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Abstract. We present a novel stochastic local search (SLS) approach
for the computationally hard task of finding a chordal Markov network
structure that maximizes a given scoring function (CMSL for short).
Current state of the art in exact algorithms for CMSL only scale up
to circa 20 variables. Beyond this, the scalability of exact approaches
is obstructed by the drastically increasing number of clique scores
which grows exponentially with the number of variables. We show
that, in practice, using only a fraction of the running times of the
exact approaches, our SLS approach provides optimal or very close to
optimal solutions for instance sizes that are within the reach of exact
algorithms. Furthermore, we propose an on-the-fly clique score com-
putation approach that enables scaling up our SLS approach towards
hundreds of variables. In particular, on-the-fly score computation cir-
cumvents the need to enforce low treewidth bounds, which enable
pre-computation of scores before search, but which also may severely
limit the accuracy of the learned models.

1 INTRODUCTION

Graphical models are central tools for dealing with uncertainty in
AI, and allow for leveraging on independencies for computational
and statistical advantage in various data analysis tasks [1, 40, 20].
In this context, learning the structure of a graphical model repre-
senting data, i.e., structure learning, is an important computational
problem. In this paper we focus on the structure learning task for
chordal Markov networks (or chordal/triangulated Markov random
fields or decomposable graphs), a central class of undirected graphical
models [10, 41, 22, 20]. This problem, chordal Markov network struc-
ture learning (CMSL), is computationally challenging; e.g., finding a
maximum likelihood chordal Markov network with bounded structure
complexity (clique size) is known to be NP-hard [35]. In particular,
we consider the score-based setting, giving rise to a challenging com-
binatorial optimization problem, and focus on the challenge of scaling
up search for good quality chordal Markov network structures fast to
hundreds of variables.

Algorithms developed for CMSL can be categorized as in-exact
(or incomplete) approaches [24, 12, 29, 2, 26, 5, 34, 18, 13]
that are not guaranteed to find optimal solutions, and exact ap-
proaches [7, 14, 15, 3, 30] that, given enough resources, provide prov-
ably optimal solutions. While early work on algorithms for CMSL fo-
cused on in-exact approaches, more recently the development of prac-
tical exact algorithms for CMSL has received noticeably attention. Ex-
act approach are capable of finding chordal Markov network structures
that optimally fit the data in the score-based setting [9, 3, 14, 15, 30].
However, emphasizing the challenging nature of CMSL, the current
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state of the art in exact approaches does not generally scale up to more
than 20 variables. Furthermore, the sheer number of clique scores—
exponential in the number of variables—poses challenges even for
scaling up in-exact approaches.

In this paper, we provide new solutions to the challenge of scaling
up search for accurate chordal Markov network structures fast to
hundreds of variables. Standardly used structural restrictions—both
in the context of in-exact and exact approaches—for enabling search
over large number of nodes come in terms of enforcing treewidth
bounds [31, 18, 2, 5, 27, 4, 34, 33]. While a main motivation in
restricting the treewidth of networks to be learned by limiting the size
of cliques considered is in guarantees on the running time of exact
inference over the learned networks structures [8, 19], in practice for
large networks a significantly strong bound on the size of cliques needs
to be enforced in order to enable the computation of cliques scores,
which may severely limit the accuracy of the learned models. Here
we propose an alternative solution to this issue—avoiding enforcing
instance-inspecific structural restrictions—in the context of stochastic
local search.

In particular, we develop a stochastic local search (SLS) approach
to CMSL, making use of large neighbourhoods defined in terms
of various types of structural changes to chordal Markov network
structures. Furthermore, we propose on-the-fly score computation as
a means of breaking through the scalability barrier imposed by the
pre-computation of scores before the actual search for chordal Markov
network structures. On-the-fly score computation is especially suited
for SLS-style search, and allows for making early progress towards
accurate solutions from the start.

As evidence of the practical value of our approach, we show em-
pirically that using only a fraction of the running times of the exact
approaches, our SLS approach surprisingly provides optimal or very
close to optimal solutions for instances that are within the reach of
exact algorithms. Furthermore, the SLS approach together with on-
the-fly score computation allows for scaling search up to hundreds
of variables. In particular, with on-the-fly score computation only
scores needed during local search steps are computed, thereby allow-
ing search to proceed guided by search heuristics without instance-
inspecific structural restrictions typical to in-exact approaches.

The rest of this paper is organized as follows. After background on
CMSL and earlier algorithmic approaches to the problem (Section 2),
we turn to our main contributions, describing a new SLS approach
to CMSL (Section 3) and proposing, in conjunction with the SLS
approach, on-the-fly score computation as a means to scaling up to
hundreds of variables without need for pre-computing of the expo-
nentially many scores or imposing structural constraints on the search
space (Section 4). Results from an extensive empirical evaluation of
the approach are provided in Section 5.
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Figure 1. Different views on chordal Markov network structures: a) chordal undirected graph, b) clique tree, c) decomposable directed acyclic graph.

2 CHORDAL MARKOV NETWORK
STRUCTURE LEARNING

In this section, we will provide necessary background on the chordal
Markov network structure learning problem and shortly review earlier
developed algorithmic approaches for the problem.

2.1 CMSL

A Markov network structure is represented by an undirected graph
G = (V,E), where V = {v1, . . . , vn} is the set of vertices and E
the set of undirected edges. This structure represents independencies
vi ⊥⊥ vj |S according to the undirected separation property: vi and
vj are separated given set S if and only if all paths between them go
through a vertex in set S. The undirected graph is chordal iff every
(undirected) cycle of length greater than three contains a chord, i.e.,
an edge between two non-consecutive vertices in the cycle. Figure 1
a) shows an example.

Here we focus on the task of finding a chordal graph G that
maximizes posterior probability P (G|D) = P (D|G)P (G)/P (D),
where D denotes the i.i.d. data set. As we assume a uniform prior
over chordal graphs, this boils down to maximizing the marginal
likelihood P (D|G). Dawid et al. have shown that the marginal likeli-
hood P (D|G) for chordal Markov networks can be calculated using
a clique tree representation [10, 11]. A clique C is a fully connected
subset of vertices. A clique tree for an undirected graph G = (V,E)
is an undirected tree such that

I.
⋃
i Ci = V ,

II. if (v`, vk) ∈ E, then there is a Cj s.t. {v`, vk} ⊆ Cj , and
III. the running intersection property holds: whenever vk ∈ Ci and

vk ∈ Cj , then vk is also in every clique on the unique path between
Ci and Cj .

The separators are the intersections of adjacent cliques in a clique
tree. Figure 1 b) shows an example. The marginal likelihood factor-
izes according to the clique tree: P (D|G) =

∏
i P (Ci)/

∏
j P (Sj)

(assuming positivity and that the prior factorizes) [9]. The marginal
likelihood P (S) for a set S of random variables can be calculated
with suitable priors; in this paper we consider discrete data using a
Dirichlet prior. If we denote s(S) = logP (S), CMSL can be cast as
the following optimization problem:

max
G∈G

∑
Ci

s(Ci)−
∑
Sj

s(Sj),

where G denotes the class of chordal Markov networks, Ci and Sj
are the cliques and the separators of the graph G.

Example 2.1. The marginal log-likelihood of the graph in Figure 1 a)
can be calculated using the clique tree presentation in Figure 1 b)
as s({v1, v6}) + s({v1, v5}) + s({v1, v2, v3}) + s({, v2, v3, v4})−
s({v1})− s({v1})− s({v2, v3}).

By considering cliques of size at most k when solving CMSL
results in the structural restriction that the learned network structures
have treewidth at most k − 1.

2.2 Algorithmic Approaches to CSML
Before describing our SLS approach to CSML, we overview earlier
developments in algorithm approaches to the problem. Beyond trees
studied by Chow and Liu [7], both in-exact and exact learning of
chordal Markov networks structure have been considered.

The literature on in-exact approaches has focused in particular on
networks with a hard bound on the treewidth in order to facilitate
fast exact inference. Early approaches considered e.g. greedy proce-
dures [24, 12]. Della Pietra et al. and Bach et al. developed iterative
scaling approaches [29, 2]. Narasimhan et al. and Chechetka et al.
considered PAC-learning in this context [26, 5], Shahaf et al. used
Bethe approximation and graph cuts [34]. Kumar et al. provided a
convex relaxation [18]. Several works have also examined minor
variations of the graphical model class [17, 28, 37]. Beyond hard
treewidth bounds, Gogate et al. proposed learning high-treewidth
chordal Markov networks based on mutual information and showed
that by using context-specific independence and determinism tractable
exact inference is possible even with higher treewidths [13].

For solving CMSL exactly, Janhunen et al. proposed a constraint
satisfaction approach [14]. The exact dynamic programming approach
of Kangas et al. (Junctor) scales up considerably better, to 17 variables
[15, 16]. The state-of-the-art exact Bayesian network learning system
(GOBNILP) based on integer linear programming can learn also
chordal Markov networks if the treewidth is restricted [3, 36]. The
branch and bound approach of Rantanen et al. (BBMarkov) can find
provably optimal solutions for some 20 variable instances [30].

We will next describe a simple yet effective stochastic local search
approach to CSML. As we will show through extensive comparisons
against the exact methods, the approach can learn optimal or close to
optimal networks without hard treewidth bounds that might end up
jeopardizing the quality of the learned models.

3 STOCHASTIC LOCAL SEARCH FOR CMSL
In this section we describe our stochastic local search for learning
chordal Markov networks.

3.1 Search Over Undirected Graphs
Our search uses undirected graphs as solution candidates.

We begin by explaining the standard method that we use to com-
pute the score of an undirected graph G = (V,E) and to verify its
chordality. First, we determine the lexicographic ordering of G using
a breadth-first search [32]. The algorithm works by keeping a track of
a collection Σ that partitions the vertices V . Starting with Σ = {V },
the algorithm repeatably selects the lexicographically least vertex
v ∈ V from the first partition of Σ, removes it from the partition, and
then splits each set S ∈ Σ into two new partitions; one containing the



neighbours of v in S and the other containing non-neighbours of v in
S. The partition with the neighbours is placed prior to the other one in
Σ, and any empty sets resulting from this process are removed. Once
Σ is empty, then the order in which we chose vertices in the algorithm
is the lexicographic ordering of G.

Example 3.1. Consider the graph shown in Figure 1 a). We can apply
the lexicographic breadth-first search [32] in the following way.
(1.) Start with Σ = {{v1, v2, v3, v4, v5, v6}} and we pick node v1.
(2.) Now Σ = {{v2, v3, v5, v6}, {v4}} and we pick node v2.
(3.) Now Σ = {{v3}, {v5, v6}, {v4}} and we pick node v3.
(4.) Now Σ = {{v5, v6}, {v4}} and we pick the node v5.
(5.) Now Σ = {{v6}, {v4}} and we pick v6, and finally v4.
The final lexicographic ordering is v1, v2, v3, v5, v6, v4.

The lexicographic ordering corresponds to orienting the edges of
G. Let σi be the position of vi ∈ V in the lexicographic ordering.
For each vertex vi ∈ V , have its parent set pa(vi) contain exactly the
neighbours of vi in G that occur prior to it in the ordering. That is,
pa(vi) = {vj : vj ∈ V, {vi, vj} ∈ E, σj < σi}.

Example 3.2. Consider Figure 1a) again. We can orient the edges
using the lexicographic ordering obtained in the previous example
(v1, v2, v3, v5, v6, v4). We get the (decomposable) DAG shown in
Figure 1 c) where edges are oriented according to the ordering.

The undirected graph is chordal if and only if for all v ∈ V
we either have pa(v) = ∅ or pa(v) \ {w} ⊆ pa(w) where w
is the closest parent of v in the lexicographic ordering; i.e., w =
arg maxvi∈pa(v)σi. The score of G is obtained simply by summing
up scores for each vertex in the corresponding (decomposable) DAG:

n∑
i=1

s(pa(vi) ∪ {vi})− s(pa(vi)).

3.2 Local Search for CMSL
The overall structure of the search is outlined in Algorithm 1. At
every search step, we keep track of two feasible solutions G and G∗.
G∗ is the incumbent highest-scoring solution that has been found
so far during the search. The algorithm traverses through the search
space by moving from a current solution G to another solution in
the neighbourhood of G (as detailed in Section 3.3). Furthermore,
the search is subjected to restarts using a tailored restart schedule (as
detailed in Section 3.4).

The search starts by initializing G and G∗ to an initial solution
on line 2. On line 3, we enter the optimization loop which lasts until
some given criteria for stopping is satisfied (if any). On line 4, we
update the incumbent best solution G∗ if the score of G exceeds that
of G∗. Then, on line 6 we check whether the search has progressed
recently (as detailed in Section 3.4). If it has (line 9), we continue the
search by setting G to be one of its best stochastic neighbours chosen
at random (Section 3.3). Otherwise (line 7), we restart the search by
setting G into some randomly generated solution.

3.3 Local Search Neighbourhoods
A neighbourhood N = {G1, . . . , Gm} is a set of undirected graphs
that are obtained by performing neighbourhood operations on a cur-
rent solution (chordal undirected graph) G. Our SLS method employs
substantially large neighbourhoods based on three types of structural
changes targeted at cliques, nodes, and edges. (We will later show

empirically that this combination gives substantial improvements
compared to using subsets of the three types of operations.)

We will define the neighbourhood operations using C, the set of
maximal cliques of G. This is because the maximal cliques uniquely
identify a chordal graph, and any set of cliques (not necessarily maxi-
mal) can be unambigously interpreted as an undirected graph.

Clique-specific neighbourhood NC(G,C) where C ∈ C: For all
v ∈ V , let Gv ∈ N(G,C). If v ∈ C, then Gv is formed from G
by deleting all edges from v to nodes in C \ {v}; otherwise, Gv is
formed from G by adding edges from v to every node in C.

Example 3.3. Consider the graph in Figure 1 a) as G. One of
its maximal cliques is C = {v2, v3, v4}. The clique-specific
neighbourhood for C contains all the undirected chordal graphs
based on G where one vertex is either added to C or re-
moved from C. Hence C can take the following modified forms:
{v2, v3}, {v3, v4}, {v2, v4}, {v2, v3, v4, v1}. The neighbours where
C is {v2, v3, v4, v5} or {v2, v3, v4, v6} are excluded since the corre-
sponding graphs would not be chordal.

Node-specific neighbourhood NV (G, v) where v ∈ V : For all
C ∈ C, let GC ∈ N(G, v). If v ∈ C, then GC is formed from G
by deleting all edges from v to nodes in C \ {v}; otherwise, GC is
formed from G by adding edges from v to every node in C.

Example 3.4. Consider the graph in Figure 1 a) as G. The node-
specific neighbourhood for v4 contains all the undirected chordal
graphs based on G where v4 is either added to a maximal clique in G
or removed from a maximal clique inG. This gives us two neighbours.
First, v4 is added to {v1, v2, v3}. The neighbour contains a clique
{v1, v2, v3, v4} instead of {v1, v2, v3} and {v2, v3, v4}. Second, v4
is removed from {v2, v3, v4}. The neighbour contains the cliques
{v4} and {v2, v3} instead of {v2, v3, v4}.The neighbours where v4
is added to {v1, v5} or {v1, v6} are excluded since the corresponding
graphs would not be chordal.

Edge-specific neighbourhood NE(G, v) where v ∈ V : For allw ∈
V with w 6= v, let Gw ∈ NE(G, v). If (v, w) ∈ E, then Gw is
formed from G by deleting the edge (v, w); otherwise, Gw is
formed from G by adding the edge (v, w).

Example 3.5. Consider the graph in Figure 1 a) as G. The edge-
specific neighbourhood relative to node v3 contains all the undirected
chordal graphs based on G where an edge is added between v3 and
another vertex or an edge is removed between v3 and another vertex.
The possible edges to be added are (v3, v5) and (v3, v6). The possible
edges to be removed are (v3, v1) and (v3, v4). The neighbour with
the edge (v2, v3) removed is excluded since it is not chordal.

Algorithm 1 The core structure of the local search
1: function SEARCH(variables V , score function s)
2: G,G∗ ← INITIALSOLUTION

3: while a stopping criteria is not met do
4: if s(G∗) < s(G) then
5: Update G∗ ← G

6: if no recent progress then
7: G← RANDOMFEASIBLESOLUTION()
8: else
9: G← BESTSTOCHASTICNEIGHBOUR(G)



Given a solution G, we construct a stochastic neighbourhood in
the following way. Let v ∈ V be a randomly chosen node and let
C be a randomly chosen maximal clique in G. Then our stochastic
neighbourhood is

NG = NC(G, v) ∪NV (G,C) ∪NE(G, v).

Moreover, let FG be a subset ofNG containing only feasible (chordal)
solutions. Then we can define BESTSTOCHASTICNEIGHBOUR(G)
on line 9 of Algorithm 1 to return a random element from the set

arg maxG′∈FG
s(G′).

3.4 Restart Schedules and Initial Solutions
A well-known general issue with stochastic local search is that the
search can get stuck into specific areas of the search space around local
optima without finding further better solutions. Here we propose an
adaptive restart schedule in the context of our CMSL SLS approach.
We keep track of an additional solution Ĝ which stores the best
solution found after the last (re)start. Similarly to G∗, we update
Ĝ ← G whenever s(Ĝ) < s(G). Then, if the search spends more
than a predetermined number of iterations T without improving Ĝ, we
restart the search by initializing G into some random feasible solution
and resetting Ĝ← G. In other words, we postpone restarting as long
as the search makes progress towards better solutions. A larger number
of iterations between restarts can result in better solutions per restart,
but on the other hand a good randomly generated G can potentially
lead to even better solutions. With this intuition, our goal is to achieve
a good balance between the number of restarts (exploring the global
search space) and the number of iterations between restarts (exploring
the local search spaces from the generated starting positions).

To obtain the first initial solution in the beginning of Algorithm 1
on Line 2, G and G∗ can be initialized to an optimal chordal Markov
network structure of treewidth at most one. This is achieved in low
polynomial time using the classical Chow-Liu algorithm [7].

We generate a random new solution to start from at each restart
as follows. First, we construct a list containing all the nodes V and
shuffle it into a random order. Then, the maximal cliques of the new
solution are formed by partitioning the shuffled list into consecutive
disjoint sets with random sizes from one to three. Since the cliques
are disjoint, the chordality of the graph is guaranteed. We limit the
maximum size of the randomly generated cliques here to avoid score
computation for overly large cliques, see Section 4.

4 ON-THE-FLY SCORE COMPUTATION
Pre-computation of all clique scores—even of limited size, resulting
in learning bounded-treewidth chordal Markov networks—is a no-
ticeable obstacle for scaling up CMSL algorithm to larger networks

Algorithm 2 A recursive procedure for computing a score for a clique
1: function COMPUTESCORE(data D, clique C = {v1, . . . , vn},

depth i, equivalent sample size α)
2: if i > |C| then return 0
3: s← log Γ( α

qi
)− log Γ(|D|+ α

qi
)

4: for k ∈ {1, . . . , ri} do
5: Dk ← all the samples of D where vi takes its kth value
6: s← s+ log Γ(|Dk|+ α

ri·qi
)− log Γ( α

ri·qi
)

7: if Dk 6= ∅ then
8: s← s+ COMPUTESCORE(Dk, C, i+ 1, α)

return s

(with hundreds of variables). Regardless of the efficiency of the search
algorithm, pre-computation of clique scores dominates runtimes, and
even worse, with hundreds of variables simply storing all clique scores
surpasses reasonable memory requirements. As a solution to this fun-
damental issue, we propose an approach to computing clique scores
on-the-fly during search, building on score computation strategies
in other contexts [38, 6]. This is particularly suitable in the context
of stochastic local search, where search progresses with local moves
towards better solutions, hence allowing us to completely avoid com-
puting many of the less important clique scores.

Let C = {v1, . . . , vn} be a clique and let ri be the arity (number
of unique values) of each vi ∈ C in data D. The BDeu score for C is
obtained with

s(C) =

n∑
i=1

qi∑
j=1

log Γ

(
α

qi

)
− log Γ

(
ri∑
k=1

Ni,j,k +
α

qi

)

+

ri∑
k=1

log Γ

(
Ni,j,k +

α

ri · qi

)
− log Γ

(
α

ri · qi

)
,

(1)

where qi = r1 · r2 · · · ri−1, integer Ni,j,k is the number of samples
in D in which vi takes its kth value and the variables v1, . . . , vi−1

take their jth configuration and α is the prior parameter (equivalent
sample size) for BDeu scoring.

The score computation is detailed in Algorithm 2 as an adaptation
of the DMScore approach of Kangas et al. [16]. At its core this is a
slightly simplified version of the AD-tree algorithm commonly used
for computing local scores for structure learning tasks [25]. Instead
of constructing an explicit tree structure to store information in, an
implicit tree is constructed recursively and certain optimizations such
as the subtraction trick are omitted.

In Algorithm 2, the data D consists of the set of samples from
the given CSV file and hence |D| is the sample count. The recursion
depth i determines which variable vi to process next. For computing
the BDeu score for clique C with a chosen equivalent sample size
α, one would call the procedure with COMPUTESCORE(D,C, 1, α).
The algorithm works by recursively partitioning the data D according
to what values the samples give to the variables vi on each step. Then
the sizes of the partitioned datasets automatically yield the required
Ni,j,k counts for each step. Importantly, for limited data set sizes, the
sample size of Dk becomes very low or even zero (Line 7) after only
a few recursion calls, making Algorithm 2 efficient in this context.

In order to avoid recomputing same clique scores repeatedly, we
cache the scores of already-computed cliques in memory. Thus when-
ever COMPUTESCORE is called with same arguments as earlier in the
search, we simply fetch the corresponding score from the cache.

For very large cliques the qi values in Equation 1 can get very large,
to the extent that computing the score for a clique becomes difficult
using standard fixed-size datatypes. We circumvent this problem in
the following way: If a graph has a clique for which some qi would
become too large, then we declare the score of that graph to be −∞.

5 EMPIRICAL EVALUATION
We proceed with an in-depth empirical evaluation of the effectiveness
of our SLS approach and on-the-fly score computation on CMSL
instances obtained from real-world datasets, focusing on three points
of views.

(i) We compare our SLS approach to recently proposed state-of-the-
art exact algorithms for CMSL. The results show that our SLS
approach consistently finds optimal or close to optimal solutions



Table 1. Comparsion of lsmarkov to the exact approaches with n = 17. Highest scores and among those the shortest times are in bold.

lsmarkov Junctor BBMarkov
Name n Score Time (s) Score Time (s) Score Time (s)
autos 17 -1127.9 264 -1127.9 2508 -1191.3 3313
water10000 17 -97079.6 13 -97079.6 2183 -97649.0 48
insurance10000 17 -100757.3 501 -100757.3 2691 -102030.4 71
steel 17 -12960.2 310 -12960.2 1875 -13226.3 2950
horse 17 -3013.4 0 -3013.4 2091 -3046.6 139
flag 17 -1893.3 1 -1893.3 2474 -1975.7 401
Epigenetics 17 -100284.8 514 -100284.8 1925 -102275.6 2255
wdbc 17 -3954.5 14 -3954.5 2031 -4079.4 1513
mildew10000 17 -190359.0 0 -190359.0 2837 -190371.5 1603
soybean 17 -2252.0 6 -2252.0 1939 -2397.0 165
alarm10000 17 -38843.1 1 -38843.1 2505 -38869.2 39
bands 17 -1797.0 96 -1797.0 2534 -1928.8 13
connect-4 17 -488636.3 450 -488636.3 2742 -496106.1 88
spectf 17 -3022.6 1 -3022.6 2383 -3039.3 2279
sponge 17 -569.2 612 -569.2 1920 -578.2 1621
barley5000 17 -84468.7 433 -84468.7 2016 -93463.9 1876
hailfinder10000 17 -162384.4 0 -162384.4 2623 -164114.2 132
lung-cancer 17 -481.2 16 -481.2 1870 -490.3 2310
promoters 17 -2362.0 0 -2362.0 1862 -2407.1 2826
carpo10000 17 -35271.6 3 -35271.6 1983 -35281.5 21
kddcup 17 -15854.9 87 -15854.6 2266 -16000.3 2709
dota2 17 -121215.4 0 -121215.4 2468 -121215.4 68
msweb 17 -14703.9 82 -14703.9 1797 -14778.5 3568

in a fraction of the runtimes of exact approaches on instances in
reach of the exact approaches (similarly as [21] for BNs).

(ii) We compare the proposed on-the-fly score computation to the more
standard approach of pre-computing a restricted subset of clique
scores. The results show that on-the-fly score computation results
in better solutions faster without needing to restrict the considered
cliques before search, scaling up to hundreds of variables.

(iii) We evaluate the marginal contributions of the three types of neigh-
bourhoods employed in our SLS approach on the effectiveness of
the approach.

We implemented the SLS approach in C++, and refer to this pro-
totype as lsmarkov. The implementation is available in open source
online. Regarding the restart schedule (Section 3.4), our implemen-
tation uses T = 1000. That is, the search is restarted whenever
thousand iterations have passed by without improvements to the cur-
rent incumbent solution Ĝ. We computed the input clique scores using
the DMScore program [16], apart from GOBNILP and lsmarkov. The
score computation times are included in all presented results. For the
evaluation, we used a total of 23 real-world datasets used as standard
benchmarks for exact approaches [23, 39, 3]. For computing clique
scores, we used the BDeu score with equivalent sample size 10. The
experiments were run under Debian GNU/Linux on 2.83-GHz Intel
Xeon E5440 nodes with 32-GB RAM.

5.1 Comparison with Exact Approaches
In terms of state-of-the-art exact approaches, we will compare the
performance of lsmarkov with those of GOBNILP [3] (version 1.6.3,
using SoPlex 2.2.0 as the internal IP solver) implementing an integer
programming branch-and-cut approach to CMSL; Junctor [15], imple-
menting a state-of-the-art DP approach to CMSL; and BBMarkov [30],
a recent branch-and-bound approach to CMSL. (While in-exact ap-
proaches to CMSL have been previously proposed [18, 34, 5, 17],

we note that despite our efforts we were unable to obtain imple-
mentations of these approaches for comparison.) Differentiating the
exact approaches, GOBNILP and BBMarkov can report improving
solutions during search already before outputting a provably optimal
solution, unlike Junctor. We will report on the costs of best solutions
found by the approaches with a per-instance time limit of 1 hour.

We first compare the quality of solutions (in terms of the scores
of networks found) obtained with lsmarkov with the scores of those
obtained with the exact approaches Junctor and BBMarkov without
bounding treewidth of the learned networks. (We do not report re-
sults for GOBNILP for this comparison as it could not provide any
solutions.) For this comparison, we restricted the number of variables
considered in the datasets to n = 17 based on the fact that the running
times for finding provably optimal solutions for the best-performing
exact approaches tend to be around 30-60 minutes on instances with
n = 17. The results are shown in Table 1. We observe that apart
from one exception lsmarkov in fact produced solutions with the same
cost (up to numerical precision) as Junctor, i.e., lsmarkov was able to
find an optimal solution for almost every instance. At the same time,
lsmarkov uses consistently less time (using only up to 10 minutes) for
finding an optimal solution than Junctor. BBMarkov in most cases is
unable to find an optimal solution within the 1-hour time limit.

A way of scaling up GOBNILP and BBMarkov to some extent to
instances with higher number of nodes n is to considerably limit the
size of cliques for which scores are considered, thereby restricting the
search space to networks with low treewidth. Taking into account all
variables in each of the datasets, Table 2 provides a comparison of
lsmarkov (without limiting the size of cliques considered), GOBNILP
with clique-size bound 3, and BBMarkov with clique-size bounds 3
and 5. GOBNILP was unable to provide any solutions on clique-size
bound 5, and Junctor ran out of memory on all instances for both of
the clique-size bounds. We observe that GOBNILP is unable to prove
any solutions for instances with n > 60 even with cliques-size bound



Table 2. Comparison of lsmarkov to the exact approaches without limiting n. Here lsmarkov was ran without treewidth bound while the other algorithms were
tested enforcing clique size (cs) ≤3 and ≤5. Highest scores and among those the shortest time are in bold.

lsmarkov GOBNILP cs ≤ 3 BBMarkov cs ≤ 3 BBMarkov cs ≤ 5

Name n Score Time (s) Score Time (s) Score Time (s) Score Time (s)
autos 26 -1513.2 100 -1641.8 73 -1866.7 17 -1921.7 21
water10000 26 -128910.9 769 -128909.2 17 -130327.0 18 -130560.5 31
insurance10000 27 -134175.5 290 -134701.2 92 -159329.4 34 -159329.4 55
steel 28 -18604.4 425 -19908.1 561 No - No -
horse 28 -4503.0 513 -4511.9 19 No - No -
flag 29 -2720.0 339 -2747.8 47 No - No -
Epigenetics 30 -177782.8 854 -188915.2 230 No - No -
wdbc 31 -6654.7 602 -6771.5 1762 No - No -
mildew10000 35 -454360.8 545 -454312.8 133 No - No -
soybean 36 -2932.2 715 -3332.8 1354 No - No -
alarm10000 37 -105155.3 408 -105424.7 378 No - No -
bands 39 -5099.6 350 -5145.1 293 No - No -
connect-4 43 -1008451.1 171 -1043546.0 573 No - No -
spectf 45 -8055.0 355 -8047.4 3067 No - No -
sponge 45 -1788.1 89 -1813.1 4264 No - No -
barley5000 48 -266863.3 537 -269916.7 1032 No - No -
hailfinder10000 56 -497216.1 758 -497784.1 9134 No - No -
lung-cancer 57 -1248.9 262 -1366.2 8024 No - No -
promoters 58 -8326.5 3 -8326.5 1693 No - No -
carpo10000 60 -173880.7 765 -176671.8 9344 No - No -
kddcup 60 -72971.4 207 No - No - No -
dota2 115 -442078.8 20 No - No - No -
msweb 235 -51596.0 881 No - No - No -

3, and BBMarkov is unable to provide any solutions for n ≥ 28. On
the other hand, lsmarkov, using on-the-fly score computation and a
per-instance time limit of 15 minutes, can find on a majority of the
instances better solutions than GOBNILP (as at least as good solutions
on all instances).
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Figure 2. Impact of neighbourhoods on lsmarkov w.r.t. the average objective,
i.e., the sum of the best scores during lsmarkov search at different time points
divided by the number of instances (23), and the numbers of variables and
samples in each instance. The plot starts at 4 seconds as the earliest point when
a score has been obtained for every instance.

5.2 Impact of Neighbourhoods
Next, we investigate the importance of the three different types of
neighbourhoods (recall Section 3.3) on the performance of lsmarkov.
As a baseline, we also consider a simplistic greedy version, using
a brute-force greedy edge-specific neighbourhood, selecting at each
step of the search a random element from

arg maxG′∈
⋃

v∈V NE(G,v) s(G
′).

That is, the greedy neighbourhood consists of the highest-scoring
solutions that can be obtained by performing a single edge addition or
removal from a given graph G. When using a greedy neighbourhood
instead of a stochastic one, the score of G can only get worse after
the search has reached a local optimum. Improving on the naive
greedy approach, we include also restarts in this baseline: a restart
is performed every time the score of G is worse than at the previous
iteration. Moreover, also in the case of this greedy baseline search,
we still ensure at all times that the resulting graphs are chordal.

Figure 2 shows a comparison of all possible combinations of the
edge-specific (E), node-specific (V) and clique-specific (C) neigh-
bourhoods in terms of the average score obtained from solving each
of the 23 instances up to a given point of time using each of the
combined neighbourhoods, with the greedy neighbourhood strategy
as a baseline. We observe that the combination CVE of all of the three
neighbourhoods clearly outperforms the greedy neighbourhood. The
edge-specific neighbourhood has the greatest marginal contribution.
However, both C and V provide additional orthogonal performance
gains, as well. Furthermore, Figure 3 shows that the performance
variation due to stochasticity does not overweight the observed perfor-
mance differences due to using different neighbourhoods: the variation
in the performance of CVE under seven different seeds to the random
number generator is low with respect to the reference E.
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Figure 3. Variation in the performance of lsmarkov under different seeds
to the random number generator when employing the CVE neighbourhood
strategy, in comparison to the reference E neighbourhood strategy.

5.3 Impact of On-the-Fly Score Computation

Finally, we investigate the impact of score computation strategy. For
this, we compare lsmarkov with on-the-fly score computation to ls-
markov with pre-computation of scores under low treewidth bounds.

The results are shown in Table 3. We observe that on a majority
of the instances, employing on-the-fly score computation results in
finding better models than by enforcing the strict, instance-inspecific
structural bounds. Furthermore, on-the-fly score computation allows
for scaling up to hundreds of variables while allowing the search
itself guide the score computations as needed towards better solu-
tions. Even a slight increase in the treewidth bound results in score
precomputation to time out. As shown in Figure 4, we also observe
that the number of scores needed to compute on-the-fly during search
is indeed quite small even compared to the number of precomputed
scores under low treewidth bounds.

The time spent in on-the-fly score computation depends, in ad-
dition to the number of variables, on the sample size used. On the
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Figure 4. Number of clique scores computed by lsmarkov with on-the-fly
score computation during search for the instances in Table 2 sorted wrt number
of variables, with the total number of clique scores up to a clique size (3, 4, 5)
for comparison.

benchmarks in Table 3 time spent in on-the-fly score computation was
around 6% of the 15-min per-instance time limit (and around 11% of
the time it took for lsmarkov to find the best solution).

6 CONCLUSIONS
We presented a simple yet well-performing stochastic local search
approach to learning chordal Markov networks structures that scales
towards hundreds of variables. Applying large neighbourhoods based
on multiple types of structural changes, an adaptive restart schedule,
and on-the-fly score computation, we showed that the approach pro-
vides essentially optimal solutions for network sizes that are within
the reach of current state-of-the-art exact algorithms for the prob-
lem. Furthermore, on-the-fly score computation allows for computing
scores only as needed during the local search steps. This results in
obtaining good solutions without needing to enforce strong treewidth
bounds typical to in-exact approaches.
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