the task
of computing the stability of each literal in a given AT. As
shown, without preferences our exact approach, taking less
than a second on each instance, outperforms the inexact al-
gorithm. Additionally, while the ASP approach is exact, the
inexact algorithm mislabelled 69 out of 1689 topic literals in
the real-world instances and 109 out of 714431 topic literal
in the synthetic instances. For the case with preferences, de-
ciding stability becomes empirically harder, with the largest
instances taking a few minutes to solve. We observed that
runtimes similarly increase with more rules.

Table 2 shows results for deciding relevance both with and
without preferences. For the real-world data without prefer-
ences, our approach can decide relevance of a query in 0.26

#solved (mean runtime (s) over solved)

Data |L| In-exact ASP ASP under prefs

Synthetic 50 1125 (0.16) 1125 (0.01) 1125 (0.09)
100 1125 (0.18) 1125 (0.02) 1125 (0.27)
150 1125 (0.20) 1125 (0.03) 1125 (0.56)
200 1125 (0.23) 1125 (0.05) 1125 (0.98)
250 1125 (0.25) 1125 (0.06) 1125 (1.51)
500 1125 (0.37) 1125 (0.12) 1125 (6.37)

1000 1125 (0.66) 1125 (0.24) 1125 (28.65)
2500 1125 (2.17) 1125 (0.6) 1047 (209.80)

Real 60 376 (0.16) 376 (0.02) 376 (0.09)

Table 1: Number of solved instances and mean runtimes over
solved instances for detecting stability of all literals.

seconds on average, with a maximum of 5.8 seconds. Our
algorithm for relevance also scales well to reasonable-size
instance, solving all instances with up to 100 literals. We
observe a high variance in runtimes on large instances, with
many instances solved instantly while some time out, sug-
gesting that the structure of instances plays a significant role
in runtime performance. Overall, the results suggest that our
ASP approach is applicable in real-world applications.

7 Conclusions
With motivations in real-world applications, we estab-
lished the complexity of stability and relevance—two re-
lated notions dealing with argumentation dynamics—in a
specific fragment of the structured argumentation formal-
ism ASPIC+. While stability was recently proposed in the
realm of ASPIC+, our work constitutes the first study of rel-
evance in this context. Complementing and motivated by
the NP-completeness and Σp

2-completeness results, we de-
veloped the first exact algorithms for stability and relevance
based on the declarative programming paradigm of answer
set programming. The algorithms exhibit promising scal-
ability in practice, and allow for reasoning about stability
and relevance efficiently in a real-world setting concerning
argument-based inquiry. Extending the complexity analysis
and algorithms to cover further semantics and ASPIC+ more
generally is a promising direction for further work.

#solved (mean runtime (s) over solved)

Data |L| ASP no prefs ASP under prefs

Synthetic 50 1125 (0.2) 1125 (0.2)
100 1125 (5.4) 1125 (19.4)
150 831 (2.1) 809 (2.1)
200 820 (1.2) 824 (1.5)
250 844 (0.6) 831 (1.4)
500 817 (0.2) 809 (5.9)

1000 837 (0.3) 816 (24.0)
2500 1125 (4.9) 898 (220.8)

Real 60 376 (0.26) 376 (0.36)

Table 2: Number of solved instances and mean runtimes over
solved instances for defended-relevance.

https://bitbucket.org/coreo-group/raspic
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