
A Preference-Based Approach to Backbone Computation with
Application to Argumentation

Alessandro Previti

HIIT, Dept. Computer Science, University of Helsinki

alessandro.previti@helsinki.fi

Matti Järvisalo

HIIT, Dept. Computer Science, University of Helsinki

ABSTRACT
The backbone of a constraint satisfaction problem consists of those

variables that take the same value in all solutions. Algorithms for

determining the backbone of propositional formulas, i.e., Boolean

satisfiability (SAT) instances, find various real-world applications.

From the knowledge representation and reasoning (KRR) perspec-

tive, one interesting connection is that of backbones and the so-

called ideal semantics in abstract argumentation. In this paper, we

propose a new backbone algorithm which makes use of a “SAT with

preferences” solver, i.e., a SAT solver which is guaranteed to output

a most preferred satisfying assignment w.r.t. a given preference

over literals of the SAT instance at hand. We also show empirically

that the proposed approach is specifically effective in computing

the ideal semantics of argumentation frameworks, noticeably out-

performing an other state-of-the-art backbone solver as well as the

winning approach of the recent ICCMA 2017 argumentation solver

competition in the ideal semantics track.

ACM Reference Format:
Alessandro Previti and Matti Järvisalo. 2018. A Preference-Based Approach

to Backbone Computation with Application to Argumentation. In Proceed-
ings of ACM SAC Conference (SAC’18). ACM, New York, NY, USA, 7 pages.

https://doi.org/https://doi.org/10.1145/3167132.3167230

1 INTRODUCTION
The so-called backbone is an established concept [33, 34, 44] in

constraint satisfaction problems (CSPs), and finds a wide range of

applications [5, 22, 23, 48, 54–56]. The backbone of a CSP consists

of variables that take the same value in all solutions, together with

their respective values. Backbones have been studied in the contexts

of various combinatorial problems [8, 10, 21, 28, 29, 32–34, 45, 46, 49–

53]. In terms of CSPs, backbones have been studied for general

finite-domain constraint satisfaction, as well as in the context of

Boolean satisfiability (SAT) [9, 11, 24, 30, 38]—as focused on also

in this work. The problem of determining the backbone of a given

propositional formula is a notably hard problem and surpasses the

complexity of deciding satisfiability.

The applicability of backbones arises from the fact that they

enable expressing various kinds of interesting information. The

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SAC’18, April 9-13, 2018, Pau,France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00

https://doi.org/https://doi.org/10.1145/3167132.3167230

existence of backbone variables precludes the existence of super-

solutions [20]. Perhaps most interestingly, in various application

domains of SAT solvers, it is possible to develop SAT encodings

in which the inclusion of specific variables in the backbone of

the SAT-encoded instance provides an indicator for a property of

interest—the exact property depending on the problem domain at

hand. Concretely, backbones have been used to represent faults

in fault localization in integrated circuits [54, 56]; in interactive

product configuration, an identified backbone variable provides

users important information on unavailable configurations [23];

and in causal structure discovery, backbone variables have been

used to represent equivalence classes of causal structures [22], to

mention a few examples. In the topical area of KR research of ab-

stract argumentation—and importantly in terms of this paper—the

so-called ideal semantics [13] can be realized through determin-

ing the backbone of a propositional formula encoding so-called

admissible sets [14, 48].

Motivated by the widening range of applications, developing

efficient algorithms for backbone computation, i.e., for determining

the backbone of a given propositional formula, is important. Indeed,

several algorithmic approaches to backbone computation have been

recently developed [24], based on iterative applications of SAT

solvers as natural practical NP oracles.

In this work, we propose a new backbone algorithm for propo-

sitional formulas. While earlier state-of-the-art algorithms apply

standard conflict driven clause learning (CDCL) SAT solvers itera-

tively, the algorithm proposed here is based on the use of a CDCL

SAT solver extended to provide a best solution with respect to a

given preference (ordering) on the literals in an input SAT instance.

While this “SAT with preferences” approach [16, 17, 42] has been

employed for other beyond NP problems [3, 18, 40–42], to the best

of our understanding the use of SAT with preferences has not been

previously proposed in the context of backbone computation.

In terms of practical performance, we present results from an

empirical evaluation of the proposed approach. Specifically, in the

context of abstract argumentation, the approach noticeably outper-

forms both a state-of-the-art generic backbone algorithm as well

as Pyglaf [1], the winner of the 2017 International Competition of
Computational Models of Argumentation (ICCMA 2017) argumen-

tation solver competition, on the problem of computing the ideal

semantics over argumentation frameworks via determining the

backbone of a SAT encoding for the admissible semantics.

The rest of this paper is organized as follows.We start with neces-

sary background on Boolean satisfiability (Section 2) and backbones

with a short overview of backbone algorithms in the context of

SAT (Section 3). The main contribution of the paper, the preference-

based backbone algorithm, is described in Section 4. As we will

https://doi.org/https://doi.org/10.1145/3167132.3167230
https://doi.org/https://doi.org/10.1145/3167132.3167230

SAC’18, April 9-13, 2018, Pau,France Alessandro Previti and Matti Järvisalo

empirically show, the algorithm is noticeably efficient for com-

puting the ideal semantics on argumentation framework. We give

background on this application domain in Section 5. An overview

of results from an empirical evaluation of the proposed backbone

algorithm is presented in Section 6. Finally, before conclusions, we

give an overview of related work (Section 7).

2 BOOLEAN SATISFIABILITY
Propositional formulas are built from Boolean variables by repeated

application of logical connectives such as ¬ (negation), ∨ (disjunc-

tion), ∧ (conjunction),→ (implication) and↔ (equivalence). Any

propositional formula can be represented in conjunctive normal form
(CNF) using a standard linear-size encoding [47].

1
For a Boolean

variable x , there are two literals, the positive literal x and the neg-

ative literal ¬x . A clause is a disjunction of literals, and a CNF

formula is a conjunction of clauses. A clause can be represented

as a set of literals, and a CNF formula as a set of clauses. Given

a formula F , Var(F) denotes the set of variables of F and Lit(F)
denotes the set of literals of F . Moreover, for a literal l , Var(l) gives
its variable.

A truth assignment is a function τ from Boolean variables to

{0, 1}. A truth assignment is complete if τ (x) ∈ {0, 1} for all x ∈
Var(F). An assignment τ satisfies a literal (τ (l) = 1) if l = x is a

positive literal and τ (x) = 1, or if l = ¬x is a negative literal and

τ (x) = 0. An assignment τ satisfies a clauseC (τ (C) = 1) if τ (l) = 1

for some literal l in C . A CNF formula F is satisfiable if there is an

assignment that satisfies all clauses in F , and unsatisfiable otherwise.
An assignment that satisfies all the clauses in F is referred to as a

satisfying assignment, or a model, of F . The NP-complete Boolean

satisfiability (SAT) problem asks whether a given CNF formula F is

satisfiable.

A truth assignment τ can also be represented as the set {l | τ (l) =
1} of literals it satisfies. We will make use of this representation

when detailing the backbone algorithm proposed in this work, and

will write, e.g., l ∈ τ (resp., l < τ) to denote that τ (l) = 1 (resp.,

τ (l) = 0).

Implementations of decision procedures for SAT, so-called SAT

solvers, can in practice not only determine satisfiability of CNF

formulas, but also produce a satisfying truth assignment for satis-

fiable formulas. Various hard computational problems have been

successfully approached by first encoding the problem at hand

as a propositional formula, and then calling an off-the-shelf SAT

solver to find a satisfying truth assignment to the formula, repre-

senting a solution of the original problem at hand. The most effi-

cient SAT solvers are based on the complete conflict-driven clause

learning (CDCL) search algorithm [15, 31, 35]. Central to CDCL is

the ability to derive lemmas (in terms of new CNF clauses) based

on non-solutions detected during search, which makes the search

performed by CDCL SAT solvers differ from standard depth-first

backtracking search. In many cases, the state-of-the-art CDCL SAT

solvers can solve SAT instances consisting of millions of clauses

and variables [26].

1
The standard linear-size “Tseitin” CNF encoding introduces a fresh Boolean variable

xϕ for each subformula ϕ , and represents the logical equivalence xϕ ⇔ ϕ with

clauses.

3 BACKBONES AND COMPUTATION
If a Boolean variable x takes the same value in all satisfying truth

assignments of a given CNF formula F , x is called a backbone vari-
able of F ; the value x is assigned to in all satisfying assignments is

called the polarity of x . If x = 1 (x = 0) in all satisfying assignments,

then x (¬x) is a backbone literal of F . The backbone of F consists of

the backbone literals of F , or equivalently, of its backbone variables
together with their respective truth values.

The following simple observation is central to backbone com-

putation. In particular, given a variable x such that τ1 (x) = 0 and

τ2 (x) = 1, where τ1 and τ2 are two models of a CNF formula F ,
neither of the literals x and ¬x are backbone literals of F .

Proposition 1. For any satisfiable CNF formula F , literal l ∈
Lit(F), and model τ of F , if τ (l) = 0 (resp., τ (l) = 1), then l (resp., ¬l)
is not a backbone literal of F .

Algorithms for determining the backbone of a given proposi-

tional formula are generally based on iterative applications of a

SAT solver.

The most intuitive and straightforward way for determining

the backbone works by making a linear number of calls (in the

number of variables in F) to a SAT solver and follows Proposition 1:

if exactly one of F ∧ x and F ∧ ¬x is satisfiable, then x is in the

backbone of F .
Several techniques for improving the practical efficiency of the

“straightforward” approach to backbone computation have been

previously proposed [24, 56]. Many of the resulting more refined

backbone algorithms rely on the connection between implicants
(i.e., partial satisfying assignments to the formula F at hand) and the

backbone of F . Since a backbone literal is contained in every model,

the intersection of all implicants of F corresponds to the backbone

of F . While the number of prime implicants can be exponential

in the worst case ([24]), various techniques have been proposed

with the aim of avoiding the worst-case scenario of enumerating

all the prime implicants. Common to the resulting algorithms is

the idea of first computing a model of F , and then proceeding by

iteratively flipping variable assignments in the model and checking

the satisfiability of F under the modified assignments. Techniques

refining this general scheme include chunking, i.e., testing a subset

of literals instead of all literals at once; employment of unsatisfiable
cores obtained from unsatisfiable SAT solver calls for inferring

inclusion and exclusion of literals from the backbone; and backbone
filtering via the concept of so-called rotatable literals.

4 A PREFERENCE-BASED APPROACH
TO BACKBONE COMPUTATION

In this section we present a new approach for backbone computa-

tion. Compared to previous approaches for backbone computation,

a key difference in our approach is the following. Given a CNF

formula F as input, previously proposed approaches (such as the

ones proposed in [24, 56]) determine the inclusion and exclusion of

literals in the backbone of F by iteratively calling a (standard) CDCL

SAT solver. In contrast, we propose to employ a SAT solver extended
with preferences [36, 42] (a “pref-SAT” solver) instead of a standard

SAT solver. A pref-SAT solver allows for finding a best satisfy-

ing assignment (model) with respect to a preference ordering over

A Preference-Based Approach to Backbone Computation with Application to Argumentation SAC’18, April 9-13, 2018, Pau,France

the literals of F [36, 43]. We will show how such preferences can

be harnessed for backbone computation. While pref-SAT solvers

have been recently employed for various other beyond-NP prob-

lems [3, 17, 42]), to the best of our understanding this is the first

time their use for backbone computation is proposed.

In the context of this discussion, a preference specifies a pre-

ferred value for a specific variable ([7]) over other individual value

assignments to variables. Given a CNF formula and such a pref-

erence relation ≻, a pref-SAT solver is guaranteed to return the

most preferred model of F in terms of ≻ (or report unsatisfiable in
case F is unsatisfiable). A preference relation ≻ imposes a partial

order among the literals in Lit(F). More formally, a preference rela-

tion imposes a partial ordering over Lit(F) satisfying the following

properties.

(1) Irreflexivity: l ⊁ l .
(2) Transitivity: if l1 ≻ l2 and l2 ≻ l3, then l1 ≻ l3.

Intuitively, ≻ expresses the relative importance of the prefer-

ences. If we have l1 ≻ l2, a literal l1 is preferred to literal l2. Fur-
thermore, if l1 ≻ l2 ≻ l3, then l1 ≻ l2 is more preferred than l2 ≻ l3,
and l2 ≻ l3 less preferred than l1 ≻ l2.

A preference relation hence also imposes a preference on the

models of a CNF formula. Given twomodels τ and τ ′ (viewed as sets
of literals from now on), we say that τ is preferred to τ ′, denoted
by τ ≻ τ ′, if and only if

(1) τ satisfies at least one preference that is not satisfied by τ ′,
and

(2) the preferences satisfied by τ ′ and not by τ are less preferred

to those satisfied by τ and not by τ ′.

The preferred value of a variable x is 1 (resp., 0) if the literal x (resp.,

¬x) is preferred to ¬x (resp., x).
A pref-SAT solver can be implemented on top of a (standard)

modern CDCL SAT solver by controlling the order in which de-

cisions on variables are made during search. Modern SAT solvers

use a heuristic in order to select the next variable to be assigned.

In order to take into account a given preference x1 ≻ x2, a pref-
SAT solver is forced to decide on the variable x1 before x2. When

the variable x1 is decided on, the value 1 is assigned to it. This is

possible unless the value x1 = 1 is implied by the current partial

assignment.

With the necessary background on pref-SAT in place, we are

ready to present our preference-based approach to backbone com-

putation. Algorithm 1 outlines the approach in pseudocode. The

intuitive idea is to discard a maximal number of non-backbone

literals at each iteration. Recall that a backbone literal is a literal

that is contained in every model. If we find two models τ1 and τ2
such that x ∈ τ1 and ¬x ∈ τ2, then neither x nor ¬x is a back-

bone literal (Proposition 1). In the context of our algorithm, we

use this observation together with preferences in order to discard

non-backbone literals from consideration. More specifically, the

algorithm maintains a set of backbone literal candidates B. At any

stage during search, literal l is in B if we have not seen a model

with ¬l .
The search begins (Algorithm 1, line 2) by computing an arbitrary

model τ of the input formula F ; i.e., at this stage, no preferences are
imposed, and the pref-SAT solver acts like a standard SAT solver.

The set of candidate backbone literals B is initialized to τ (line 3).

Algorithm 1: BB-pref: Backbone computation using pref-SAT

1 Function bb-pref(F)

2 τ ← pref-SAT(F)

3 B ← τ

4 for l ∈ B do
5 setPreference(¬l)
6 while true do
7 τ ← pref-SAT(F)

8 C ← B \ τ

9 if C = ∅ then
10 return B
11 for l ∈ C do
12 removePreference(¬l)
13 B ← B \ {l }

Then, for each l ∈ B the algorithm sets the preference ¬l ≻ l ′ for
each l ′ ∈ Lit(F) \ B′, where B′ = {¬l | l ∈ B}, via the setPreference
function (line 5). The idea here is to force a maximal set of literals

in B to be flipped. For each literal l in B that we are able to flip

(in terms of obtaining a model under the modified B), we know by

Proposition 1 that l and ¬l are not backbone literals. During the

main loop, pref-SAT is called to obtain the most preferred model τ
w.r.t. the modified B (line 7). On line 8 information of the flipped

literals are extracted and stored in C. If C is not empty, we know for

each literal l ∈ C that neither l nor ¬l is a backbone literal. So for

each l ∈ C we remove the preferences on l via the removePreference
function (line 12), and further, we remove l from the set of backbone

literal candidates B (line 13). Otherwise, if C is empty, it is no more

possible to flip any literals in B. This means that all the literals in

B are backbone literals and the set B is returned (line 10).

Finally, we will discuss more implementation-level details on

how pref-SAT is instantiated for the approach. On line 5 we impose

for each literal l ∈ B to prefer amodel containing¬l . More precisely,

let B′ = {¬l | l ∈ B} be the set of preferred literals. We impose the

preferences

¬l ≻ l ′ ∀l ∈ B and ∀l ′ ∈ Lit(F) \ B′.

This means in practice that the solver has to assign all the variables

referring to the literals in B before selecting any other variable. All

the literals within B and Lit(F) \ B′ can be selected according to

the solver heuristic. This is very important in order to not affect

performance, since imposing a fixed order could have a noticeable

negative impact on the efficiency of the SAT solver in the worst

case [25].

Modern SAT solvers use a heap H for selecting the next variable

to decide on. In our implementation, we split the variables in two

heaps, H1 and H2, such that all the variables in H1 are selected

before the variables in H2. The heap H1 contains all the variables

whose literals are in B. The second contains all the remaining

variables. When a variable in H1 is selected, the corresponding

preferred value is assigned to it. For all the other variables the

choice of their values is left to the solver. The variables in B are

decided on first. When no preference is specified, pref-SAT acts as

a standard SAT solver. The key modifications to a SAT solver come

SAC’18, April 9-13, 2018, Pau,France Alessandro Previti and Matti Järvisalo

in the form of implementing the two functions setPreference and
removePreference.
• setPreference(l) sets the preference for l to be satisfied and

in addition adds l ≻ l ′ for each l ′ ∈ Lit(F) \ B′. On the

implementation level this means that the variable referring

to the literal l is put in H1 and the algorithm makes sure to

assign the preferred value when the variable is selected.

• removePreference(l) removes the preference for l to be satis-

fied and in addition removes l ≻ l ′ for each l ′ ∈ Lit(F) \ B′

and adds l ′ ≻ l for each l ′ ∈ B′. On the implementation

level this means that the variable referring to the literal l
is removed from H1 and put in H2. Moreover, the preferred

value associated to the variable is removed.

When no preference is expressed on the two literals of a variable,

the variable is assumed to be in H2.

Example 1. Consider the formula F = x1 ∧ (¬x1 ∨ x2 ∨ x3) ∧
(x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ x4). Suppose that we
obtain as the first model τ1 = {x1,x2,¬x3,x4}. Then, for each literal
l ∈ B = {x1,x2,¬x3,x4}, we add the variable Var(l) to the first
heap H1. At this stage the heap H2 is empty. When the second model
τ2 = {x1,x2,x3,x4} is found, we have C = B \ τ2 = {¬x3}. So, we
remove Var(¬x3) from H1 and add Var(¬x3) to the second heap H2.
We also remove ¬x3 from B. At the next call to pref-SAT, the model
τ3 = {x1,x2,¬x3,x4} is returned. At this point C = B \ τ3 = ∅ and
B = {x1,x2,x4} is the set of backbone literals of the formula.

5 IDEAL SEMANTICS AS
BACKBONE COMPUTATION

We recall concepts related to argumentation frameworks [12] and

their semantics [4, 13].

Definition 1. An argumentation framework (AF) is a pair F =
(A,R), whereA is a finite set of arguments and R ⊆ A×A is the attack
relation. The pair (a,b) ∈ R means that a attacks b.

Definition 2. An argument a ∈ A is defended (in F) by a set
S ⊆ A if, for each b ∈ A such that (b,a) ∈ R, there exists c ∈ S such
that (c,b) ∈ R.

Example 2. Let F = (A,R) be an AF with A = {a,b, c,d, e} and
R = {(a,b),(b, c),(c,d),(d, c), (d, e),(e, e)}. The corresponding graph
representation is shown in Figure 1.

Semantics for argumentation frameworks are defined through a

function σ which assigns to each AF F = (A,R) a set σ (F) ⊆ 2
A
of

conflict-free extensions.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-
free (in F), if there are no a,b ∈ S such that (a,b) ∈ R. We denote the
collection of conflict-free sets of F by cf (F).

We consider for σ the functions adm, pref , and ideal which stand
for admissible, preferred and ideal extensions, respectively.

a b c d e

Figure 1: Argumentation framework in Example 2.

Definition 4. Let F = (A,R) be an AF and S ∈ cf (F). Now S is
an admissible extension (S ∈ adm(F)) if and only if

S ⊆ {x ∈ A | x is defended by S }.

Preferred extensions are the subset-maximal admissible exten-

sions.

Definition 5. Let F = (A,R) be an AF and S ∈ adm(F). Now S
is a preferred extension (S ∈ pref) if and only if there is no S ′ ⊋ S
such that S ′ ∈ adm.

Finally, as the main AF semantics of interest in this work, the

ideal semantics, which is a so-called unique-status semantics, i.e.,

there is a unique ideal extension for any AF. Informally, the ideal

extension is the maximal-admissible set with respect to subset-

inclusion that is composed only of skeptically accepted arguments

under the preferred semantics.

Definition 6. Let F = (A,R) be an AF and, furthermore, S ⊆⋂
pref (F), i.e., S is a subset of the set of skeptically accepted argu-

ments under the preferred semantics. Now S is the ideal extension of
F (S ∈ ideal (F)) if and only if there is no S ′ ∈ adm(F) with S ′ ⊋ S
such that S ′ ⊆

⋂
pref (F).

As explained in [14, 48], the ideal extension of a given AF F =
(A,R) can be determined via computing the backbone of a proposi-

tional encoding of admissible sets, and afterwards applying straight-

forward postprocessing to the backbone. Specifically, the main

computational task (in terms of computational complexity) is to

determine the set of credulously accepted arguments of F with re-

spect to admissible sets, i.e., the set of arguments

⋃
adm(F). This

is achieved by first computing the backbone B of the standard

propositional encoding∧
(a,b)∈R

(¬a ∨ ¬b) ∧
∧

(b,c)∈R

(
¬c ∨

∨
(a,b)∈R

a
)

of adm(F). It then holds that

⋃
adm(F) = A \ {a | ¬a ∈ B}. As

detailed in [48], the ideal extension is then easy to determine from⋃
adm(F) via a fast polynomial-time algorithm.

2

6 EXPERIMENTS
In this section, we provide results from an empirical evaluation

on the performance of the proposed backbone algorithm using a

“SAT with preferences” solver. Our evaluation is focused on the

task of computing the ideal semantics for a given argumentation

framework.

We implemented our approach (Algorithm 1) on top of the

widely-used MiniSAT [15] CDCL SAT solver, version 2.2.0. We

will refer to the implementation as PrefBones.

We will compare the performance of PrefBones to that of Mini-

Bones [24], a state-of-the-art solver for backbone computation, as

well as Pyglaf [1], the winner of the ICCMA 2017 competition track

on computing the ideal extension (see http://www.dbai.tuwien.ac.

at/iccma17/). Following the suggestion of the authors of MiniBones,

we used the following parameter values in the experiments: -e -i

2
In short, starting from S = A \

⋃
adm(F), first add to S arguments x ∈

⋃
adm(F)

such that all arguments adjacent to x are in A \
⋃

adm(F). Then, considering the

AF F ′ = (S, RS), where RS is R restricted to S , iteratively remove from S argument

which are not defended by S in F ′. After at most |S | iterations, this yields the ideal
extension of F [14, 48].

http://www.dbai.tuwien.ac.at/iccma17/
http://www.dbai.tuwien.ac.at/iccma17/

A Preference-Based Approach to Backbone Computation with Application to Argumentation SAC’18, April 9-13, 2018, Pau,France

Figure 2: Comparison of the approaches on the ICCMA’17 benchmarks. Left: PrefBones vs MiniBones. Right: PrefBones vs
Pyglaf.

-c 100. It should be noted that MiniBones also uses MiniSAT 2.2.0

as the underlying SAT solver.

For the evaluation, we considered two types of argumentation

frameworks as benchmarks. Firstly, we used the whole ICCMA 2017

competition benchmark set D, which was used in the competition

for benchmarking solvers on the ideal semantics. Secondly, we

generated random AFs using afgen generator from [37] under

the Erdös-Renýi random graph model, generating a total of 50

AFs using 630 and 1% as the number of arguments and the edge

probability, respectively.
3
For both types of AFs, we used the cnfgen

tool from [37] to generate the CNF instances for PrefBones and

MiniBones.

The experiments were run under Ubuntu Linux on Intel Xeon

E5540 2.53-GHz processors with 32 GB of RAM. The per-instance

time limit and memory limit were set to 1800 seconds and 4 GB, re-

spectively. When comparing the relative performance of PrefBones

and MiniBones, we do not include the CNF generation times in the

results, as these do not differ between the solvers. However, when

comparing PrefBones and Pyglaf, we include the CNF generation

times and the postprocessing times to the per-instance running

times of PrefBones for a fair comparison.

The results from the evaluation are shown in Figure 2 and Fig-

ure 3 for the ICCMA 2017 and the randomly generated benchmarks,

respectively. We observe that PrefBones scales clearly better on the

ICCMA 2017 instances than bothMiniBones and Pyglaf. There were

no instances on which PrefBones would timeout and one of the

competing approaches could compute the backbone. Compared to

MiniBones, PrefBones is always at least on par with its competitor,

and there are several instances on which PrefBones can determine

the backbone clearly faster, and PrefBones also solves considerably

3
This gives rise to AFs in which each argument is part of approximately 7 attacks. The

number of arguments was chosen via experimentation so that meaningful benchmark

instances were obtained considering the per-instance time limit enforced on the solvers.

more instances. Compared to Pyglaf, the solvers are essentially on

par on the easier benchmarks. However, PrefBones again solves

a considerable number of instances noticeably faster than Pyglaf,

as well as considerably more instances. In fact, this would have

made PrefBones a clear winner of the ideal track of ICCMA 2017,

as Pyglaf was the winner of that track.

Finally, turning to the results on the randomly generated bench-

mark set (Figure 3), we observe that PrefBones clearly and con-

sistently outperforms both MiniBones and Pyglaf, whereas as the

performance of MiniBones and Pyglaf on these instances is essen-

tially on par with each other.

All in all, we conclude that the algorithm proposed in this work

and implemented in PrefBones offers currently a very competi-

tive approach to computing the ideal semantics of argumentation

frameworks.

7 RELATEDWORK
In terms of previously proposed algorithms for computing the back-

bone of a given propositional formulas, essentially all approaches

(including those proposed in [24, 56]) rely on using standard com-

plete conflict-driven clause learning (CDCL) SAT solvers [15, 31, 35].

While the algorithm proposed in this work bears resemblance to

the idea of enumerating implicants [24], our approach differs cru-

cially in terms of our use of a SAT with preferences solver—instead

of a standard SAT solver—and by using preferences for avoiding

the enumeration of all implicants before termination. Due to har-

nessing SAT with preferences, our approach has the potential of

converging faster than the approach enumerating implicants to the

final intersection representing the backbone.

In terms of the approaches using standard SAT solvers, in [24]

various ideas have been presented on how to force the SAT solver

to return models with flipped literals. One of the best-performing

approaches tries to flip all the literals at once, using assumptions,

SAC’18, April 9-13, 2018, Pau,France Alessandro Previti and Matti Järvisalo

Figure 3: Comparison of the approaches on randomly generatedAFs. Left: PrefBones vsMiniBones. Right: PrefBones vs Pyglaf.

and then analyzes the returned unsatisfiable core. Another approach,
firstly introduced in [56], tries to flip at least one literal for each

SAT call by adding a new clause of the form

∨
l ∈B ¬l , where B is

the set of backbone candidates we want to try to flip.

The backbone algorithm proposed in this work relies heavily

on the “SAT with preference” approach. The SAT with preferences

approach was proposed in [16, 17, 42], with applications to maxi-

mal/minimal model computation and maximum satisfiability, auto-

mated planning [18], model enumeration [40], qualitative prefer-

ences [41], and relaxation search [3]. However, to the best of our

knowledge the approach has not been previously considered as a

basis for backbone computation.

Backbone computation is a central approach to implementing

the ideal semantics in abstract argumentation [4, 12, 13], i.e., for

computing the ideal set of a given argumentation framework [14,

48]. The very recently organized 2nd International Competition on

Computational Models of Argumentation (ICCMA 2017) included

a competition track on computing the ideal extension, where a

majority of the competing approaches (10 in total) were based on

backbone computation (or, equivalently, on computing the cautious

consequences of a constraint declaration of the ideal semantics),

including the winner of the track, Pyglaf.

Beyond SAT [9, 11, 24, 30, 38] and SAT-based applications [5,

22, 23, 48, 54–56], backbones play a role in a wide range of com-

binatorial problems and in CSPs in general [8, 10, 21, 28, 29, 32–

34, 45, 46, 49–53]. Variants and generalizations have also been pro-

posed. In the context of CSPs, a notion of backbones has been

proposed under the name of frozen/fixable variables [6, 10, 27],

defined as variables that take the same value in all solutions. A

more general notion is that of generalized backbones [39], which

extends backbones to arbitrary variable domains and thereby to,

e.g., the satisfiability modulo theories approach (SMT). Backbones

also have connections to minimal constraint networks [19] and

minimal labelings in qualitative constraints networks [2].

8 CONCLUSIONS
Backbone algorithms for propositional SAT instances have applica-

tions in a widening range of real-world problems. We proposed a

new approach to backbone computation based on iterative applica-

tion of a “SAT with preferences” solver; in contrast, other current

state-of-the-art algorithms typically rely on standard SAT solvers.

In practice, the proposed approach noticeably outperforms both a

state-of-the-art generic backbone algorithm as well as Pyglaf, the

winner of the ICCMA 2017 argumentation solver competition, on

the problem of computing the ideal semantics over argumentation

frameworks via determining the backbone of a SAT encoding for

the ideal semantics.

ACKNOWLEDGMENTS
The authors thank Mikolas Janota for advice on MiniBones, and

Andreas Niskanen for discussion and advice on the AFGen and

CNFGen generators. The work has been financially supported by

Academy of Finland (grants 251170 COIN, 276412, 284591, and

312662) and the Research Funds of the University of Helsinki.

REFERENCES
[1] Mario Alviano. 2017. The pyglaf argumentation reasoner. In ICCMA 2017 Solver

Descriptions. http://www.dbai.tuwien.ac.at/iccma17/files/pyglaf.pdf.

[2] Nouhad Amaneddine, Jean-François Condotta, and Michael Sioutis. 2013. Effi-

cient Approach to Solve the Minimal Labeling Problem of Temporal and Spatial

Qualitative Constraints. In Proc. IJCAI. IJCAI/AAAI, 696–702.
[3] Fahiem Bacchus, Jessica Davies, Maria Tsimpoukelli, and George Katsirelos. 2014.

Relaxation Search: A Simple Way of Managing Optional Clauses. In Proc. AAAI.
AAAI Press, 835–841.

[4] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. 2011. An introduc-

tion to argumentation semantics. Knowledge Engingeering Review 26, 4 (2011),

365–410.

[5] Anton Belov, Mikolás Janota, Inês Lynce, and João Marques-Silva. 2014. Algo-

rithms for computing minimal equivalent subformulas. Artificial Intelligence 216
(2014), 309–326.

[6] Lucas Bordeaux, Marco Cadoli, and Toni Mancini. 2005. Exploiting Fixable,

Removable, and Implied Values in Constraint Satisfaction Problems. In Proc. LPAR
2004 (Lecture Notes in Computer Science), Vol. 3452. Springer, 270–284.

http://www.dbai.tuwien.ac.at/iccma17/files/pyglaf.pdf

A Preference-Based Approach to Backbone Computation with Application to Argumentation SAC’18, April 9-13, 2018, Pau,France

[7] Thierry Castell, Claudette Cayrol, Michel Cayrol, and Daniel Le Berre. 1996.

Using the Davis and Putnam Procedure for an Efficient Computation of Preferred

Models. In Proc. ECAI. John Wiley and Sons, 350–354.

[8] Sharlee Climer and Weixiong Zhang. 2002. Searching for Backbones and Fat: A

Limit-Crossing Approach with Applications. In Proc. AAAI. AAAI Press, 707–712.
[9] Michael Codish, Yoav Fekete, and Amit Metodi. 2013. Backbones for Equality. In

Proc. HVC (Lecture Notes in Computer Science), Vol. 8244. Springer, 1–14.
[10] Joseph C. Culberson and Ian P. Gent. 2001. Frozen development in graph coloring.

Theoretical Computer Science 265, 1-2 (2001), 227–264.
[11] Olivier Dubois and Gilles Dequen. 2001. A backbone-search heuristic for efficient

solving of hard 3-SAT formulae. In Proc. IJCAI. Morgan Kaufmann, 248–253.

[12] Phan Minh Dung. 1995. On the Acceptability of Arguments and its Fundamental

Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games.

Artificial Intelligence 77, 2 (1995), 321–358.
[13] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. 2007. Computing

ideal sceptical argumentation. Artificial Intelligence 171, 10-15 (2007), 642–674.
https://doi.org/10.1016/j.artint.2007.05.003

[14] Paul E. Dunne,WolfgangDvorák, and StefanWoltran. 2013. Parametric properties

of ideal semantics. Artificial Intelligence 202 (2013), 1–28.
[15] Niklas Eén and Niklas Sörensson. 2004. An Extensible SAT-solver. In Proc. SAT

2003 (Lecture Notes in Computer Science), Vol. 2919. Springer, 502–518.
[16] Enrico Giunchiglia and Marco Maratea. 2006. optsat: A Tool for Solving SAT

Related Optimization Problems. In Proc. JELIA (Lecture Notes in Computer Science),
Vol. 4160. Springer, 485–489.

[17] Enrico Giunchiglia and Marco Maratea. 2006. Solving Optimization Problems

with DLL. In Proc. ECAI (Frontiers in Artificial Intelligence and Applications),
Vol. 141. IOS Press, 377–381.

[18] Enrico Giunchiglia and Marco Maratea. 2007. Planning as Satisfiability with

Preferences. In Proc. AAAI. AAAI Press, 987–992.
[19] Georg Gottlob. 2012. On minimal constraint networks. Artificial Intelligence

191-192 (2012), 42–60.

[20] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. 2004. Super Solutions in

Constraint Programming. In Proc. CPAIOR (Lecture Notes in Computer Science),
Vol. 3011. Springer, 157–172.

[21] Eric I. Hsu, Christian J. Muise, J. Christopher Beck, and Sheila A. McIlraith.

2008. Probabilistically Estimating Backbones and Variable Bias: Experimental

Overview. In Proc. CP (Lecture Notes in Computer Science), Vol. 5202. Springer,
613–617.

[22] Antti Hyttinen, Patrik Hoyer, Frederick Eberhardt, and Matti Järvisalo. 2013.

Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based

Procedure. In Proc. UAI. AUAI Press, 301–310.
[23] Mikoláš Janota. 2010. SAT Solving in Interactive Configuration. Ph.D. Dissertation.

University College Dublin.

[24] Mikolás Janota, Inês Lynce, and Joao Marques-Silva. 2015. Algorithms for com-

puting backbones of propositional formulae. AI Communications 28, 2 (2015),
161–177.

[25] Matti Järvisalo and Tommi Junttila. 2009. Limitations of Restricted Branching in

Clause Learning. Constraints 14, 3 (2009), 325–356.
[26] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. 2012. The

International SAT Solver Competitions. AI Magazine 33, 1 (2012), 89–92.
[27] Peter Jonsson and Andrei A. Krokhin. 2004. Recognizing frozen variables in

constraint satisfaction problems. Theoretical Computer Science 329, 1-3 (2004),
93–113.

[28] Philip Kilby, John K. Slaney, Sylvie Thiébaux, and Toby Walsh. 2005. Backbones

and Backdoors in Satisfiability. In Proc. AAAI. AAAI Press, 1368–1373.
[29] Philip Kilby, JohnK. Slaney, and TobyWalsh. 2005. The Backbone of the Travelling

Salesperson. In Proc. IJCAI. Professional Book Center, 175–180.

[30] João Marques-Silva, Mikolás Janota, and Inês Lynce. 2010. On Computing Back-

bones of Propositional Theories. In Proc. ECAI (Frontiers in Artificial Intelligence
and Applications), Vol. 215. IOS Press, 15–20.

[31] João P. Marques-Silva and Karem A. Sakallah. 1999. GRASP: A Search Algorithm

for Propositional Satisfiability. IEEE Trans. Comput. 48, 5 (1999), 506–521.
[32] Mohamed El-bachir Menai. 2005. A Two-Phase Backbone-Based Search Heuristic

for Partial MAX-SAT - An Initial Investigation. In Proc. IEA/AIE (Lecture Notes in
Computer Science), Vol. 3533. Springer, 681–684.

[33] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror

Troyansk. 1999. Determining computational complexity from characteristic

‘phase transitions’. Nature 400 (1999), 133–137.
[34] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror

Troyansky. 1999. 2+p-SAT: Relation of typical-case complexity to the nature of

the phase transition. Random Structures and Algorithms 15, 3-4 (1999), 414–435.
[35] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. 2001. Chaff: Engineering an Efficient SAT Solver. In Proc. DAC. ACM,

530–535.

[36] Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir. 2004. On Pro-

grams with Linearly Ordered Multiple Preferences. In Proc. ICLP (Lecture Notes
in Computer Science), Vol. 3132. Springer, 180–194.

[37] Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo. 2016. Pakota:

A System for Enforcement in Abstract Argumentation. In Proc. JELIA (Lecture
Notes in Computer Science), Vol. 10021. Springer, 385–400.

[38] Andrew J. Parkes. 1997. Clustering at the Phase Transition. In Proc. AAAI/IAAI.
AAAI Press, 340–345.

[39] Alessandro Previti, Alexey Ignatiev, Matti Järvisalo, and Joao Marques-Silva. 2017.

On Computing Generalized Backbones. In Proc. ICTAI. IEEE Computer Society.

[40] Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea. 2008. Computing All

Optimal Solutions in Satisfiability Problems with Preferences. In Proc. CP (Lecture
Notes in Computer Science), Peter J. Stuckey (Ed.), Vol. 5202. Springer, 603–607.

[41] Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea. 2008. A new

Approach for Solving Satisfiability Problems with Qualitative Preferences. In

Proc. ECAI (Frontiers in Artificial Intelligence and Applications), Vol. 178. IOS Press,
510–514.

[42] Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea. 2010. Solving satisfi-

ability problems with preferences. Constraints 15, 4 (2010), 485–515.
[43] Chiaki Sakama and Katsumi Inoue. 2000. Prioritized logic programming and

its application to commonsense reasoning. Artificial Intelligence 123, 1-2 (2000),
185–222.

[44] J. Schneider, C. Froschhammer, I. Morgenstern, T. Husslein, and J. Singer. 1996.

Searching for backbones – an efficient parallel algorithm for the traveling sales-

man problem. Computer Physics Communications 96 (1996), 173–188.
[45] Josh Singer, Ian P. Gent, and Alan Smaill. 2000. Backbone Fragility and the Local

Search Cost Peak. Journal of Artificial Intelligence Research 12 (2000), 235–270.

[46] John K. Slaney and Toby Walsh. 2001. Backbones in Optimization and Approxi-

mation. In Proc. IJCAI. Morgan Kaufmann, 254–259.

[47] Grigori S. Tseitin. 1983. On the Complexity of Derivation in Propositional

Calculus. In Automation of Reasoning 2: Classical Papers on Computational Logic
1967–1970, J. Siekmann and G. Wrightson (Eds.). Springer, 466–483.

[48] Johannes Peter Wallner, Georg Weissenbacher, and Stefan Woltran. 2013. Ad-

vanced SAT Techniques for Abstract Argumentation. In Proc. CLIMA (Lecture
Notes in Computer Science), Vol. 8143. Springer, 138–154.

[49] Weixiong Zhang. 2001. Phase Transitions and Backbones of 3-SAT and Maximum

3-SAT. In Proc. CP (Lecture Notes in Computer Science), Vol. 2239. Springer, 153–
167.

[50] Weixiong Zhang. 2004. Configuration landscape analysis and backbone guided

local search: Part I: Satisfiability and maximum satisfiability. Artificial Intelligence
158, 1 (2004), 1–26.

[51] Weixiong Zhang. 2004. Phase Transitions and Backbones of the Asymmetric

Traveling Salesman Problem. Journal of Artificial Intelligence Research 21 (2004),

471–497.

[52] Weixiong Zhang and Moshe Looks. 2005. A Novel Local Search Algorithm for the

Traveling Salesman Problem that Exploits Backbones. In Proc. IJCAI. Professional
Book Center, 343–350.

[53] Weixiong Zhang, Ananda Rangan, and Moshe Looks. 2003. Backbone Guided

Local Search for Maximum Satisfiability. In Proc. IJCAI. Morgan Kaufmann, 1179–

1186.

[54] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. 2011. Post-

silicon fault localisation using maximum satisfiability and backbones. In Proc. FM-
CAD. FMCAD Inc., 63–66.

[55] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. 2014. Silicon

fault diagnosis using sequence interpolation with backbones. In Proc. ICCAD.
IEEE, 348–355.

[56] Charlie Shucheng Zhu, Georg Weissenbacher, Divjyot Sethi, and Sharad Malik.

2011. SAT-based techniques for determining backbones for post-silicon fault

localisation. In Proc. HLDVT. IEEE Computer Society, 84–91.

https://doi.org/10.1016/j.artint.2007.05.003

	Abstract
	1 Introduction
	2 Boolean Satisfiability
	3 Backbones and Computation
	4 A Preference-based Approachto Backbone Computation
	5 Ideal Semantics asBackbone Computation
	6 Experiments
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

