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Abstract

Understanding causal relationships is a central challenge in many research en-
deavours. Recent research has shown the importance of accounting for feedback
(cycles) and latent confounding variables, as they are prominently present in
many data analysis settings. However, allowing for cycles and latent confounders
makes the structure learning task especially challenging. The constraint-based
approach is able to learn causal graphs even over such general search spaces, but
to obtain high accuracy, the conflicting (in)dependence information in sample
data need to be resolved optimally. In this work, we develop a new practical
algorithmic approach to solve this computationally challenging combinatorial
optimization problem. While recent advances in exact algorithmic approaches
for constraint-based causal discovery build upon off-the-shelf declarative opti-
mization solvers, we propose a first specialized branch-and-bound style exact
search algorithm. Our problem-oriented approach enables directly incorporat-
ing domain knowledge for developing a wider range of specialized search tech-
niques for the problem, including problem-specific propagators and reasoning
rules, and branching heuristics together with linear programming based bound-
ing techniques, as well as directly incorporating different constraints on the
search space, such as sparsity and acyclicity constraints. We empirically eval-
uate our implementation of the approach, showing that it outperforms current
state of art in exact constraint-based causal discovery on real-world instances.
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1. Introduction1

Discovering causal relations from sample data when allowing for latent con-2

founding variables and feedback (that is, cycles) is a very challenging task in the3

field of graphical models and structure discovery. Although many features of4

causal structures can in principle be determined even from passive observation5

(Pearl, 2000; Spirtes et al., 2000), determining which structural features can be6

identified from finite sample data has proven difficult.7

For general search spaces (allowing latent confounders and/or cycles), the8

constraint-based causal discovery approach is still applicable (Spirtes et al.,9

2000; Pearl, 2000). Constraint-based learning algorithms combine (in)dependence10

constraints from statistical tests to find determined features of the underlying11

causal graph structure. However, most of such approaches, including the classi-12

cal PC, CCD and FCI algorithms, scale up in terms of number of variables by13

selecting independence tests based on earlier test results (Spirtes et al., 2000;14

Richardson, 1996a). Such greedy strategies can lead to non-optimal accuracy15

in practice, as early mistakes in independence testing guide search towards in-16

accurate solutions (Claassen and Heskes, 2012; Hyttinen et al., 2014).17

On the other hand, for restricted settings without latent confounders and18

cycles, that is, for Bayesian networks, exact score-based structure discovery al-19

gorithms have been developed (Yuan and Malone, 2013; Bartlett and Cussens,20

2017; van Beek and Hoffmann, 2015). A central motivation in developing effi-21

cient exact algorithms is that they output a guaranteed optimal solution without22

making compromises or approximations in their computation. Such provably23

globally optimal graphs have been shown to exhibit better accuracy (Malone24

et al., 2015). However, much less progress has been made for exact discovery25

algorithms for more general search spaces that allow for latent confounders and26

cycles.27

In the context of constraint-based discovery, it has been shown that better28

accuracy can be obtained when a predetermined, large set of tests are conducted29

before the actual search, and then, conflicting test results are resolved in an op-30

timal way via exact methods (Hyttinen et al., 2014; Magliacane et al., 2016;31

Borboudakis and Tsamardinos, 2016). However, the general search space with32

latent confounders and cycles induces a combinatorial optimization problem over33

a drastically larger search space compared to more restricted settings such as34

Bayesian network structures (DAGs). Furthermore, the objective functions con-35

sidered are computationally more complicated to evaluate. Thus improvements36

to (exact) algorithms for the more general search spaces in terms of running time37

performance and scalability without trading off accuracy is a major challenge.38

In this work, we take on the challenge of improving the scalability of practical39

exact algorithms for the general search space of causal graph allowing for latent40

confounding variables and cycles. Recently, there has been noticeable interest41

in developing algorithmic solutions to this general problem setting and its vari-42

ants (Triantafillou et al., 2010; Triantafilou et al., 2010; Hyttinen et al., 2013,43

2014; Magliacane et al., 2016; Borboudakis and Tsamardinos, 2016; Zhalama44

et al., 2017; Hyttinen et al., 2017a). The first exact approach to the problem45
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we focus on here was proposed in (Hyttinen et al., 2014), based on declaratively46

encoding the underlying optimization task as answer set programming (ASP)47

and applying an ASP solver to obtain provably optimal solutions to the prob-48

lem. This approach was further refined as a maximum satisfiability (MaxSAT)49

based approach in (Hyttinen et al., 2017b), where domain-specific techniques50

were integrated to the extent possible to a MaxSAT solver, relying on a MaxSAT51

solver to solve the search problem starting with a declarative encoding of the52

problem. This resulted in the Dseptor system which currently represents the53

state of the art in terms of running time performance for the problem at hand.54

All in all, this line of work has so far focused on using declarative solving tech-55

niques, relying in terms of efficiency on generic off-the-shelf declarative methods56

such as Boolean satisfiability (SAT) (Biere et al., 2009) solvers and their exten-57

sions to Boolean optimization. While declarative methods offer flexibility and58

remove implementation-level burden of developing optimized search algorithms59

for the underlying combinatorial optimization tasks, in this work we explore the60

alternative of developing domain-specific search algorithms instead of directly61

relying on declarative solver to perform the search.62

In this paper we propose a first specialized branch-and-bound style exact63

search algorithm for optimal causal graphs, allowing the presence of both cy-64

cles and latent confounding variables. Our problem-oriented view enables di-65

rectly incorporating domain knowledge for a wider range of specialized search66

techniques, including problem-specific propagators, branching heuristics, and67

bounding techniques, as well as directly incorporating restrictions on the search68

space, such as sparsity and acyclicity constraints. In particular, we develop a69

branch-and-bound approach to directly search over the general search space,70

together with several different performance-improving search techniques. These71

include (i) a problem-specific branching heuristic, (ii) lower bounding techniques72

applicable during search based on problem-specific unsatisfiable cores and lin-73

ear programming relaxations, (iii) optimized algorithms for evaluating the ob-74

jective function of the problem—over exponentially many independence and75

dependence constraints—during search under partial solutions, and (iv) infer-76

ence rules—with correctness proofs—for detecting which edges are irrelevant77

in terms of d-connectivity under a current partial solution. We provide an78

open-source implementation bcause of the approach, and empirically evaluate79

its performance on problem instances obtained from real-world datasets from80

several perspectives: (i) the marginal contribution of the different proposed81

search techniques, (ii) the impact of the scoring function used for obtaining82

constraint weights on the efficiency of the approach, and (iii) the efficiency of83

the approach with respect to current state of the art. In particular, we show84

that the proposed approach compares favourably with current state of the art85

in exact constraint-based causal discovery on real-world data sets with respect86

to running time performance.87

This article considerably extends a preliminary version published at the88

PGM 2018 conference (Rantanen et al., 2018). In particular, in this article89

we describe more effective, earlier unpublished techniques for efficient evalua-90

tion of the objective function and formalize further inference rules which allow91
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for disregarding undecided edges under partial solutions during search, thereby92

further speeding up the overall search for an optimal causal graph. We have93

now implemented these new techniques in a new release version of the bcause94

system. Empirical results presented here have been obtained using this new ver-95

sion; compared to the version presented at PGM 2018, the additional techniques96

presented in this article have resulted in non-negligle running time improvements97

(obtaining up to 10x speed-up and 2x average speed-up) over the version of the98

system presented at PGM 2018. We have also considerably extended the em-99

pirical evaluation of the approach with earlier unpublished results: we present100

empirical data on the marginal contributions of the various search techniques101

implemented in bcause to the overall efficiency of the approach in practice, as102

well as a running time comparison with the earlier state-of-the-art Dseptor sys-103

tem (Hyttinen et al., 2017b). In addition to these new technical contributions,104

we have considerably extended the discussion and included various examples for105

improved readability and self-containment.106

The rest of this article is organized as follows. We begin by detailing the nec-107

essary background on causal discovery, including causal graphs with latent vari-108

ables and cycles, the combinatorial optimization task of finding optimal causal109

graph, and approaches for obtaining well-defined objective function coefficients110

in terms of weights on the independence and dependence constraints (Section 2).111

We then continue with detailing the proposed branch-and-bound approach to112

optimal causal graphs and several efficiency-improving search techniques for the113

approach (Section 3). We present results from an extensive empirical evaluation114

of the approach in Section 4). Before conclusions, we discuss the connections of115

our contributions to related work (Section 5).116

2. Constraint-based Causal Discovery117

In this section we give necessary background on causal graphs and the exact118

problem definition for the structure discovery task we consider in this work.119

2.1. Causal Graphs120

Causal structure can be represented by directed graphs where directed edges121

denote causal relations and nodes correspond to random variables for different122

measurements (Pearl, 2000; Spirtes et al., 2000). Although graphs are sometimes123

restricted to be acyclic, here we allow for directed cycles to be able to represent124

feedback (Spirtes, 1995; Richardson, 1996a,b).125

In most analysis situations, we are not able to observe all relevant variables126

or all background factors. Fortunately, the use of bi-directed edges allow for127

a canonical representation of causal structures as a graph over the observed128

variables (Pearl, 2000; Spirtes et al., 2000). A bidirected edge X ↔ Z represents129

a latent confounder, e.g. structure X ← L → Z, where L is an unmeasured130

common cause of two observed variables X and Z. This prompts us to use the131

following graphs to represent causal structures.132
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Definition 1 (Causal graphs). A causal graph is a pair G = (V, E) with set of133

nodes V, where the edge relation E = E→ ∪ E↔ is composed of directed edges134

E→ ⊆ V × V and (symmetric) bi-directed edges E↔ ⊆ {{X,Y } : X,Y ∈ V}.135

The class of causal graphs is denoted by G. Note that when the directed edges136

are not allowed to form cycles, causal graphs are semi-Markovian graphs (Pearl,137

2000). Importantly, in both cases causal graphs are closed under marginaliza-138

tion.139

The central reachability criterion for causal graphs is the following d-separation140

(Pearl, 2000). We follow here the definition of Studený (1998) which has been141

shown to be equivalent to Pearl’s standard definition.142

Definition 2 (d-separation). Two nodes X and Y in a causal graph G = (V, E)143

are d-connected given a conditioning set C ⊆ V \ {X,Y } if there is at least one144

d-connecting walk between them; otherwise they are d-separated. A walk is a145

sequence of edges in the graph (allowing for repeated edges and nodes). A node146

is a collider on a walk if both its adjacent edges on the walk have an arrow147

head into the node. A walk is d-connecting given a conditioning set C if every148

collider on the walk is in C and no other nodes on the walk are in C.149

Example 1. The causal structure in Figure 1 a) with unobserved L can be150

canonically represented by the causal graph in Figure 1 b). In the structure of151

Figure 1 a), X and W are d-connected given Y by X ← L → Z → Y ← Z ←152

T ← W . In the corresponding canonical representation in Figure 1 b), X and153

W are d-connected given Y by X ↔ Z → Y ← Z ← T ← W . In the causal154

graph in Figure 1 b) nodes Y and Q are d-separated given W as all walks between155

violate the d-connection criterion at node X.156

Self-loops X → X do not affect d-connectivity of the graph: for any d-157

connecting walk through X → X there is a shorter walk that skips the arc X →158

X. Thus, self-loops are inherently unidentifiable here; they are unidentifiable159

also in other settings (Lacerda et al., 2008; Hyttinen et al., 2012). Without160

loss of generality, we do not consider self-loops through the rest of this article.161

Similarly, without loss of generality we do not consider arcs X ↔ X. We162

emphasize that any X → X or X ↔ X may be present in the true structure163

regardless of the result of the algorithmic approach developed in this article.164

2.2. Statistical Dependence & Reachability in Graphs165

Under the commonly used causal Markov assumption (Spirtes et al., 2000),166

d-separation in the true acyclic structure implies statistical independence in the167

generated distribution.168

A similar result on cyclic causal graphs applies under the following assump-169

tions. The parametric models to cyclic graphs are non-recursive structural equa-170

tion models (SEMs) (Wright, 1934; Bollen, 1989; Richardson, 1996b). We make171

the standard assumption that each data sample is obtained at the unique so-172

lution to the structural equations (given the external disturbances). When173

the structural equations are linear, d-separation implies independence (Spirtes,174
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a)

Q

X Z Y

WTL

b)

Q

X Z Y

WT

Figure 1: Example graphs: a) a causal graph with an unobserved node L, b) the canonical
representation of a) using bidirected edges.

1995). The same result applies for discrete random variables, when the struc-175

tural equations to every ancestral subset (a set of nodes and their ancestors)176

has a unique solution (Forré and Mooij (2017): Theorem 3.8.12 on page 112,177

see also Pearl and Dechter (1996), Neal (2000)).178

Under the commonly used faithfulness assumption (Spirtes et al., 2000),179

statistical dependence becomes equivalent to (a type of) reachability in the180

graph: two random variables are conditionally dependent given a set of variables181

C if and only if they are d-connected given C in the generating causal structure182

G. In the rest of the article we use X ⊥⊥ Y |C (X 6⊥⊥ Y |C) to denote statistical183

independence (dependence) and d-separation (d-connection).184

Example 2. Given enough samples from a causal model with the structure in185

Figure 1 b) (or a)), we would expect to find X statistically dependent on W186

given Y , and Y statistically independent of Q given W .187

2.3. Problem Definition188

In constraint-based causal discovery, the aim is to find an equivalence class189

of graphs whose d-separation and d-connection properties respectively match the190

statistical independence and dependence relations in the data. The (in)dependence191

constraints K are obtained by running statistical independence tests on the192

data. Since the tests produce some errors on finite sample data, constraint-193

based causal discovery can be viewed as the following abstract optimization194

problem (Hyttinen et al., 2014).195

Input: A set K of conditional (in)dependence constraints over given set of
variables V, and a non-negative weight w(k) for each k ∈ K.

Task: Find a causal graph G∗ = (V, E∗) such that

G∗ ∈ argminG∈G
∑

k∈K : G6|=k

w(k). (1)

196

In words, our goal is to find a single graph G∗ that minimizes the sum of197

the weights of the (in)dependence constraints not implied ( 6|=) by G∗. The198

weight function w(·) describes the reliability of each constraint (obtained by199

independently run tests): conflicts among the constraints are well-resolved when200

the sum of the weights of the constraints not satisfied is minimized. Apart201

from this constraint satisfaction perspective, Section 2.5 gives a probabilistic202

motivation for this objective function.203
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Example 3. Let the nodes be V = {X,Y, Z} and let the (in)dependence con-204

straints K be as follows (weights in parenthesis):205

X ⊥⊥ Y | Z (1098) Y ⊥⊥ Z | X (97) X 6⊥⊥ Z (106837)
X 6⊥⊥ Z | Y (101804) Y 6⊥⊥ Z (4935) X 6⊥⊥ Y (3935)

206

This includes all relations testable in passively observed data over three variables.207

As the example shows we include in K only one constraint for nodes {X,Y }208

and set C ⊆ V \ {X,Y }, either in the form of an independence X ⊥⊥ Y |C or a209

dependence X 6⊥⊥ Y |C. Several constraints for the same {X,Y } and C can be210

compressed to a single constraint just by summing up the weights appropriately.211

The score function trivially satisfies score equivalence (Heckerman et al.,212

1995): all Markov equivalent structures imply the same d-separations and there-213

fore obtain the exact same score regardless of the weight is used (for a fixed set214

constraints K). Thus, an optimal causal graph G∗ is a representative of the215

(Markov) equivalence class closest to the input constraints.216

Solving this problem exactly has the following consistency result (Hyttinen217

et al., 2013, 2014). Under the assumptions discussed in Section 2.2 we have that218

statistical independence is equivalent to d-separation. When the weights are219

obtained by a test that consistently detects statistical dependence, we have that220

in the infinite sample limit, K includes independence and dependence relations221

that correspond respectively to d-separation and d-connection relations in the222

true graph. Consequently, the optimal solution will be in the equivalence class223

of the true graph and satisfy all constraints in K.224

Completeness depends on what set K is used (Hyttinen et al., 2013). If225

not all testable relations are in K, there may be information in the additional226

relations in the data that allow for further identification of structural features. In227

this article we include in K all
(
n
2

)
2n−2 relations testable in passively observed228

data of n variables. Therefore a structural feature determined by relations229

testable in the data will be uniquely determined in the equivalence class of the230

top scoring causal graph. The properties of the equivalence class can be studied231

for example with the SAT-based procedure of Hyttinen et al. (2013) or in the232

acyclic case by FCI (Spirtes et al., 2000).233

2.4. Weights for Independence Constraints234

The algorithmic approach developed in this article is agnostic in terms of235

how weights are obtained. One way to obtain weights is through Bayesian236

model selection (Cooper, 1997; Steck and Jaakkola, 2002; Abellán et al., 2006;237

Margaritis and Bromberg, 2009; Hyttinen et al., 2014). For each independence238

statement X ⊥⊥ Y |C, consider two models239

M⊥⊥ : P (X,Y |C) = P (X|C)P (Y |C)

M 6⊥⊥ : P (X,Y |C) = P (X|C)P (Y |X,C)

where the first postulates independence, and the second postulates dependence.
Given data D on X,Y,C and a prior probability of independence P (M⊥⊥) = α
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the probability associated with k = X ⊥⊥ Y |C simplifies to

P (k|D) =
P (Y |C)α

P (Y |C)α+ P (Y |X,C)(1− α)
.

The marginal likelihoods P (Y |C) and P (Y |X,C) correspond directly the local240

scores in the score-based Bayesian network structure learning framework, which241

can be evaluated in closed form for categorical variables when using a Dirichlet242

prior (Buntine, 1991; Cooper and Herskovits, 1992) and for continuous vari-243

ables with linear relations and Gaussian disturbances using an inverse Wishart244

Gaussian prior (Geiger and Heckerman, 2002). Note that since both scores are245

score-equivalent, the same probabilities are obtained if M 6⊥⊥ uses factorization246

P (X,Y |C) = P (X|Y,C)P (Y |C) instead.247

Since we optimize the sum of violated constraints, for nodes X,Y and set
C we include k (independence or dependence relation) that obtained the higher
probability with weight obtained by the following log transformation:

w(k) = logP (k|D)− logP (¬k|D) (2)

There are also several alternative ways of obtaining weights that can be248

directly used by our procedure. Jabbari et al. (2017) use similar Bayesian model249

selection, but dependence is modeled by P (Z|C) where Z is a random variable250

whose values are a Cartesian product of the values for X and Y . Natori et al.251

(2017) study the use of different priors. Also BIC approximations can be utilized252

(Hyttinen et al., 2017a). The approach of Claassen and Heskes (2012) obtains253

probabilities for d-separation relations by Bayesian model averaging over graphs.254

Triantafilou et al. (2010); Magliacane et al. (2016) employ frequentist statistical255

hypothesis testing to obtain similar reliability weights.256

2.5. Motivation for the Objective Function257

Apart from a constraint satisfaction perspective, the objective function in258

Equation 1 can be given a probabilistic motivation (Hyttinen et al. (2014):259

Appendix B, Jabbari et al. (2017): Section 4). The posterior probability of a260

graph G given data D can be written as261

P (G|D) =
∑
Ki∈K

P (G|Ki, D)P (Ki|D),

where K includes all sets of (in)dependence constraints that can be obtained262

from the data.263

The standard assumption underlying constraint-based causal discovery is264

that the (in)dependence constraints exhaust all information on the causal graph265

in the data, G ⊥⊥ D|Ki (Jabbari et al., 2017; Hyttinen et al., 2014):266

P (G|D) =
∑
Ki

P (G|Ki)P (Ki|D).
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Another standardly made assumption is that constraints are distributed in-267

dependently given the data D (Claassen and Heskes, 2012; Hyttinen et al., 2014;268

Triantafilou et al., 2010; Magliacane et al., 2016; Jabbari et al., 2017):269

P (G|D) =
∑
Ki

P (G|Ki)
∏
k∈Ki

P (k|D).

Note that this is different from only assuming mutual independence of con-270

straints unconditional on the data.2271

The term P (G|Ki) is non-zero only for the constraints Ki = KG implied by272

G. Since an independence constraint in KG may correspond to a dependence in273

K and vice versa, we further have274

P (G|D) =
∏

k∈KG

P (k|D) =
∏

k∈K : G|=k

P (k|D)
∏

k∈K : G 6|=k

P (¬k|D).

For finding the optimal G, we can take the logarithm to obtain275

logP (G|D) =
∑

k∈K : G|=k

logP (k|D) +
∑

k∈K : G 6|=k

logP (¬k|D),

and subtract term
∑

k∈K logP (k|D) that is constant with respect to G, obtain-
ing

logP (G|D)−
∑
k∈K

logP (k|D) =
∑

k∈K : G 6|=k

[logP (¬k|D)−logP (k|D)] = −
∑

k∈K : G 6|=k

w(k),

where w(k) is defined as in Equation 2. Thus, under these modeling assump-276

tions, maximizing posterior probability of a graph given the data P (G|D) is277

equivalent to minimizing the objective in Equation 1.278

3. Branch and Bound for Constraint-based Causal Discovery279

In this section we describe a first specialized branch-and-bound approach280

to finding optimal causal graphs. After an overview we give details on an effi-281

cient method for determining the satisfied/violated (in)dependence constraints282

in each search tree branch (Section 3.2), an effective domain-specific branching283

heuristic (Section 3.4), and how to obtain tight bounds during search using lin-284

ear programming relaxations (Section 3.5). Furthermore, we describe how struc-285

tural restrictions on the search space, such as enforcing acyclicity and degree286

restrictions (Section 3.6), can be integrated. Before detailing these techniques,287

we start with an overview of the core branch-and-bound routine.288

2 Jabbari et al. (2017) use a sampling-based approach to account for dependencies among
input constraint in an inexact approach. In their simulations the solutions closely corre-
sponded to the solutions assuming independent constraints given the data.
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Figure 2: A partial solution; solid edges have been decided present, dashed edges remain
undecided, others are decided absent.

3.1. Overview289

The overall structure of the branch-and-bound search is presented as Al-290

gorithm 1. A The algorithm performs a complete depth-first search over the291

causal graphs within the well-known general algorithmic framework of branch292

and bound, extending partial solutions towards fully defined causal graphs, and293

using bounding techniques for pruning out partial solutions which can be deter-294

mined not to improve the current best solution.295

In this context, a partial solution G is a graph in which each edge is either296

decided absent, decided present or undecided.297

Example 4. Consider the illustration of a partial solution in Figure 2. The298

solid edges and absent edges have been decided to be present and abstract, re-299

spectively. The dashed edges represent undecided edges in the partial solution,300

meaning that (in case the search branch represented by the partial solution is not301

pruned out before this) the search will subsequently traverse over the subsearch302

space spanned by the undecided edges.303

At each search tree node, on Line 2 we compute a lower bound for the304

weight of the current partial solution G. If this value is not less than the weight305

of the incumbent upper bound solution G∗, we can safely close the current306

branch and backtrack. If the current branch cannot be closed, we move on to307

Line 3 to select a yet-undetermined edge e∗ in G. If no such edges exist, that is,308

e∗ = null, we update the incumbent upper bound solution G∗ to G if the current309

partial solution has smaller weight. If multiple edge candidates exist, the most310

promising one is chosen heuristically (see Section 3.4 for details). On the other311

hand, if e∗ 6= null, i.e., a decidable edge exists, we recursively call Algorithm 1312

to open two search tree branches, one where (a) e∗ is decided present in G and313

Algorithm 1 The core structure of the branch and bound.

1: function Search(partial solution G)
2: if w(G∗) ≤ LowerBound(G) then return
3: e∗ ← SelectUndecidedEdge(G)
4: if e∗ 6= null then
5: Branch with (a) Search(G with e∗ decided present) and
6: (b) Search(G with e∗ decided absent) in the preferred order.
7: else if w(G) < w(G∗) then G∗ ← G

10



one where (b) the edge is decided absent. The order in which we visit these314

branches is determined heuristically, see Section 3.4 for details. At the end of315

the search, G∗ is guaranteed to be a solution with globally optimal cost.316

For computing a simple initial upper bound solution G∗, we first initialize it317

as an empty graph, then traverse the dependence constraints [X 6⊥⊥ Y | Z] ∈ K318

in descending weight order (Triantafillou et al., 2010) and add corresponding319

edges X → Y to the graph as long as this locally improves the weight of G∗. Any320

edge addition which would make G∗ violate possible search space restrictions321

(Section 3.6) is omitted.3322

We will now provide an example of how our branch-and-bound search would323

behave with a simple 3-variable instance.324

Example 5. Let the nodes be V = {X,Y, Z} and let the (in)dependence con-325

straints K be as follows (weights in parenthesis):326

X ⊥⊥ Y | Z (1098) Y ⊥⊥ Z | X (97) X 6⊥⊥ Z (106837)
X 6⊥⊥ Z | Y (101804) Y 6⊥⊥ Z (4935) X 6⊥⊥ Y (3935)

327

Before entering the search itself, we construct the initial upper bound solu-328

tion. For this purpose we traverse the four dependence constraints in descending329

weight order and add the edges X → Z, Y → Z and X → Y to an empty graph.330

Each edge addition locally improves the solution’s weight and there are no more331

variable pairs (with dependence constraints) and as such the resulting graph332

(shown in Figure 3 (0)) serves as our initial upper bound solution with weight333

1195.334

We are now ready to enter the branch and bound. The steps 1-5 of the335

search are illustrated in Figure 3. We start off with a partial solution where336

all the edges are undecided (Step 1). Assume that we use a branching strategy337

where we branch first by deciding edges absent between variables that seem most338

likely to be independent. Concretely, we first decide the edges X ↔ Y , X → Y339

and X ← Y to be absent (Step 2), followed by Y ↔ Z, Y → Z and Y ← Z340

(Step 3). However, after deciding Y ← Z absent, we obtain a lower bound of341

8870 for the partial solution, which is larger than our incumbent upper bound of342

1195. Hence we backtrack, deciding Y ← Z to be present instead (Step 4).343

We continue the search by deciding X ↔ Z, X → Z and X ← Z to be present344

(Step 5), as our branching heuristic recognizes that there are no independence345

constraints between X and Z. Now there are no more edge decisions to be346

made, and so we evaluate the solution at hand. It violates only the constraint347

[Y ⊥⊥ Z | X] and thus has weight 97. This is better than our previous solution348

with weight of 1195, and hence we update our incumbent upper bound to this349

new one.350

Next we backtrack in the search. For each decision we made in the search351

tree (except for the presence of Y ← Z), we also have a branch with the opposite352

decision (i.e., deciding a present edge to be absent, or deciding an absent edge to353

3In practice, however, we have observed empirically that the thereby obtained initial upper
bound tends to have only a negligible impact on overall runtime performance of the approach.
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be present). However, immediately after choosing any of these alternatives, we354

obtain a lower bound which closes the corresponding branch. Hence we backtrack355

all the way to the root node of the search tree, closing all the branches on the356

way, thus determining that the found graph with weight 97 is indeed the optimal357

solution.358

3.2. Efficient Evaluation of the Objective Function359

Given that there are superpolynomially many (in)dependence constraints360

with respect to the number of graph nodes, evaluating the objective function can361

be a time-consuming task in itself. In this section we provide ideas for efficient,362

incremental tracking of satisfiability for given constraints. There are several363

different ways for checking whether (in)dependence constraints are satisfied by364

a graph (Studený, 1998; Shachter, 1998). Building on such ideas, here our focus365

is to evaluate a large number of constraints incrementally when extending a366

branch, and the constraints are evaluated over a partial solution, a graph for367

which some edges are decided present and some absent.368

For a partial solution, each (in)dependence constraint can have exactly one369

of three states: satisfied, violated or undetermined. The states are defined in the370

0)

X

Y Z
1)

X

Y Z
2)

X

Y Z

3)

X

Y Z
4)

X

Y Z
5)

X

Y Z

Figure 3: The phases of the example. (0): The initial upper bound solution. (1-5): Gradual
construction of a solution in the search.

Algorithm 2 Efficient update of constraint states after an edge decision.

1: function CheckConstraints(partial solution G, nodes X,Y , edge e )
2: if e is present in G then
3: G′ ← minc(G)
4: else
5: G′ ← maxc(G) with e

6: if e does not affect the d-connectivity of X and Y in G′ then return
7: C+ ← Unavoidable colliders on d-connections between X and Y in G′.
8: C− ← Unavoidable non-colliders on d-connections between X and Y .
9: Check constraints of the form [X ⊥⊥ Y | S] (and [X 6⊥⊥ Y | S])

10: such that C+ ⊆ S and S ∩ C− = ∅.
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following way. A complete solution or completion can be obtained from a par-371

tial solution by deciding the state of all undecided edges. A maximal completion372

maxc(G) of a partial solution has all undecided edges marked present (e.g. Fig-373

ure 2 with the dashed edges), a minimal completion minc(G) has all undecided374

edges absent (Figure 2 without the dashed edges). An independence constraint375

is satisfied if the corresponding d-separation holds in maxc(G), and violated376

if the corresponding d-separation does not hold in minc(G) (Hyttinen et al.,377

2013). A dependence constraint is satisfied if the corresponding d-connection378

holds in minc(G), and violated if the corresponding d-connection does not hold379

in maxc(G). All other constraints are undetermined. In the beginning of the380

search, when no edges are decided, the states of all constraints are undetermined.381

Example 6. Consider the partial solution in Figure 2. The constraint [X 6⊥⊥382

Z | W ] is satisfied, since no matter how one decides the undecided edges, the383

path X → W ← Z will always exist in the resulting graph. On the other hand,384

the constraint [W 6⊥⊥ Y | Z] is violated, since no matter how one decides the385

undecided edges, all the paths between W and Y in the resulting graph will386

contain Z as a non-collider. Moreover, the constraint [Z ⊥⊥ T ] is undetermined387

since it can be either satisfied or violated depending on whether the undecided388

edge W → T is decided present or absent.389

When a new edge decision is made, we update the states of the input con-390

straints with respect to the current partial solution. This also keeps track of391

the total weight of the violated constraints and provides a simple lower bound.392

Furthermore, the satisfied/violated information can be given to a linear pro-393

gramming solver so that stronger, what we call core-based lower bounds (as394

detailed in Section 3.5) stay up to date. Note that the choice of how regularly395

we update constraint states from undetermined to satisfied/violated does not af-396

fect the correctness of the search, as long as all complete solutions are evaluated397

exactly.398

At each search node, we branch on a currently undecided edge to be either399

present or absent in the partial solution. When deciding an edge present, as-400

suming that acyclicity or an edge degree limit (see Section 3.6) is not enforced,401

we only check whether new d-connections are formed in the minimal completion402

of the partial solution. When deciding an edge absent, we only check whether403

d-connections disappeared from the maximal completion of the partial solution.404

For determining whether a d-connection exists between two nodes X and Y405

given some conditioning set C, we use a straightforward algorithm that simply406

checks whether there is a path between X and Y where all the colliders are in407

C and no other nodes are in C.408

An efficient way to update constraint states for a given node pair after an409

edge decision is presented as Algorithm 2. For example, consider a case where410

an edge A→ B is decided present in a partial solution G. To update constraint411

states for a node pair (X,Y ), we first check whether there could be a new412

d-connection between X and Y given some C in the minimal completion G′413

(Line 6). If not, the constraints need not be updated, because deciding an edge414

present does not remove existing d-connections, and hence the constraint states415
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between the node pair remain unchanged. Otherwise, if new d-connections may416

have been formed, we identify a set of unavoidable colliders C+ and non-colliders417

C− between all d-connecting walks between X to Y in G′ (Line 7 and 8). We418

can then omit checking any constraint states for X and Y where conditioning set419

does not contain all the colliders C+ or contains some non-colliders C−. This is420

because, by the definition of d-separation, d-connections that contradict these421

collider/non-collider requirements cannot have been formed in the completion.422

Each item in these sets halves the number of constraints that we need to check for423

the node pair in question. Intuitively, for any relatively sparse partial solution,424

there is likely a shared bottleneck for all walks between two nodes.425

There is no need for the C+/C− sets to contain every single unavoidable426

collider/non-collider, because this information is merely used to speed up the427

constraint evaluation, and it does not affect the end-result (i.e., the determined428

states) of the evaluation. Hence we need to make a trade-off between how much429

time is used to gather C+/C− and how much time is saved by having those430

sets. For this reason we use the straightforward method described in Algo-431

rithm 3 for gathering only some (i.e., in general not all) of the unavoidable col-432

liders/noncolliders when traversing from node X to Y in the (minimal/maximal)433

completion G′ of partial solution G. Here the node A is the starting point and434

V is the set of nodes that have already been visited. We execute this proce-435

dure starting from both X and Y ; i.e., FindUnavoidables(G′, X, ∅, X, Y ) and436

FindUnavoidables(G′, Y, ∅, X, Y ). For a graph with n nodes, each of these437

procedure calls have a O(n2) time complexity and a O(n) space complexity.438

Deciding an edge e absent is essentially analogous to the case where the edge439

is decided present. However, as mentioned in Algorithm 2, in this case we have440

to make sure that e still exists in the maximal completion G′. This is because441

Algorithm 3 A simple method for finding unavoidable colliders and non-
colliders between nodes X and Y in a completion G′ starting from node
A ∈ {X,Y }.

1: function FindUnavoidables(graph G′, nodes A,X, Y , set V of visited
nodes)

2: N ← neighbours of A in G′

3: if A /∈ {X,Y } then
4: if for all N ∈ N the edge A→ N is not present in G′ then
5: C+ ← C+ ∪ {A}
6: else if for all N ∈ N \V neither A← N nor A↔ N is present then
7: C− ← C− ∪ {A}
8: if |N \ V | 6= 1 or N \ V ⊆ {X,Y } then
9: return

10: Let B ∈ N \ V
11: if neither A→ B or A↔ B is present in G′ then
12: C− ← C− ∪ {B}
13: Call FindUnavoidables(G′, B, V ∪ {A}, X, Y )
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here we are interested in checking which d-connections get removed from the442

completion due to the edge decision, and hence we want use the unavoidable443

nodes C+ and C− that existed before the edge was removed from the comple-444

tion. That is, the edge can only have removed d-connections which satisfy these445

collider/non-collider requirements.446

Example 7. For the partial solution in Figure 2, we find that node Z is an447

unavoidable non-collider in all d-connecting walks between X and Y (given any448

conditioning set) in the corresponding minimal completion. This tells us that we449

do not need to check the existence of d-connections between X and Y that have450

Z in the conditioning set. That is, we must have X ⊥⊥ Y | Z; X ⊥⊥ Y | Z,W ;451

X ⊥⊥ Y | Z, T and X ⊥⊥ Y | Z,W, T .452

3.3. Rules for Inferring Irrelevant Edges453

In this section we provide a way to reduce the amount of time the search has454

to spend at each search tree node. Recall that at each step of the search, we455

decide an edge e to be either present or absent in the current partial solution456

G, and then use the completions minc(G) and maxc(G) to determine whether457

states of the (in)dependence constraints changed. Here we provide simple rules458

for detecting when an edge decision by itself cannot affect the states of (certain)459

constraints. We then use this information to avoid performing a considerable460

amount of unnecessary d-separation checks which would create unwanted over-461

head to the search.462

The rules are based on so called inducing paths (Verma and Pearl, 1990;463

Spirtes et al., 2000). To allow for the development of theory relevant to the464

current setting, we define inducing paths in this paper as follows.465

Definition 3. Let X and Y be nodes in a causal graph G = (V, E). If there466

exist distinct V1, . . . , Vk ∈ V where V1 = X and Vk = Y such that467

• V1 → V2 is present, and468

• both Vi−1 → Vi and Vi−1 ↔ Vi is present for each i > 2,469

then we denote X  Y.470

The following lemma will be useful for arguing about the correctness of the rules471

(Lemma 3 of Verma and Pearl (1990)).472

Lemma 1. Vertices A and B are d-connected in graph G = (V, E) given any473

conditioning set C ⊆ V \ {A,B} if A B is present in G.474

Proof. Let A B. By the definition, there exists V1, . . . , Vk ∈ V for some k ≥ 2475

such that V1 = A, Vk = B where V1 → V2 is present, and both Vi−1 → Vi and476

Vi−1 ↔ Vi is present for each i > 2. When k = 2, the lemma’s claim is trivial.477

When k = 3, we have the edges A → V2 → B and V2 ↔ B in G, so A and B478

are clearly connected given C regardless whether V2 ∈ C.479

Assume that the claim holds for some k ≥ 3. We show that it holds for480

k + 1. We have A  Vk → B and Vk ↔ B in G, so A and Vk are d-connected481
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A BV2 . . .

Figure 4: Illustration of of the edge irrelevancy rule 1. The dashed edge corresponds to the
edge whose impact to the d-connectivity is to be checked. Note that the rule would trigger
even if the graph would contain arbitrary additional nodes and edges.

given C. Now, if Vk ∈ C, choose d-connecting path A  Vk ↔ B, otherwise482

A Vk → B. Hence A and B are d-connected in G given C.483

We will now formally define four rules which allow for inferring that, given484

that particular edges are present/absent in the current partial solutions, the485

presence or absence of a currently undecided edge is irrelevant in terms of d-486

connectivity.487

The first rule captures situations where adding an edge would form a ‘short-488

cut’ between two nodes that are already connected by an inducing path. Par-489

ticularly, if the added edge has the same direction as the inducing path, then490

the edge does not increase d-connectivity in the graph since one could always491

use the inducing path instead of the shortcut.492

Rule 1. Let A and B be nodes in a causal graph such that A  B is present.493

Then adding the edge A→ B does not affect the d-connectivity of the graph.494

For an illustration of Rule 1, see Figure 4. In the figure, the dashed edge495

corresponds to the edge whose impact to the d-connectivity is to be checked.496

Note that the rule would trigger even if the graph would contain arbitrary497

additional nodes and edges.498

Proof. (Correctness of Rule 1) Assume that A  B exists in G. Consider the499

path A→ B and all the paths via A B. In both cases, for each conditioning500

set C ⊆ V \ {A,B}, there exists a path which d-connects A and B in G (by501

Lemma 1), and in all the paths (1) an edge is pointing outwards from A, and502

(2) an edge is pointing inwards to B. Hence the edge A  B does not affect503

the d-connectivity in G.504

The second rule captures situations where the added ‘shortcut’ edge between505

two nodes is bi-directional. In this case the edge and the inducing path point506

differently at one of the nodes and similarly to the other node. Intuitively, the507

side of the structure in which the edge and the inducing path agree behaves508

similarly to the first rule. The side in which the edge and the inducing path dis-509

agree requires us to make sure that the shortcut does not create a new potential510

collider.511

Rule 2. Let A and B be nodes in a causal graph such that A  B is present.512

Adding the edge A↔ B does not affect the d-connectivity of nodes X and Y if513

1. A = X or A = Y, or514
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Figure 5: Illustration of of the edge irrelevancy rule 2. The dashed edge corresponds to the
edge whose impact to the d-connectivity is to be checked. The crossed-out edge indicates that
the target node cannot have incoming edges apart from the dashed one. Note that, apart
from the restrictions denoted by the crossed-out edge, the rule would trigger even if the graph
would contain arbitrary additional nodes and edges.

2. A has no incoming edges besides from B.515

For an illustration of Rule 2, see Figure 5. The crossed-out edge indicates that516

the target node cannot have incoming edges apart from the ones in the figure517

that are not crossed out. Note that, apart from the restrictions denoted by518

the crossed-out edge, the rule would trigger even if the graph would contain519

arbitrary additional nodes and edges.520

Proof. (Correctness of Rule 2) Assume that A B is present inG. Consider the521

path A↔ B and all the paths via A B. In both cases, for each conditioning522

set C ⊆ V \ {A,B}, there exists a path which d-connects A and B in G (by523

Lemma 1), and in all the paths an edge is pointing inwards to B in a path. The524

key difference is that in the path A↔ B there is an edge pointing to A, whereas525

on all paths via A B there is no edge pointing to A.526

Assume first that A = X or A = Y. Now, A cannot be a collider or a non-527

collider on d-connecting paths via X and Y , and so it does not matter whether528

or not an edge points to A. Hence A↔ B does not affect the d-connectivity of529

X and Y .530

Assume then that A has no incoming edges besides from B (and A 6= X,B 6=531

Y ). Now, A is a non-collider on all paths from X and Y which go through the532

path A ↔ B or go through any path of A  B. Hence A ↔ B does not affect533

the d-connectivity of X and Y .534

The third rule captures situations where the added ‘shortcut’ edge between535

two nodes points to the opposite direction wrt. the inducing path. Intuitively,536

since the edge and the inducing path disagree on both sides of the structure,537

this corresponds to two instances of the situation from the second rule where a538

node is pointed differently by the edge and the path.539

Rule 3. Let A and B be nodes in causal graph such that A  B is present.540

Adding the edge B ← A does not affect the d-connectivity of nodes X and Y if541

both of the following hold:542

1. A = X or A = Y or A has no incoming edges besides from B, and543

2. B = X or A = Y or B has no incoming edges besides from A.544

For an illustration of Rule 3, see Figure 6. Again, the crossed-out edges indicate545

that the target node cannot have incoming edges apart from the dashed one;546
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Figure 6: Illustration of of the edge irrelevancy rule 3. The dashed edge corresponds to the
edge whose impact to the d-connectivity is to be checked. The crossed-out edges indicate that
the target node cannot have incoming edges apart from ones in the figure that are not crossed
out. Note that, apart from the restrictions denoted by the crossed-out edges, the rule would
trigger even if the graph would contain arbitrary additional nodes and edges.

apart from the restrictions denoted by the crossed-out edge, the rule would547

trigger even if the graph would contain arbitrary additional nodes and edges.548

Proof. (Correctness of Rule 3) Assume that A B is present inG. Consider the549

path A← B and all the paths via A B. In both cases, for each conditioning550

set C ⊆ V \ {A,B}, there exists a path which d-connects A and B in G (by551

Lemma 1). The key differences are that (1) in A← B there is an edge pointing552

to A whereas in all paths via A B there is not, and (2) in all paths via A B553

there is an edge pointing to B whereas in A← B there is not.554

By applying similar reasoning as in the proof of Theorem 2, we have that555

if A = X or A = Y or A has no incoming edges besides from B, then on all556

paths from X to Y which go through the path A← B or go through any path557

via A  B, the d-connectivity of X and Y is not affected by whether an edge558

points to A. The same holds symmetrically in the case where B = X or B = Y559

or B has no incoming edges from A. Therefore, when both conditions of the rule560

hold, then the d-connectivity of X and Y is not affected by whether there is an561

edge pointing to A or B, and hence A ← B does not affect the d-connectivity562

of X and Y in G.563

Similarly as Rule 1, Rules 2 and 3 can be used globally without concerning564

what the variables X and Y are. That is, if merely the ‘has no incoming edges’565

conditions hold, we can omit checking the (in)dependence constraints for all566

variables.567

Finally, the following fourth rule states that checking constraint states with568

respect to a maximal completion is unnecessary unless the completion is sparse569

enough.570

Rule 4. Removing an edge e from a causal graph does not affect the d-connectivity571

of X and Y if (1) X  Y, (2) Y  X or (3) X ↔ Y would still hold in the572

graph after removing e.573

Proof. (Correctness of Rule 4) When any of the three conditions hold, X and574

Y are d-connected given any conditioning set, regardless of e. Note that edges575

X → Y and Y → X are special cases of the first two conditions.576

All four edge relevancy rules introduced in this section are straightforward577

to check in O(n2) time and O(n) space, where n is the number of nodes in578

the graph. This is because the computationally most demanding part is just to579

verify whether an inducing path exists between two nodes in the graph.580
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3.4. Problem-Specific Branching Heuristics581

The branching heuristics applied within the branch and bound are crucial for582

the performance of the algorithm. In this section we propose problem-specific583

heuristics for our approach.584

Let K+(X,Y ) (K−(X,Y )) be the set of undetermined dependence (indepen-
dence) constraints between nodes (X,Y ) by the current partial solution. We
will also use

K+(X) =
⋃
Y

K+(X,Y ) and K−(X) =
⋃
Y

K−(X,Y )

to denote the undetermined dependence and independence constraints involving585

node X, respectively. Furthermore, let w+(X,Y ), w−(X,Y ), w+(X), w−(X) be586

the sum of weights of the constraints in setsK+(X,Y ),K−(X,Y ),K+(X),K−(X),587

respectively. We use the following rules in order for choosing the next pair for588

which an edge to be decided absent or present. Here (X,Y ) and (A,B) denote589

distinct pairs of nodes.590

1. Choose (X,Y ) over (A,B) if all edges are decided between (A,B) or more591

edges have been decided present between (A,B) than between (X,Y ).592

2. Choose (X, Y) over (A,B) if w−(A,B) ≤ w−(X,Y ) and w−(X,Y ) > 0.593

3. Choose (X, Y) over (A,B) if

w+(X) + w+(Y ) + max
k∈K+(X,Y )

w(k) ≥ w+(A) + w+(B) + max
k∈K+(A,B)

w(k).

The first rule captures our preference of setting edge decisions throughout594

the entire graph instead of deciding all edges between a single pair of nodes595

immediately. The second rule captures the preference for edges absences when596

the involved nodes are found independent given one or many conditioning sets.597

Deciding these absences of edges early via the heuristic directs the search to-598

wards sparser solutions for which d-connection checks are faster to evaluate.599

This relates to previous literature: PC algorithm decides the absence of an edge600

between X,Y upon finding a single conditioning set given which the nodes are601

independent (Spirtes et al., 2000). Thus, a problem-specific greedy (and often602

unreliable) strategy can act as a good heuristic in exact search. Finally via603

the third rule we prefer satisfying strong dependencies with large weights using604

direct connections.605

For a graph with n nodes, it takes O(n2) time and space to select the606

next node pair to branch with, assuming that the compared values (w+(·),607

maxk∈K+(·) w(k) etc.) have been precomputed into cache. Indeed, we gather608

this information while evaluating the constraint states (Section 3.2), resulting609

in no additional complexity.610

After the best node pair (X,Y ) is chosen out of the possible options, we
branch in the search by deciding an arbitrary yet-undecided edge between the
nodes (X → Y , X ← Y or X ↔ Y ). We branch by deciding the edge absent
first if and only if

[X ⊥⊥ Y | Z] ∈ K for any Z ⊆ V \ {X,Y }.
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(i) {X ⊥⊥ Z|S; X ⊥⊥ Y |S; X 6⊥⊥ Z|Y, S}

(ii) {X 6⊥⊥ Z|S; Y 6⊥⊥ Z|S; X ⊥⊥ Y |S; X ⊥⊥ Y |Z, S}

(iii) {X 6⊥⊥ Z|Y, S; Y 6⊥⊥ Z|X,S; X ⊥⊥ Y |S; X ⊥⊥ Y |Z, S}

(iv) {Y 6⊥⊥ Z|S; X 6⊥⊥ Z|S; Z ⊥⊥W |X,Y, S; X ⊥⊥ Y |Z, S; X ⊥⊥ Y |W,S}

(v) {Y 6⊥⊥ Z|S; X 6⊥⊥ Z|S; Z ⊥⊥W |Y, S; X ⊥⊥ Y |Z, S; X ⊥⊥ Y |W,S}

(vi) {X 6⊥⊥ Y |Z, S; Y 6⊥⊥ Z|X,W,S; W 6⊥⊥ Y |Z, S;

W ⊥⊥ X|Y,Z, S; X ⊥⊥ Z|W,S}

(vii) {X 6⊥⊥ Y |Z, S; Y 6⊥⊥ Z|X,W,S; W 6⊥⊥ Y |S; W ⊥⊥ X|Y, S; X ⊥⊥ Z|W,S}

Figure 7: Small minimal unsatisfiable core patterns used for computing lower bounds via
linear programming.

3.5. Computing Tight Lower Bounds by Linear Programming611

We now describe how we compute strong lower bounds using core pat-612

terns (Hyttinen et al., 2017b). An unsatisfiable core is a set of (in)dependence613

constraints that cannot be simultaneously satisfied by any graph in G. Some614

example cores are marked by rectangles in Figure 8. We use the seven core615

patterns from (Hyttinen et al., 2017b), shown in Figure 7, to find cores for the616

input dataset in the beginning of the search. Using these, we can compute lower617

bounds by formulating a minimum-cost hitting set problem4 where the unsatis-618

fiable cores represent the sets and the (in)dependence constraints represent the619

elements. The objective is then to find a minimum-cost subset of constraints620

that contains a constraint from each core. To obtain the bounds in practice,621

similarly as in Hyttinen et al. (2017b), we solve linear relaxations of the fol-622

lowing standard integer programming formulation of these hitting set problems623

using a linear programming (LP) solver.624

Concretely, the objective of the integer program (IP) formulation of the
minimum-cost hitting set problem is

min
∑
k∈K

w(k) · xk,

where each binary variable xk ∈ {0, 1} indicates whether the (in)dependence625

constraint k ∈ K is included in the hitting set. In the linear relaxation, we have626

xk ∈ [0, 1].627

4Given a collection of sets over a set of weighted elements, a minimum-cost hitting set is
a subset of the elements such that (i) the hitting set contains at least one element form each
of the sets in the collection, and (ii) the sum of the weights of the elements in the hitting set
in smallest among all hitting sets of the collection.
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Y 6⊥⊥ Z |W X ⊥⊥ Y | Z,W X ⊥⊥ Y |W X 6⊥⊥ Z |W

Y 6⊥⊥ Z | X,W X 6⊥⊥ Z | Y,W

X 6⊥⊥ Y |W,Q

Y ⊥⊥ Q |WQ ⊥⊥ Z |W

Figure 8: Example of core-based lower bounding.

The unsatisfiable cores form the linear constraints of the IP: for each un-
satisfiable core over a set of (in)dependence constraints k1, k2, . . . , km ∈ K, we
include the corresponding linear constraint

xk1 + xk2 + . . .+ xkm ≥ 1

to the program, enforcing that at least one of the (in)dependence constraints628

needs to be included in a hitting set.629

For obtaining bounds via the linear relaxation of the minimum-cost hitting630

set IP at a search node during the branch-and-bound search, we simplify the631

linear relaxation by enforcing 0/1 values on those LP variables corresponding to632

known (in)dependence constraint states (recall Section 3.2) under the current633

partial solution. In particular, if a constraint k ∈ K is known to be satisfied634

(violated, respectively) under the current partial solution, we enforce xk = 0635

(xk = 1, respectively) in the linear relaxation, stating that we are not allowed636

to (we must, respectively) choose k into the hitting set. This way the core-based637

lower bounds are updated to match the current search tree branch.638

Example 8. Suppose we have the cores in Figure 8 and the partial solution
satisfies X 6⊥⊥ Z|Y,W and X ⊥⊥ Y |W (in blue), and violates Y ⊥⊥ Q|W and
Q ⊥⊥ Z|W (in red). One constraint in each core marked by the rectangles must
be chosen. The violated constraint Y ⊥⊥ Q|W hits the core marked by the vertical
violet rectangle. If for simplicity the weights are all constants, the remaining
cores can be optimally hit by X ⊥⊥ Y |Z,W (in bold). Thus, the final lower
bound for the partial solution is

w(Y ⊥⊥ Q|W ) + w(Q ⊥⊥ Z|W ) + w(X ⊥⊥ Y |Z,W ),

where the last term in the sum tightens the bound compared to the simple bound639

due to just violated constraints.640

3.6. Imposing Acyclicity and Sparsity641

Our approach also allows for integrating different structural search space642

restrictions. We now explain how to enforce two types of constraints: acyclicity643

and sparsity.644

To enforce acyclicity (in terms of directed edges), we keep track of the set
R[X] of nodes reachable by a directed path of decided edges from node X in
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the current partial solution. Initially R[X] = ∅ for each node X. After an edge
X → Y is decided present, we update

R[Z]← R[Z] ∪ {Y } ∪R[Y ]

for each Z ∈ {X} ∪ {Z ′ : X ∈ R[Z ′]}. Using this information, we can decide645

any edge X → Y as absent in all completions of the current partial solution646

where X ∈ R[Y ].647

We can also enforce sparsity constraints, such as a bound on the maximum648

degree of nodes (as used by Claassen et al. (2013)), in a straightforward way. We649

can simply keep track of the degree for each node in the current partial solution,650

and decide all the yet-undecided edges between a node pair to be absent if the651

degree for either node has already reached the maximum allowed value.652

4. Empirical Evaluation653

We implemented the branch-and-bound approach and all of the search tech-654

niques described in Section 3. The resulting open-source C++ implementation655

bcause of the approach is available at656

https://www.cs.helsinki.fi/group/coreo/bcause/657

In the following, we present results from an empirical evaluation of the run-658

ning time performance of bcause on problem instances obtained from real-world659

datasets from several perspectives: (i) the marginal contribution of the different660

proposed search techniques, (ii) the efficiency of the approach with respect to661

current state of the art, and (iii) the impact of the scoring function used for662

obtaining constraint weights on the efficiency of the approach.663

The benchmark instances were generated from real-world datasets often used664

for benchmarking exact Bayesian network structure learning algorithms (Yuan665

and Malone, 2013; Bartlett and Cussens, 2017) and also used in the original666

paper describing the Dseptor system (Hyttinen et al., 2017b); see Table 1 for667

more details on the benchmarks. As the basis of the causal discovery instances,668

we considered suitable-sized (n) subsets of the first non-constant variables in the669

datasets, making the remaining variables thus latent (recall that latent variables670

are supported by our general search space). This resulted in a total of 120671

benchmark instances. For parts (i) and (ii) of the evaluation, we obtained the672

constraint weights by (local) Bayesian model selection with the BDeu (ESS=10,673

α = 0.5) score5; further parameter values are considered in part (iii) of the674

evaluation. When reporting running times, we do not include the constraint675

weight computation times. We note that in this problem setting, the weight676

computation times are negligible to the running times of Dseptor or bcause.677

Concretely, obtaining the constraint weights for any single data set used in the678

5This is the score used in the original paper describing Dseptor (Hyttinen et al., 2017b)
and also in the preliminary version of this article (Rantanen et al., 2018).
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experiments takes less than a second. The longest weight computation time was679

0.7 seconds, on the Link10000 dataset.680

For the experiments, we used the CPLEX system as the linear programming681

solver for obtaining core-based bounds within bcause. The experiments were run682

under a 1-h per-instance time limit on Intel Xeon E5-2680 v4 2.4GHz processors683

and 256-GB RAM.684

4.1. Impact of Search Techniques685

We start the overview of the results by looking at the marginal contribution686

of the proposed individual search techniques as implemented in bcause. Here by687

marginal contribution we refer to switching off an individual search technique,688

instead applying a more basic (“baseline”) version of the techniques as necessary,689

while keeping all search techniques intact. Concretely, we study the marginal690

contribution of three search techniques.691

• The domain-specific branching heuristics detailed in Section 3.4. As a692

baseline heuristic, we compare to choosing the edge to branch on uniformly693

at random (“random branching”).694

• The inference rules 1–4 detailed in Section 3.3, allowing for inferring irrel-695

evant edges under partial solutions. As a baseline comparison, we simply696

switch off the rules.697

• The lower bounding technique detailed in Section 3.5 based on solving a698

linear relaxation of the minimum-cost hitting set problem over the unsatis-699

fiable core patterns under partial solutions. As a baseline comparison, we700

switch off this additional bounding technique, and only obtain naive lower701

bounds by summing up the weights of the constraints that are known to702

be violated by the current partial solution.703

The results are shown in Figures 9–11. Each plot gives a comparison of the704

per-instance running times of the default settings of bcause on the x-axis (with705

all three search techniques switched on) and bcause with one of the three tech-706

niques individually switched off on the y-axis. The shapes of points distinguish707

between the different numbers of random variables in the underlying datasets708

(excluding latent variables). As shown in Figure 9, the marginal contribution709

of the domain-specific branching heuristic is noticeable, as it yields considerable710

performance gains over using random branching, making the domain-specific711

branching heuristic integral for bcause. As shown in Figure 10, while their im-712

pact is more moderate, the inference rules 1–4 also consistently speed up search.713

(Recall that these rules do not have on impact on the number of search tree nodes714

visited, but rather lower the time spent at each search tree node.) Finally, as715

shown in Figure 11, the use of the core-based lower bounds obtained via lin-716

ear programming also considerably speed up bcause, and most importantly very717

consistently for harder instances.718

In summary, each of the three search techniques has a non-negligible marginal719

contribution to the performance of bcause, each consistently improving the run-720

ning time performance of the approach.721
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Figure 9: Marginal contribution of the domain-specific branching heuristic: per-instance run-
ning time comparison of bcause using domain-specific (x-axis) and random branching (y-axis).
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Figure 10: Marginal contribution of the irrelevant edge rules 1–4: per-instance running time
comparison of bcause using (x-axis) and not using (y-axis) the rules.
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Figure 11: Marginal contribution of the unsatisfiable core linear programming lower bounds:
per-instance running time comparison of bcause using (x-axis) and not using (y-axis) the
core-based bounding.

4.2. Comparison with Current State of the Art722

We compare the running time performance of bcause to that of Dseptor (Hyt-723

tinen et al., 2017b) as representative of the current state of the art. The Dseptor724

system is based on encoding of the causal discovery problem declaratively us-725

ing the Boolean optimization paradigm of maximum satisfiability (MaxSAT),726

and furthermore integrates domain-specific techniques within a hybrid MaxSAT727

solver (Saikko et al., 2016a) making use of both SAT and integer programming728

solvers based on the so-called implicit hitting set paradigm (Moreno-Centeno729

and Karp, 2013; Davies and Bacchus, 2013; Saikko et al., 2016b).730

Here we compare the performance of bcause and Dseptor in the general,731

unrestricted search space (allowing latent variables and cycles) as well as the732

restricted acyclic search space (will allowing latent variables). The results are733

shown in Figures 12 and 13, and Table 1. The plot in Figure 12 gives the num-734

ber of instances solved (x-axis) by each approach under different per-instance735

time limits (y-axis); essentially, the further to the right the line, the better over-736

all running time performance an approach exhibits. Evidently the performance737

of bcause is better in terms of the number of instances solved: within the 1-h738

per-instance time limit, bcause solved over 110 instance (both in the cyclic and739

acyclic case), while Dseptor solved less than 70 instance (both in the cyclic and740

acyclic case). Interestingly, the model space restriction has essentially no effect741

on the running times of bcause, while enforcing acyclicity degrades the perfor-742

mance of Dseptor slightly. As further seen in Figure 12, on a clear majority743

of the benchmarks bcause exhibits noticeably better runtimes than Dseptor re-744
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Figure 12: Comparison of bcause and Dseptor : number of solved instances (x-axis) for different
per-instance time limits (y-axis), for both unrestricted search space and search space restricted
to acyclic graphs.
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Figure 13: Comparison of bcause and Dseptor : per-instance running times for both unre-
stricted search space (left) and search space restricted to acyclic graphs (right).
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Table 1: Running times of bcause and Dseptor over different search spaces.
Running times (s)

General Acyclic Max-degree 3
Dataset n bcause Dseptor bcause Dseptor bcause
Adult 7 1907 (568) >3600 1980 (380) >3600 859 (121)
Alarm 9 403 (3) >3600 425 (3) >3600 406 (3)
Autos 9 473 (4) >3600 479 (4) >3600 447 (3)
Bands 8 296 (3) >3600 307 (2) >3600 276 (2)
Epigenetics 7 >3600 (>3600) 18 >3600 (>3600) 165 >3600 (>3600)
Flag 12 75 (30) >3600 83 (32) >3600 59 (15)
Heart 12 27 (24) >3600 29 (25) 2977 16 (13)
Hepatitis 12 65 (27) >3600 73 (29) >3600 50 (13)
Horse.23 9 83 (4) >3600 90 (4) >3600 82 (3)
Horse 11 11 (7) >3600 12 (7) >3600 8 (4)
Image 8 703 (21) >3600 1869 (46) >3600 706 (43)
Imports 8 295 (1) >3600 311 (1) >3600 352 (1)
Letter 7 >3600 (>3600) 487 >3600 (>3600) 622 >3600 (>3600)
LungCancer 10 184 (10) >3600 212 (11) >3600 316 (15)
Meta 7 >3600 (>3600) 128 >3600 (>3600) 149 >3600 (>3600)
Mushroom1000 7 >3600 (>3600) 1325 >3600 (>3600) 868 >3600 (>3600)
Mushroom8124 7 >3600 (>3600) 743 >3600 (>3600) 919 >3600 (>3600)
Parkinsons 7 344 (27) >3600 257 (20) >3600 156 (14)
Sensors 7 >3600 (>3600) 72 >3600 (>3600) 164 >3600 (>3600)
Soybean 11 10 (8) 2789 10 (8) 1223 7 (5)
Spectf 11 10 (8) 987 11 (9) 1061 10 (6)
Statlog 7 31 (14) 36 441 (78) >3600 31 (17)
SteelPlates 6 494 (460) 63 223 (191) 35 51 (25)
Voting 9 637 (7) >3600 614 (7) >3600 736 (7)
Water 9 436 (12) >3600 657 (2) >3600 486 (7)
Wdbc 8 54 (37) 3346 61 (42) 2977 55 (35)
Wine 9 1179 (9) >3600 1143 (9) >3600 1344 (10)
Zoo 7 157 (82) >3600 145 (69) >3600 152 (67)
alarm10000 10 >3600 (>3600) >3600 >3600 (>3600) >3600 2547 (34)
alarm1000 10 119 (37) >3600 107 (22) >3600 108 (7)
alarm100 9 18 (1) 1092 19 (1) 429 20 (1)
asia10000 8 81 (51) 281 105 (70) 370 180 (95)
asia1000 7 98 (<1) 46 98 (<1) 35 94 (29)
asia100 7 3 (<1) 2 2 (<1) 2 3 (<1)
carpo10000 11 139 (65) >3600 139 (64) 2930 64 (28)
carpo1000 10 2087 (2) >3600 2402 (2) >3600 2221 (2)
carpo100 10 52 (1) >3600 54 (1) >3600 48 (1)
Diabetes10000 8 <1 (<1) 7 <1 (<1) 6 <1 (<1)
Diabetes1000 8 <1 (<1) 7 <1 (<1) 7 <1 (<1)
Diabetes100 9 88 (<1) >3600 90 (<1) >3600 103 (<1)
hailfinder10000 10 2 (2) 429 2 (2) 194 2 (1)
hailfinder1000 9 1 (<1) 65 1 (<1) 43 1 (<1)
hailfinder100 8 498 (<1) >3600 497 (<1) >3600 587 (<1)
insurance10000 9 183 (1) >3600 179 (1) >3600 206 (1)
insurance100 10 337 (4) >3600 330 (3) >3600 378 (3)
Link10000 12 165 (13) >3600 131 (12) >3600 187 (14)
Link1000 11 1144 (4) >3600 1186 (4) >3600 1362 (4)
Link100 10 189 (3) >3600 188 (3) >3600 214 (2)
Mildew10000 10 4 (3) 652 3 (2) 964 3 (2)
Mildew1000 8 1 (<1) 33 1 (<1) 38 1 (<1)
Mildew100 7 2941 (1247) >3600 2977 (1258) >3600 2738 (1021)
Pigs10000 10 74 (1) >3600 88 (1) >3600 85 (1)
Pigs1000 10 7 (3) >3600 8 (3) >3600 6 (2)
Pigs100 8 <1 (<1) 23 <1 (<1) 21 <1 (<1)
Water10000 9 71 (1) >3600 74 (2) >3600 78 (1)
Water1000 12 22 (20) >3600 23 (21) >3600 19 (17)
Water100 11 15 (8) >3600 17 (9) >3600 13 (6)
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Figure 14: Comparison of bcause and Dseptor : number of solved instances (x-axis) for different
per-instance time limits (y-axis), with constraint weights obtained by BDeu scoring using ESS
1 (top) and 10 (bottom) with prior probabilities of independence (α) as 0.5, 0.3, 0.1 and 0.01.

gardless of whether acyclicity is enforced, and times out less frequently, with745

7 and 52 timeouts, respectively, without enforcing acyclicity, 7 and 54 time-746

outs under acyclicity. Table 1 gives per-instance details for largest n instances,747

with the time to reach an optimal solution (without yet proving optimality)748

shown for bcause in parentheses. Furthermore, the Max-degree 3 column gives749

runtimes for bcause when enforcing that the maximum node degree is at most750

three. The better running time between bcause and Dseptor for each instance751

and search spaces is given in bold. Apart from the fact that bcause quite consis-752

tently exhibits better running times than Dseptor, we also observe that bcause753

exhibits very good anytime performance in that it reaches an optimal solution754

often relatively fast.755

4.3. Impact of Scoring Function Parameters756

To further study the scalability of bcause and Dseptor and the impact of the757

scoring function parameters used to generated the causal discovery instances,758
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Figure 15: Comparison of bcause and Dseptor : per-instance running times with constraint
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we generated further problem instances based on the same datasets using BDeu759

scoring with equivalent sample sizes of 1 and 10, and prior probabilities of760

independence (α) 0.5, 0.3, 0.1 and 0.01.761

As seen in Figure 14, for any fixed choice of scoring function parameters,762

bcause is able to solve more instances than Dseptor. A per-instance comparison763

for the individual parameter value pairs is shown in Figure 15. Interestingly,764

while bcause exhibits better overall performance than Dseptor on any choice765

of the parameters, the choice of scoring function parameters has a noticeable766

impact on the scalability of both bcause and Dseptor. We hypothesize this767

to originate from the intuition that lower prior probabilities of independence768

often result in more dependencies, which in turn may translate to many of the769

optimal graphs being denser. Considering bcause, the increased density may770

make the problem instances more difficult to solve in two ways. Firstly, the more771

independences there are, the easier it is for our independence-based heuristic to772

navigate in the search tree to the optimal solution. The second reason concerns773

the score-equivalent solutions in the overall search space, i.e., graphs that share774

the exact same weight. In particular, some causal graphs are able to satisfy the775

same set of (in)dependence constraints even after some edges are removed or776

reoriented (see Section 3.3). Intuitively, the more edges we assign within the777

search, the more equivalent solutions we are likely to encounter, which can to778

an extent be detrimental to search performance.779

5. Related Work780

Declarative Boolean satisfiability (SAT) solvers were first used in (Triantafil-781

lou et al., 2010; Triantafilou et al., 2010; Hyttinen et al., 2013) for developing782

approaches to discovering causal structures with latent confounders from several783

data sets in constraint-based fashion. Building on these ideas, Hyttinen et al.784

(2014) proposed the first exact approach to the problem setting considered in785

this article, in the form of a declarative framework in the language of answer set786

programming (ASP). This framework was subsequently adapted to formulate a787

relaxed version with focus on several experimental data sets (Magliacane et al.,788

2016) and to examine different types of relaxed faithfulness conditions (Zhalama789

et al., 2017). Furthermore, a different encoding was proposed by Borboudakis790

and Tsamardinos (2016). Forré and Mooij (2018) apply a different separation791

condition for non-linear cyclic models. Up until now, the current state of the792

art to the exact problem setting we consider here is the recent maximum satisfi-793

ability (MaxSAT) based approach developed by Hyttinen et al. (2017b), where794

domain-specific techniques were integrated to the extent possible to a MaxSAT795

solver, still relying on a MaxSAT solver to solve the search problem starting796

with a declarative encoding of the problem.797

Several inexact constraint-based algorithm are available for learning causal798

graphs under restricting assumptions. FCI learns acyclic graphs allowing for799

latent confounding and selection bias (Spirtes et al., 2000). CCD learns graphs800

with cycles (Richardson, 1996a). RFCI of Colombo et al. (2012) improves on801

efficiency of FCI. Claassen et al. (2013) developed a polynomial-time FCI-type802
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algorithm for discovering edge-minimal acyclic graphs with latent variables. Or-803

der independent versions of FCI and CCD by Colombo and Maathuis (2014) give804

more stable results in sparse high-dimensional settings.805

Apart from these methods aiming for scalability, there are approaches focus-806

ing on accuracy. Conservative FCI of Ramsey et al. (2012) performs additional807

independence tests to not output orientations due to conflicting constraints.808

Claassen and Heskes (2012) combine weighted independence constraints with809

an inexact FCI-type procedure. Ogarrio et al. (2016) use FCI orientation rules810

to detect latent confounders over a skeleton obtained by a greedy score-based811

approach. Jabbari et al. (2017) use RFCI to find candidate PAGs fitting data812

and to generate a set of (in)dependence constraints K. Then an optimal graph813

is found among the candidates over an objective function consisting of weighted814

independence constraints in K.815

For models with parametric restrictions, also score-based algorithms have816

been proposed. Evans and Richardson (2010) find maximum likelihood param-817

eters for binary semi-Markovian models and Drton et al. (2009) for linear SEMs818

with correlated errors (both acyclic). Subsequently high-scoring graphs can be819

found with a greedy procedure e.g. using a BIC penalty (Evans and Richardson,820

2010; Tsirlis et al., 2018).821

In contrast to this related work, our procedure tackles a more general search822

space allowing for cycles and latent confounders and makes no parametric as-823

sumptions as such; it also offers guaranteed optimality of the solution. Our824

approach also straightforwardly generalizes to several data sets with partially825

overlapping variable sets (e.g. by simply combining weights for the constraints826

testable in several data sets) (Tillman and Spirtes, 2011; Tillman et al., 2008;827

Triantafillou et al., 2010; Hyttinen et al., 2014). Finally, we note that differ-828

ent branch-and-bound style algorithms have also been proposed for learning the829

structure of Bayesian networks (Suzuki, 1996; Tian, 2000; Malone and Yuan,830

2014; van Beek and Hoffmann, 2015; Suzuki and Kawahara, 2017) and chordal831

Markov networks (Rantanen et al., 2017).832

6. Conclusions833

We developed a novel branch-and-bound approach to learning provably-834

optimal causal graphs in general search spaces. In contrast to the earlier ap-835

proaches heavily relying on declarative optimization solvers, our approach is836

a specialized algorithm for the problem, and integrates knowledge about the837

problem domain for speeding up search via problem-specific branching heuris-838

tics; optimized algorithms for evaluating the objective function of the problem839

during search and inference rules for detecting which edges are irrelevant in840

terms of d-connectivity under a current partial solution; as well as integrating841

linear programming relaxation computations for lower bounding applicable dur-842

ing search based on problem-specific unsatisfiable cores. As we explained, the843

approach also allows for integrating search space restrictions, such as acyclicity844

or a degree bound, to the search. Through an extensive empirical evaluation, we845

showed that our open-source implementation bcause of the approach improves846
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on current state of the art in exact approaches to learning optimal causal graphs847

in terms of running times on real-world datasets. We foresee various direction848

for further work. For example, the approach could be modified to use different849

separation criteria, to account for phenomena such as selection bias, measure-850

ment noise and also data recorded in multiple different contexts. For runtime851

improvements, the approach currently does not make use of problem-specific852

symmetries or parallel computations. The potential of further search heuristics,853

including lookahead, could also be studied. Furthermore, the impact of dataset854

properties on the relative runtime performance of Dseptor and bcause could855

yield further insights into which types of search techniques result in improved856

performance on individual datasets.857
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