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Abstract
Discovering graphical models over very general model spaces with high accuracy requires op-
timally combining conflicting (in)dependence constraints in sample data, and thus results in a
computationally hard combinatorial optimization problem. Recent advances in exact algorith-
mic approaches in this constraint-based setting build upon off-the-shelf declarative optimization
solvers. In this paper, we propose the first truly specialized exact search algorithm for optimal
causal graphs in a general model space, allowing both cycles and latent confounding variables.
Our problem-oriented approach enables directly incorporating domain knowledge for developing
a wider range of specialized search techniques for the problem, including problem-specific prop-
agators, branching heuristics, and bounding techniques, as well as directly incorporating different
constraints on the model space, such as sparsity and acyclicity constraints. We empirically evaluate
a first implementation of the approach, showing that it clearly outperforms current state of art in
exact constraint-based causal discovery on real-world instances.
Keywords: Graphical models; structure learning; causal discovery; exact search; optimization

1. Introduction

Discovering causal relations from sample data when allowing for latent confounding variables and
feedback (i.e., cycles) is a very challenging task in the field of graphical models and structure discov-
ery. Although many features of causal structures can in principle be determined even from passive
observation (Pearl, 2000; Spirtes et al., 2000), determining which structural features can be identi-
fied from finite sample data has proven difficult. For restricted settings without latent confounders
and cycles, i.e., for Bayesian networks, exact score-based structure discovery algorithms provide
provably globally optimal graphs (Yuan and Malone, 2013; Bartlett and Cussens, 2017; van Beek
and Hoffmann, 2015) for moderately-sized networks. A central motivation in developing efficient
exact algorithms, providing globally optimal results, is that better accuracy can be obtained (Malone
et al., 2015). However, much less progress has been made for exact discovery algorithms for more
general models spaces that allow for latent confounders and cycles.

For more general search spaces (allowing latent confounders), constraint-based causal discovery
algorithms (Spirtes et al., 2000; Pearl, 2000) combine (in)dependence constraints from statistical
tests to determine common features of the underlying causal graphs. However, such approaches
(including PC, CCD and FCI) scale up (wrt number of variables) by selecting independence tests
based on earlier test results (Spirtes et al., 2000; Richardson, 1996). Such greedy strategies can lead
to non-optimal accuracy in practice, as early mistakes in independence testing guide search towards
inaccurate solutions (Claassen and Heskes, 2012; Hyttinen et al., 2014).

Recently it has been shown that better accuracy can be obtained when a predetermined, larger set
of tests are conducted before the actual search, and conflicting test results are resolved in an optimal
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way via exact methods (Hyttinen et al., 2014; Magliacane et al., 2016; Borboudakis and Tsamardi-
nos, 2016). However, the general model space with latent confounders and cycles induces a com-
binatorial optimization problem over a drastically larger search space compared to more restricted
settings such as Bayesian network structures. Furthermore, the objective functions considered are
more complicated to evaluate. Thus improvements to (exact) algorithms for the very general model
space in terms of running time performance and scalability without trading off accuracy is a major
challenge. While there is recent progress (see Section 5 for more related work) towards improv-
ing exact approaches for the general setting, the current state-of-the-art approaches rely heavily
on generic off-the-shelf declarative methods such as Boolean satisfiability (SAT) solvers. While
declarative methods offer flexibility and remove implementation-level burden of building optimized
core search algorithms for the underlying combinatorial optimization tasks, relying on declarative
languages for encoding the general model space comes at the price of making it less straightforward
to use of key properties of the specific search space within such approaches (Hyttinen et al., 2017).

In this paper we propose a first truly specialized exact search algorithm for optimal causal
graphs, allowing both cycles and latent confounding variables. Our problem-oriented view en-
ables directly incorporating domain knowledge for a wider range of specialized search techniques,
including problem-specific propagators, branching heuristics, and bounding techniques, as well as
directly incorporating restrictions on the model space, such as sparsity and acyclicity constraints.
Our direct search over the general model space, implemented as a branch-and-bound approach, also
allows for using e.g. linear programming relaxations for obtaining tight bounding during search. We
show that a first implementation of the approach compares favourably with current state of the art
in exact constraint-based causal discovery on real-world data sets wrt running time performance.

2. Causal Graphs, d-separation and Causal Discovery

We consider the class G of causal graphs G = (V,E) with set of nodes V , where the edge relation
E is composed of directed causal edges and (symmetric) bi-directed edges (see Figure 1 for an
example). Bidirected edges X ↔ Z represent latent confounders, i.e., structures X ← L → Z,
where L /∈ V is an unmeasured common cause of two observed variables X and Z. When some
variables are unobserved, bi-directed edges allow for a canonical representation of causal structures
as a graph over the observed variables; Fig. 1 a) can be canonically represented by Fig. 1 b) (Pearl,
2000; Spirtes et al., 2000). We consider both allowing cycles (assuming absence of self-loops as they
are unidentifiable from (in)dependence constraints (Lacerda et al., 2008; Hyttinen et al., 2012)) and
assuming acyclicity; in the latter case the causal graphs are semi-Markovian graphs (Pearl, 2000).

The central concept connecting statistical dependence to reachability in the causal graph is the
following d-separation criterion. A walk between X and Y is a sequence of consecutive edges in
the graph (allowing for repeated edges and nodes). A node is a collider on a walk if both its adjacent
edges on the walk point into the node. A walk in graph G is d-connecting w.r.t. a conditioning set
C ⊆ V \ {X,Y } if every collider on the walk is in C and no other nodes on the walk are in C. Two
nodes are d-connected given a conditioning set C if there is at least one d-connecting walk between
them; otherwise they are d-separated. (This is equivalent to Pearl’s standard definition (Studený,
1998).) In Fig. 1 b), X and W are d-connected given Y by X ↔ Z → Y ← Z ← T ←W . Nodes
Y and Q are d-separated given W as all walks between violate the d-connection criterion at X .

Under the commonly used causal Markov assumption (Spirtes et al., 2000), d-separation in the
true acyclic structure implies statistical independence in the generated distribution. A similar result
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Figure 1: Example graphs: a) a causal graph with an unobserved node L, b) the canonical repre-
sentation of a) using bidirected edges.

on cyclic causal graphs applies under the following assumptions. The parametric models to cyclic
graphs are non-recursive structural equation models (SEMs). We make the standard assumption that
each data sample is obtained at the unique solution to the structural equations (given the external
disturbances). When the structural equations are linear, d-separation implies independence (Spirtes,
1995). The same result applies for discrete random variables, when every ancestral subset (i.e. the
structural equations for a set of nodes and their ancestors) has a unique solution (Forré and Mooij
(2017): Thm 3.8.12 on p. 112, see also Pearl and Dechter (1996), Neal (2000)).1

Under the commonly used faithfulness assumption (Spirtes et al., 2000), statistical dependence
becomes equivalent to (a type of) reachability in the graph: two random variables are statistically
dependent conditional on a set of variables C iff they are d-connected given C in the generating
causal structure G. That is, given enough samples from a model with structure in Figure 1 b) (or a)),
we would expect to find X statistically dependent on W given Y , and Y statistically independent of
Q given W . In the rest of the paper we use X ⊥⊥ Y |C (X 6⊥⊥ Y |C) to denote statistical independence
(dependence) and d-separation (d-connection).

In constraint-based causal discovery, the aim is to find a class of graphs whose d-separation and
d-connection properties respectively match the statistical independence and dependence relations
in the data. The (in)dependence constraints K are obtained by running statistical independence
tests on the data. Since the tests produce some errors on finite sample data, constraint-based causal
discovery can be viewed as the following abstract optimization problem (Hyttinen et al., 2014).

INPUT: A set K of conditional (in)dependence constraints over V , and a non-negative weight
w(k) for each k ∈ K.

TASK: Find a causal graph G∗ = (V,E∗) such that G∗ ∈ argminG∈G
∑

k∈K : G 6|=k w(k).

Our goal is to find a single graph G∗ that minimizes the sum of the weights of the (in)dependence
constraints not implied ( 6|=) by G∗. The weight function w(·) describes the reliability of each con-
straint (obtained by independently run tests): conflicts among the constraints are well-resolved when
the sum of the weights of the constraints not satisfied is minimized. An optimal graph G∗ is a rep-
resentative of the (Markov) equivalence class closest to the input constraints: there a several ways
to examine properties of the class (Hyttinen et al., 2013; Magliacane et al., 2016). Under the as-
sumptions, an exact solution to this formulation retains the consistency and completeness properties
of Hyttinen et al. (2013). Weights for the (in)dependence constraints can be obtained by Bayesian
model selection (Margaritis and Bromberg, 2009; Claassen and Heskes, 2012) or statistical hy-
pothesis testing (Triantafillou and Tsamardinos, 2015; Magliacane et al., 2016). The algorithm we
develop is weight-agnostic. For our experiments, we obtain weights from simple local Bayesian
model selection (Hyttinen et al., 2014).

1. Forré and Mooij (2017, 2018) also formulate a different separation condition for non-linear cyclic models. Our search
procedure can be modified to use this criterion instead.
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3. Branch and Bound for Causal Discovery

In this section we describe a first specialized branch-and-bound approach to finding optimal causal
graphs. After an overview we give details on how to efficiently evaluate the objective function under
partial solutions and thereby infer further knowledge of guaranteed dependencies and independen-
cies under partial solutions (Sect. 3.1), an effective domain-specific branching heuristic (Sect. 3.2),
and how to obtain tight bounds initially (Sect. 3.3) and during search using linear programming
relaxations (Sect. 3.4). Furthermore, we describe how structural restrictions on the model space,
such as enforcing acyclicity and degree-restrictions (Sect. 3.5), can be integrated.

The overall structure of the branch-and-bound search is shown in Algorithm 1. A partial solu-
tion G is a graph in which each edge is either decided absent, decided present or undecided; see
Figure 2 a) for an example. At each search tree node, on Line 2 we estimate a lower bound for
the weight of partial solution G. If this value is not less than the weight of the incumbent upper
bound solution G∗, we can safely close the current branch and bracktrack. If the current branch
cannot be closed, we move on to Line 3 to select a yet-undetermined edge e∗ in G. If no such edge
exists, i.e., e∗ = null, we update the incumbent upper bound solution G∗ to G if the current partial
solution has smaller weight. If multiple edge candidates exist, the most promising one is chosen via
a selected heuristic. On the other hand if e∗ 6= null, i.e., a decidable edge exists, we recursively
call Algorithm 1 to open two search tree branches, one where (a) e∗ is decided present in G and
one where (b) the edge is decided absent. The order in which we visit these branches is determined
heuristically, see Section 3.2 for details. At the end of the search, G∗ is guaranteed to be a solution
with globally optimal cost.

3.1 Efficient Evaluation of the Objective Function

Given that there are superpolynomial number of (in)dependence constraints with respect to the
number of graph nodes, evaluating the objective function can be a time-consuming task in itself. In
this section we provide ideas for efficient, incremental tracking of satisfiability for given constraints.
There are several different ways for checking whether (in)dependence constraints are satisfied by a
graph (Studený, 1998; Shachter, 1998). Building on such ideas, here our focus is to evaluate a large
number of constraints incrementally when going down a branch, and the constraints are evaluated
over a partial solution, a graph for which some edges are decided present and some absent.

For a partial solution, each (in)dependence constraint can have exactly one of three states: sat-
isfied, violated or undetermined. The states are defined in the following way. A complete solution
or completion can be obtained from a partial solution by deciding the state of all undecided edges.
A maximal completion maxc(G) of a partial solution has all undecided edges marked present (e.g.

Algorithm 1 The core structure of the branch and bound.
1: function SEARCH(Partial solution G)
2: if w(G∗) ≤ LOWERBOUND(G) then return
3: e∗ ← SELECTUNDECIDEDEDGE(G)
4: if e∗ 6= null then
5: Branch with (a) SEARCH(G with e∗ decided present) and
6: (b) SEARCH(G with e∗ decided absent) in the preferred order.
7: else if w(G) < w(G∗) then G∗ ← G

4



LEARNING OPTIMAL CAUSAL GRAPHS WITH EXACT SEARCH

Figure 2 a) with the dashed edges), a minimal completion minc(G) has all undecided edges absent
(Figure 2 a) without the dashed edges). An independence constraint is satisfied if the correspond-
ing d-separation holds in maxc(G), and violated if the corresponding d-separation does not hold in
minc(G). A dependence constraint is satisfied if the corresponding d-connection holds in minc(G),
and violated if the corresponding d-connection does not hold in maxc(G). All other constraints
are undetermined. For the partial solution in Figure 2a, constraint [X 6⊥⊥ Z | W ] is satisfied,
[X ⊥⊥ T | W ] is violated and constraint [X 6⊥⊥ T ] remains undetermined. In the beginning of the
search, when no edges are decided, the states of all constraints are undetermined.

When a new edge decision is made, we update the states of the input constraints with respect
to the current partial solution. This also keeps track of the total weight of the violated constraints
and provides a simple lower bound. Furthermore, the satisfied/violated information can be given
to a linear programming solver so that the stronger, core-based lower bounds stay up to date (Sec-
tion 3.4). Note that the choice of how regularly we keep the constraint states up to date does not
affect the correctness of the search, as long as all complete solutions are evaluated exactly.

At each search node, we branch on a currently undecided edge to be either present or absent
in the partial solution. When deciding an edge present, assuming that acyclity or an edge degree
limit is not enforced, we only check whether new d-connections are formed in the minimal comple-
tion of the partial solution. When deciding an edge absent, we only check whether d-connections
disappeared from the maximal completion of the partial solution.

An efficient way to update constraint states for a given node pair after an edge decision is
proposed in Algorithm 2. For example, consider a case where an edge A → B is decided present
in a partial solution G. To update constraint states for a node pair (X,Y ), we first check whether
there could be a new d-connection between X and Y in the minimal completion G′ (Line 3). If
not, the constraints need not be updated. Otherwise, we identify a set of unavoidable colliders C+

and non-colliders C− on any d-connecting walk from X to Y in G′ (Line 4 and 5). We can omit
checking any constraint states for X and Y where conditional set does not contain all the colliders
C+ or contains some non-colliders C−. Each item in these sets halves the number of constraints
that we need to check for the node pair in question. Intuitively, for any relatively sparse partial
solution, there is likely a shared bottleneck for all walks between two nodes.

There is no need for the C+/C− sets to contain every single unavoidable collider/non-collider
and hence we need to make a tradeoff between how much time is used to gather C+/C− and how
much time is saved by having those sets. For this reason we use the following straightforward
method for gathering only some of the unavoidable colliders/noncolliders when traversing from
node X to Y in the (minimal/maximal) completion G′ of partial solution G. Let node A ∈ {X,Y }
be a starting point and let V = ∅ be the set of visited nodes within the procedure.

1. Let nb(A) be the neighbours of A in G′.

Algorithm 2 An efficient method for updating constraint states after an edge decision.
1: function CHECKCONSTRAINTS(Partial solution G, Node pair (X,Y ), Edge e )
2: if e is present in G then G′ ← minc(G) else G′ ← maxc(G)withe
3: if e does not affect the d-connectivity of X and Y in G′ then return
4: C+ ← Unavoidable colliders on d-connections between X and Y in G′.
5: C− ← Unavoidable non-colliders on d-connections between X and Y in G′.
6: Check constraints [X ⊥⊥ Y | Z] (corr. [X 6⊥⊥ Y | Z]) s.t. C+ ⊆ Z and Z ∩ C− = ∅
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2. If A /∈ {X,Y } and for all N ∈ nb(A) the edge A → N is not present in G′, update
C+ ← C+ ∪ {A}.

3. If A /∈ {X,Y } and for all N ∈ nb(A) \ V neither A ← N nor A ↔ N is present in G′,
update C− ← C− ∪ {A}.

4. If |nb(A) \ V | 6= 1 or nb(a) \ V ⊆ {X,Y }, terminate the procedure.
5. Let B ∈ nb(A)\V . If neither A→ B nor A↔ B is present in G′, update C− ← C−∪{B}.
6. Assign V ← V ∪ {A} and A← B, and return to step 1.

We execute this procedure starting from both X and Y . For example, for the partial solution in
Figure 2 a), we find that node Z is an unavoidable non-collider in all d-connecting walks between
X and Y (given any conditioning set) in the corresponding minimal completion.

3.2 Problem-Specific Branching Heuristics

The branching heuristics applied within the branch and bound are crucial for the performance of the
algorithm. In this section we propose problem-specific heuristics for our approach.

Let K+(X,Y ) (K−(X,Y )) be the set of undetermined dependence (independence) constraints
between nodes (X,Y ) by the current partial solution. We will also use K+(X) =

⋃
Y K+(X,Y )

(K−(X) =
⋃

Y K−(X,Y )) to denote the undetermined dependence (independence) constraints in-
volving node X . Furthermore, let w+(X,Y ), w−(X,Y ), w+(X), w−(X) be the sum of weights of
the constraints in sets K+(X,Y ),K−(X,Y ),K+(X),K−(X), respectively. We use the following
rules for choosing the next pair for which an edge to be decided absent or present. Here (X,Y ) and
(A,B) denote distinct pairs of nodes.

1. Choose (X,Y ) over (A,B) if all edges are decided between (A,B) or more edges have been
decided present between (A,B) than between (X,Y ).

2. Choose (X, Y) over (A,B) if w−(A,B) ≤ w−(X,Y ) and w−(X,Y ) > 0.
3. Choose (X, Y) over (A,B) if w+(X)+w+(Y )+maxk∈K+(X,Y )w(k) ≥ w+(A)+w+(B)+

maxk∈K+(A,B)w(k).
The first rule captures our preference of setting edge decisions throughout the entire graph instead
of deciding all edges between a single pair of nodes immediately. The second rule captures the
preference for edges absences when the involved nodes are found independent given one or many
conditioning sets. Deciding these absences of edges early via the heuristic directs the search towards
sparser solutions for which d-connection checks are faster to evaluate. This relates to previous litera-
ture: PC algorithm decides the absence of an edge between X,Y upon finding a single conditioning
set given which the nodes are independent (Spirtes et al., 2000). Thus, a problem-specific greedy
(and often unreliable) strategy can act as a good heuristic in exact search. Finally via the third rule
we prefer satisfying strong dependencies with large weights using direct connections.

After the best node pair (X,Y ) is chosen out of the possible options, we branch in the search
by deciding an arbitrary yet-undecided edge between the nodes (X → Y , X ← Y or X ↔ Y ). We
branch by deciding the edge absent first iff [X ⊥⊥ Y | Z] ∈ K for any Z ⊆ V \ {X,Y }.

3.3 Obtaining an Initial Solution as an Upper Bound

Algorithm 3 describes a simple method for computing an initial upper bound solution G∗. We
start with empty graphs G′ and G∗. We traverse dependence constraints [X 6⊥⊥ Y | Z] ∈ K in
descending weight order (Triantafillou et al., 2010) and add corresponding edges X → Y to G′

(unless this would violate possible acyclicity or degree bounds; see Section 3.5). If at any point
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Figure 2: Left: A partial solution; regular edges have been decided present, dashed edges remain
undecided, others are decided absent. Right: Example of core-based lower bounding.

G′ has lower weight than G∗, G∗ is updated to G′. While there are a number of ways to obtain an
initial solution (any method, e.g. FCI (Spirtes et al., 2000) would do), we found this procedure fast
and effective in finding a good bound, and it also integrates directly to our search procedure.

3.4 Computing Tight Lower Bounds by Linear Programming

We now describe how we compute strong lower bounds using core patterns (Hyttinen et al., 2017).
An unsatisfiable core is a set of (in)dependence constraints that cannot be not simultaneously sat-
isfied by any graph in G. Some example cores are marked by ellipses in Figure 2 b). We use the
seven core patterns from (Hyttinen et al., 2017) to find cores for the input dataset in the beginning
of the search. Using these, we can compute lower bounds by formulating a minimum-cost hitting
set problem where the unsatisfiability cores represent the sets and the (in)dependence constraints
represent the elements. The objective is then to find a minimum-cost subset of constraints that
contains something from each core. To obtain the bounds in practice, we solve linear relaxations
of a standard integer programming formulations of these hitting set problems using a linear pro-
gramming (LP) solver, similarly as Hyttinen et al. (2017). Furthermore, as we update the constraint
states (Section 3.1) for the current partial solution, we can adapt our hitting set computation to take
this information into consideration. For example, if some constraint is known to be satisfied in the
partial solution, we are not allowed to choose it into our hitting set. Conversely, a hitting set has
to contain all the constraints that are known to be unsatisfied for the partial solution. This way the
core-based lower bounds are constantly updated to match the current search tree branch.

As an example, suppose we have the cores in Figure 2 b) and the partial solution satisfies X 6⊥⊥
Z|Y,W and X ⊥⊥ Y |W (in blue), and violates Y ⊥⊥ Q|W and Q ⊥⊥ Z|W (in red). One constraint
in each core marked by ellipses must be chosen. The violated constraint Y ⊥⊥ Q|W hits the core

Algorithm 3 A naive algorithm for computing an initial UB solution.
1: function NAIVEUB
2: Initialize empty graphs G∗ and G′.
3: K ′ ← {[X 6⊥⊥ Y | Z] ∈ K}
4: while K ′ 6= ∅ do
5: Select [X 6⊥⊥ Y | Z] ∈ argmaxk∈K′ w(k).
6: if X → Y can be added to G′ without violating acyclicity/sparsity constraints then
7: G′ ← G′ with edge X → Y added.
8: if w(G∗) > w(G′) then G∗ ← G′

9: K ′ ← K ′ \ {[X 6⊥⊥ Y | Z]}
10: return G∗
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marked by the vertical ellipse. If for simplicity the weights are all constants, the remaining cores
can be optimally hit by X ⊥⊥ Y |Z,W (in magenta). Thus, the final lower bound for the partial
solution is w(Y ⊥⊥ Q|W ) + w(Q ⊥⊥ Z|W ) + w(X ⊥⊥ Y |Z,W ), where the last term in the sum
tightens the bound compared to the simple bound due to just violated constraints.

3.5 Imposing Acyclicity and Sparsity

Our approach also allows for integrating different structural model space restrictions. We now
explain how to enforce two types of constraints: acyclicity and sparsity.

To enforce acyclicity (in terms of directed edges), we keep track of the set R[X] of nodes
reachable by a directed path of decided edges from node X in the current partial solution. Initially
R[X] = ∅ for each node X . After an edge X → Y is decided present, we update R[Z] ←
R[Z]∪{Y }∪R[Y ] for each Z ∈ {X}∪ {Z ′ : X ∈ R[Z ′]}. Using this information, we can decide
any edge X → Y as absent in all completions of the current partial solution where X ∈ R[Y ].

We can also enforce sparsity constraints, such as a bound on the maximum degree of nodes (as
used by Claassen et al. (2013)), in a straightforward way. We can simply keep track of the degree
for each node in the current partial solution, and decide all the yet-undecided edges between a node
pair to be absent if the degree for either node has already reached the maximum allowed value.

4. Empirical Evaluation

We report on an empirical comparison between a first implementation bcause of the branch-and-
bound approach detailed in Section 3, and the recently proposed approach dseptor (Hyttinen et al.,
2017) representing the current state of the art. We use CPLEX as the linear programming solver for
obtaining core-based bounds. The benchmark instances were generated from real-world datasets
often used for benchmarking exact Bayesian network structure learning algorithms (Yuan and Mal-
one, 2013; Bartlett and Cussens, 2017); see Table 1. We considered suitable-sized (n) subsets of
the first non-constant variables in the datasets, the remaining variables becoming thus latent (latent
variables are supported by our general model space), resulting in a total of 119 benchmark instances.
The data is discrete, so the constraint weights are obtained by (local) Bayesian model selection with
the BDeu (ESS=10) score. The experiments were run under a 1-h per-instance time limit on Intel
Xeon E5-2680 v4 2.4GHz processors and 256-GB RAM.

The results are shown in Figure 3 and Table 1, with comparisons of bcause and dseptor both
without structural restrictions on the model space (Fig. 3 middle) and when enforcing acyclicity
(Fig. 3 right). The plot in Fig. 3 left gives the number of instances solved (x-axis) by each approach
under different per-instance time limits (y-axis); the further to the right the line, the better. On a
clear majority of the benchmarks bcause exhibits noticeably better runtimes than dseptor regardless
of whether acyclicity is enforced, and times out less frequently, with 7 and 46 timeouts, respectively,
without enforcing acyclicity, 7 and 50 timeouts under acyclicity. Table 1 gives per-instance details
for largest n instances, with the time to reach an optimal solution (without yet proving optimality)
shown for bcause in parentheses. Furthermore, the Max-degree 3 column gives runtimes for bcause
when enforcing that the maximum node degree is at most three. We also observe that bcause exhibits
very good anytime performance in that it reaches an optimal solution often relatively fast.
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Table 1: Running times of bcause and dseptor over different model spaces.
Running times (s)

General Acyclic Max-degree 3
Dataset n bcause dseptor bcause dseptor bcause
Adult 7 2837 (780) >3600 1773 (234) >3600 1535 (178)
Alarm 9 540 (6) >3600 532 (7) >3600 579 (7)
Autos 9 519 (7) >3600 505 (6) >3600 502 (7)
Bands 8 364 (3) >3600 291 (2) >3600 367 (3)
Epigenetics 7 >3600 16 >3600 144 >3600
Flag 12 209 (158) >3600 235 (188) >3600 225 (173)
Heart 12 160 (29) 2290 190 (27) 2287 176 (20)
Hepatitis 12 225 (32) >3600 271 (30) >3600 241 (21)
Horse.23 9 155 (9) >3600 161 (8) >3600 173 (10)
Horse 11 51 (8) >3600 60 (8) >3600 57 (6)
Image 8 949 (30) >3600 2487 (57) >3600 1041 (72)
Imports 8 335 (2) >3600 308 (2) >3600 342 (2)
Letter 7 >3600 433 >3600 549 >3600
LungCancer 10 692 (24) >3600 835 (27) >3600 794 (26)
Meta 7 >3600 112 >3600 132 >3600
Mushroom1000 7 >3600 1187 >3600 767 >3600
Mushroom8124 7 >3600 662 >3600 800 >3600
Parkinsons 7 500 (33) >3600 264 (10) >3600 217 (14)
Sensors 7 >3600 62 >3600 144 >3600
Soybean 11 44 (9) 983 53 (9) 930 47 (6)
Spectf 11 53 (9) 798 63 (9) 818 55 (5)
Statlog 7 46 (18) 32 377 (35) >3600 39 (14)
SteelPlates 6 618 (566) 56 157 (115) 31 62 (23)
Voting 9 900 (12) >3600 942 (12) >3600 968 (13)
Water 9 589 (17) >3600 837 (4) >3600 615 (11)
Wdbc 8 75 (50) 2997 52 (30) 2779 62 (38)
Wine 9 1316 (15) >3600 1242 (15) >3600 1387 (17)
Zoo 7 244 (112) >3600 142 (43) >3600 222 (83)
alarm10000 9 28 (28) 14 11 (11) 14 5 (5)
alarm1000 10 203 (57) >3600 184 (35) >3600 185 (23)
alarm100 9 28 (4) 389 30 (5) 406 31 (4)
asia10000 8 177 (88) 276 151 (51) 328 324 (112)
asia1000 7 154 (<1) 41 82 (<1) 31 136 (35)
asia100 7 4 (<1) 2 2 (<1) 2 3 (<1)
carpo10000 11 212 (121) 2727 151 (100) 2613 140 (87)
carpo1000 10 2258 (3) >3600 1999 (3) >3600 2277 (2)
carpo100 10 65 (2) >3600 62 (2) >3600 67 (2)
Diabetes10000 9 >3600 748 >3600 1210 >3600
Diabetes1000 8 <1 (<1) 6 1 (<1) 6 <1 (<1)
Diabetes100 9 897 (<1) >3600 1141 (<1) >3600 1031 (<1)
hailfinder10000 10 13 (2) 163 16 (2) 169 14 (1)
hailfinder1000 9 3 (<1) 63 3 (<1) 36 3 (<1)
hailfinder100 8 2084 (<1) >3600 2546 (<1) >3600 2326 (<1)
insurance10000 9 398 (4) >3600 401 (4) >3600 428 (4)
insurance100 10 1053 (14) >3600 1148 (17) >3600 1105 (15)
Link10000 12 353 (19) >3600 348 (19) >3600 337 (18)
Link1000 10 22 (2) 207 24 (2) 225 22 (1)
Link100 10 974 (13) >3600 1135 (16) >3600 1082 (14)
Mildew10000 10 14 (13) 527 16 (15) 595 15 (13)
Mildew1000 8 4 (<1) 36 5 (<1) 37 4 (<1)
Mildew100 6 <1 (<1) 8 <1 (<1) 13 <1 (<1)
Pigs10000 10 561 (1) >3600 634 (1) >3600 668 (1)
Pigs1000 10 16 (11) 3544 17 (12) >3600 17 (12)
Pigs100 8 1 (<1) 24 2 (1) 20 1 (1)
Water10000 9 98 (4) >3600 95 (4) >3600 107 (5)
Water1000 12 122 (120) >3600 135 (133) >3600 142 (139)
Water100 11 59 (39) >3600 67 (46) >3600 64 (42)
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Figure 3: Running time performance comparison: bcause v dseptor.

5. Related Work

There has been noticeable interest in developing algorithmic solutions to problem settings related to
ours. Declarative solvers, specifically Boolean satisfiability (SAT) solvers, were first used in (Tri-
antafillou et al., 2010; Triantafillou and Tsamardinos, 2015; Hyttinen et al., 2013) for developing
approaches to discovering causal structures from experimental data sets. The first exact approach to
the problem we focus on here was proposed in (Hyttinen et al., 2014), where a declarative frame-
work in the language of answer set programming (ASP) was proposed to obtain optimal solutions.
Relaxing requirements of optimal solutions, this framework was subsequently adapted to formulate
a relaxed version with focus on several experimental data sets (Magliacane et al., 2016) and to exam-
ine different types of relaxed faithfulness conditions (Zhalama et al., 2017). Furthermore, a different
encoding was proposed in (Borboudakis and Tsamardinos, 2016). Up until now, the current state of
the art to the exact problem setting we consider here is the recent Maximum satisfiability (MaxSAT)
based approach developed in (Hyttinen et al., 2017), where specific domain-specific techniques were
integrated to the extent possible to a MaxSAT solver, still relying on a MaxSAT solver to solve the
search problem starting with a declarative encoding of the problem.

Beyond exact and declarative approaches, several domain-specific algorithms have been pro-
posed for discovering causal models with cycles or latent confounders: FCI learns acyclic graphs
allowing for latent confounding and selection bias (Spirtes et al., 2000), CCD learns graphs with
cycles (Richardson, 1996). FCI was further developed later by (Colombo et al., 2012) for efficiency.
Claassen and Heskes (2012) combine weighted (in)dependence constraints with a similar procedure.
A polynomial-time algorithm for discovering edge-minimal acyclic graphs with latent variables was
recently developed Claassen et al. (2013). Further related work in score-based learning includes
Tsirlis et al. (2017) and Evans and Richardson (2010) who score and learn causal graphs with latent
confounding assuming linear Gaussianity or binary variables respectively.

Finally, we note that different branch and bound style algorithms have also been proposed for
other structure learning tasks (Suzuki, 1996; Tian, 2000; Malone and Yuan, 2014; van Beek and
Hoffmann, 2015; Suzuki and Kawahara, 2017; Rantanen et al., 2017).

6. Conclusions

We proposed a first truly specialized exact algorithm for the problem of finding optimal causal
graphs in a general model space. A key benefit of our approach is direct integration of domain
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knowledge for developing specialized search techniques for the problem. To this end, we described
directly implementable branching heuristics, evaluation and propagation techniques, as well as spe-
cialized and LP-based bounding techniques. Further, we explained how model space restrictions
such as acyclicity and sparsity—without having to resort to declaratively enforcing acyclicity—can
be integrated. A first implementation of the approach exhibits better running time performance than
current state of art in exact constraint-based causal discovery on real-world data sets. We foresee
various direction for further work. For example, the approach allows for extensions towards dif-
ferent separation criterions, to allowing selection bias, and to the use of multiple experimental data
sets. For runtime improvements, the approach currently does not make use of problem-specific
symmetries, which is also a non-trivial yet promising direction for further work.
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P. Forré and J. M. Mooij. Constraint-based causal discovery for non-linear structural causal models
with cycles and latent confounders. In Proc. UAI, 2018.

A. Hyttinen, F. Eberhardt, and P. O. Hoyer. Learning linear cyclic causal models with latent vari-
ables. J. Mach. Learn. Res., 13:3387–3439, 2012.

A. Hyttinen, P. O. Hoyer, F. Eberhardt, and M. Järvisalo. Discovering cyclic causal models with
latent variables: A general SAT-based procedure. In UAI, pages 301–310. AUAI Press, 2013.

A. Hyttinen, F. Eberhardt, and M. Järvisalo. Constraint-based causal discovery: Conflict resolution
with answer set programming. In UAI, pages 340–349. AUAI Press, 2014.

A. Hyttinen, P. Saikko, and M. Järvisalo. A core-guided approach to learning optimal causal graphs.
In IJCAI, pages 645–651. ijcai.org, 2017.

G. Lacerda, P. Spirtes, J. Ramsey, and P. O. Hoyer. Discovering cyclic causal models by independent
components analysis. In UAI, pages 366–374. AUAI Press, 2008.

11



RANTANEN, HYTTINEN, JÄRVISALO
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