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Chapter 24

Maximum Satisfiability
Fahiem Bacchus, Matti Jarvisalo, and Ruben Martins

Maximum satisfiability (MaxSAT) is an optimization version of SAT that is
solved by finding an optimal truth assignment instead of just a satisfying one. In
MaxSAT the objective function to be optimized is specified by a set of weighted
soft clauses: the objective value of a truth assignment is the sum of the weights
of the soft clauses it satisfies. In addition, the MaxSAT problem can have hard
clauses that the truth assignment must satisfy. Many optimization problems can
be naturally encoded into MaxSAT and this, along with significant performance
improvements in MaxSAT solvers, has led to MaxSAT being used in a num-
ber of different application areas. This chapter provides a detailed overview of
the approaches to MaxSAT solving that have in recent years been most success-
ful in solving real-world optimization problems. Further recent developments in
MaxSAT research are also overviewed, including encodings, applications, prepro-
cessing, incomplete solving, algorithm portfolios, partitioning-based solving, and
parallel solving.

24.1. Introduction

Computational problems that arise from real-world application scenarios often
involve constraints that specify the feasible solutions and some notion of cost
or goodness associated with the different solutions. Whereas satisfiability (SAT)
provides no direct way of distinguishing solutions in terms of their cost or good-
ness, maximum satisfiability (MaxSAT for short) generalizes SAT with a over
the solutions. This cost function is specified by a set of soft clauses with weights:
the cost of a solution is the sum of the weights of the soft clauses it fails to satisfy.
(Equivalently, the objective value of a solution is the sum of the weights of the
soft clauses it satisfies.)

MaxSAT was for most of its history used mainly as a theoretical problem in
the analysis of the computational complexity of optimization problems. Within
the last decade, however, with the rise of increasingly effective MaxSAT solving
techniques and solver implementations, MaxSAT has changed from a theoretical
formalism into a viable constraint optimization paradigm. The approach of en-
coding various NP-hard optimization problems into MaxSAT and then utilizing



MaxSAT solvers has proved to be a viable solution technique capable of efficiently
solving problems from a variety of domains. These domains include combina-
torics, planning and scheduling, verification, security and software management,
data analysis and machine learning, knowledge representation, and bioinformat-
ics, among others. Many problems from these domains have natural propositional
encodings on which MaxSAT is particularly effective, often more effective than
other constraint optimization paradigms such as integer programming (see, e.g.,
[BJ17] and the results of [BJM14] in comparison with those of [PFL14]). Sec-
tion 24.3.2 discusses some of these applications of MaxSAT and provides refer-
ences to the relevant literature.

A series of MaxSAT evaluations [ALMPO08, HLdGS08, ALMP11, ABJM17,
BJM18, BJM19], running yearly since 2006 has supported the development of
increasingly robust and efficient MaxSAT solvers containing new algorithmic in-
sights. The evaluations provide a yearly snapshot of the current state of the
art in MaxSAT solving, and also provide standard benchmark sets for the sci-
entific evaluation of new algorithmic ideas for MaxSAT. The evaluation series
is focused on complete MaxSAT solving, i.e., approaches that provide optimal
solutions. Recently, however, the evaluations have also added a track for incom-
plete solvers, with the motivation of developing approaches which can rapidly find
good—though not necessarily optimal—solutions.

Complementing Chapter 23, where various branch-and-bound approaches to
MaxSAT solving are described (e.g., [HLO08, LMMP10]), the focus of this chapter
is on recent algorithmic advances in MaxSAT solving. In particular, we overview
MaxSAT solving approaches that utilize iterative SAT solver calls, namely, the
model-improving, the core-guided, and the implicit hitting set approaches to
MaxSAT solving, which at the time this chapter was written constitute the main
algorithmic approaches for solving large MaxSAT instances arising from real-
world domains.

The model-improving approach is based on querying a SAT solver for a solu-
tion of lower cost until the solution cost can no longer be improved. Cardinality
constraints (Section 24.4.2.1) are used to force the SAT solver to find a lower cost
solution. The core-guided and implicit hitting set approaches iteratively query a
SAT solver for unsatisfiable cores , which are subsets of soft clauses of which at
least one must be falsified by any solution. In the core-guided approaches, these
cores are used to construct cardinality constraints that allow the SAT solver to
falsify one, but no more than one, soft clause from each core. If the problem re-
mains unsatisfiable, a new core will be found and in the next call the SAT solver
will be additionally allowed to falsify one, but no more than one, soft clause of
this new core. Eventually, no more cores will be found, i.e., the problem will be-
come satisfiable and the solution returned by the SAT solver will falsify one soft
clause from each core. Since every solution must falsify at least one soft clause
from every core the returned solution will be optimal.

In the implicit hitting set approach cardinality constraints are not used, which
in practice makes the SAT solver calls faster. Rather a minimum-cost hitting set
of the accumulated set of cores is computed. The cost of this hitting set provides
a lower bound on the cost of optimal solutions, as every solution must incur the
cost of at least one soft clause from every core (i.e., it must falsify at least one soft



clause from every core). The SAT solver is then asked to find a solution satisfying
all of the soft clauses not in the computed hitting set. If it succeeds that solution
must be optimal as it will have a cost equal to the lower bound; and if it does
not it will find another core, augmenting the set of cores, and a new hitting set
can be computed.

These two approaches rely on assumption-based SAT solving to extract cores
when no satisfying solution can be found. Assumption-based SAT solving will be
described in Section 24.4.1.2; for further details various aspects of modern SAT
solvers we refer the interested reader to Chapter 4.

Beyond overviewing these recent algorithmic advances, we also overview some
of the recent successful applications of MaxSAT solving, and briefly discuss some
further advances in the field, including preprocessing, parallel solving, and incom-
plete solving.

In the rest of this chapter, we first formalize the MaxSAT problem. Then
using this formalism we discuss some encoding techniques that can be used when
one wants to encode different problems into MaxSAT, and give an overview of
a range of different application problems that have been solved by encoding to
MaxSAT and using MaxSAT solvers (Section 24.3). With this motivation of the
usefulness of MaxSAT, we turn to the bulk of the chapter: a presentation of recent
algorithmic techniques for solving MaxSAT, preceded by some additional needed
background (Section 24.4). Finally, we close the chapter with a discussion of other
recent developments (Section 24.5) and a summary and outlook on MaxSAT.

24.2. The MaxSAT Formalism

As with SAT, in MaxSAT we deal exclusively with propositional formulas ex-
pressed in conjunctive normal form (CNF): each propositional variable and its
negation are literals; a clause is a disjunction of literals; and a CNF formula is a
conjunction of clauses. Since duplicated disjuncts and conjuncts can be discarded
a clause can also be viewed as being a set of literals, and a CNF formula as being
a set of clauses.

Given a CNF formula F' we use vars(F') to denote the set of propositional
variables appearing in F. A truth assignment w for F' assigns to a truth value
(true or false) to each propositional variable p € vars(F'). For a literal [, = makes
[ true (m = 1) if [ is the variable p and 7(p) = true or if [ is —p and 7(p) = false.
For a clause ¢, 7 satisfies ¢ (7 = ¢) if 7 makes at least one of the literals [ in ¢
true; and 7 satisfies F' (or is a model of F') (7 = F)), if it satisfies every clause of
F. Given a set of propositional variables A C vars(F'), and a truth assignment
for F' we denote the restriction of m to A by m|4; 7|4 is a new truth assignment
identical to 7 but only assigning truth values to the variables of A.

A MaxSAT formula F is a CNF formula that is partitioned into  hard
and soft clauses: F' = hard(F') U soft(F). The hard clauses must be satisfied,
while the soft clauses can be falsified at a cost. In particular, each soft clause
¢ € soft(F') has an associated positive integral weight wt(c) specifying the cost
of falsifying that clause.! For example, F' = {(x,y), (—x,7, 2), (-2)2, (-y)s} is a

11t is possible to generalize the framework to accommodate rational valued weights, and



MaxSAT formula where the first two clauses are hard and the third and fourth
clauses are soft with weights 2 and 5 respectively. We will use subscripted clauses
to indicate that they are soft, where the subscript is the soft clause’s weight.

A feasible solution of F'is a truth assignment to the variables of F', vars(F'),
that satisfies hard(F'). The cost of a feasible solution m of F' is the sum of
the weights of the soft clauses it falsifies: cost(m, ') = 3 1. ccsoft(F)anpecy WHE)-
When F is clear from the context we often write just cost(m) to denote cost(m, F).

An optimal solution 7 of F' is a feasible solution with minimum cost:
cost(m, F') < cost(n’, F) for all feasible solutions n’ of F. An optimal solution
could equivalently be defined as a feasible solution satisfying a maximum weight
of soft clauses. We will also use cost(F') to denote the cost of an optimal solution
of F', and if H is a set of soft clauses cost(H) to denote the sum of the weights
of its clauses ) ., wt(c).

Definition 1 (The MaxSAT problem). Given a MaxSAT formula F' find one of
its optimal solutions.

Note that F' has feasible solutions if and only if hard(F’) is satisfiable. Thus
F will have some optimal solutions if and only if hard(F') is satisfiable. In the
rest of this chapter, we will assume that hard(F') is satisfiable. In practice, one
can check the satisfiability of hard(F') with a SAT solver prior to searching for
an optimal solution. In fact, such a check is the first step of many MaxSAT
algorithms.

Another useful concept is that of a core. In SAT, a core is defined to be
an unsatisfiable subset of the input formula. In MaxSAT, since the hard clauses
must always be satisfied, it is more useful to define a core as follows.

Definition 2 (MaxSAT core). Given a MaxSAT formula F, any subset K of
soft(F') such that K U hard(F’) is unsatisfiable, is a core of F. That is, K is a

core if and only if every feasible solution of F' falsifies at least one soft clause of
K.

Historically, restricted forms of MaxSAT have been defined. In particular,
a partial MaxSAT formula F' is one in which hard(F') is non-empty and a un-
weighted MaxSAT formula F' is one in which all the soft clauses have the same
weight (which, without loss of generality, can be assumed to be one). Thus
four different types of MaxSAT formulas were traditionally recognized: (1) un-
weighted MaxSAT, (2) weighted MaxSAT, (3) unweighted partial MaxSAT, and
(4) weighted partial MaxSAT. The definition given above corresponds to the most
general case (4). In recent years the importance of these distinctions has faded
as most MaxSAT solvers can handle the most general input. It is still the case,
however, that whether or not the instance is weighted or unweighted has an im-
pact on which algorithms perform better. Hence, the yearly MaxSAT evaluations
use different tracks for weighted and unweighted instances.

some MaxSAT solvers (e.g., the implicit hitting set solvers described in Section 24.4.6) can
solve problems containing soft clauses with floating point weights.



24.3. Encodings and Applications

Significant performance improvements in MaxSAT algorithms over the years have
led to an increasing number of applications of MaxSAT. To provide the reader
with a better sense of the practical usefulness of MaxSAT, we first review some
of these applications as well as some of the encoding techniques often applied to
translate optimization problems into MaxSAT.

24.3.1. Encodings

Boolean optimization problems that can be expressed with linear constraints and a
single optimization function are well-suited to be encoded and solved by MaxSAT
solvers. However, it can be the case where the problem requires solving a multi-
objective optimization function, or that the problem requires soft constraints to
be modeled as a group of soft clauses instead of individual soft clauses. In those
cases, MaxSAT can still be used with the encodings described in Sections 24.3.1.1
and 24.3.1.2, respectively. Moreover, problems that are originally encoded in
different declarative optimization languages and approaches, such as MaxCSP,
MinSAT, and pseudo-Boolean constraints can also be translated into MaxSAT,
as overviewed in Section 24.3.1.3.

24.3.1.1. Boolean Multilevel Optimization

The class of Boolean optimization problems that can be represented using multi-
objective functions with a predefined hierarchy of importance over the objective
functions is known as Boolean multilevel optimization (BMO) [MAGL11].

Definition 3 (Boolean multilevel optimization). Boolean multilevel optimization
(BMO) problems [MAGL11] consist of a set of sets of soft clauses C' = {C4, ...,
Cyn}, where {C1, ..., C,,} forms a partition of C, and each clause ¢ € C; has the
same weight w;. A MaxSAT formula is an instance of BMO if and only if the
following condition holds:

wi> > wfCl with i=1,...,m—1
1+1<j<m

In words, in BMO problems it is more valuable to satisfy a single soft clause
in the set C; than to falsify all soft clauses in the subsequent sets C;y1,...,C,.

Example 1. Consider the instance

F :{(_‘xla $2), (_‘xhxél), (_'xla _\.1'5), (_'x37 T2, .1'4),
(ﬂl'l)l, (ﬂﬂfz)l, (_‘:US)la (TT4)1, (—'335)1}-
Assume that instead of all soft clauses having the same priority, the user wants to
give priority to satisfying some of the soft clauses over others. For example, say the

user wants to solve a multilevel optimization problem where they have three objec-
tives specified by Oy = {(=z1)}, O2 = {(-22)}, and O3 = {(—z3), (-24), (-25)},
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with O; being strictly more important than Oy and Os being strictly more impor-
tant than Osz. This problem can be solved with MaxSAT by associating suitable
weights to each soft clause.

In this example, considering the formula F' and the ordered optimization
objectives O1,05 and O3 we would transform F into FBMO by associating all
soft clauses in O3 with the weight 1. All soft clauses in O with the weight equal
to the sum of the weights of the soft clauses in O3 plus 1 (3+1 = 4). Soft clauses
in O; will have the weight 8 which corresponds to the sum of the weights of the
soft clauses in Oy and Og plus 1 (3+4+1 = 8). The intuition behind these weights
is that the cost of falsifying a single soft clause in O; is greater than falsifying
all soft clauses in O, and O3. Therefore, these costs capture the lexicographical
order between the objective functions: O; > Oy > O3z. We arrive at the instance

FBMO :{(_‘xla ZUQ), (_|5C1, x4)’ (—Q:l, —|:135), (—|.§U37x27 334)7

(m1)s, (m22)a, (m23)1, (724)1, (5T5)1}-
FBMO can be solved using MaxSAT and the optimal solution to this problem cor-
responds to the optimal solution to the multilevel optimization problem described
by the ordered objectives O1, 02 and Os.

24.3.1.2. Group MaxSAT

Some applications may require achieving more complex soft constraints that can
only be represented with a set (or group) of clauses. In this case, the soft con-
straint is only satisfied if all of the clauses used to represent it are satisfied; i.e.,
the cost of the soft constraint will be incurred if any of its clauses are falsified.
These kinds of soft clauses give rise to the group MazSAT problem [HMM15]. In
group MaxSAT there are k soft constraints where the ¢ soft constraint is encoded
by a group G; of clauses. The goal in group MaxSAT is to find a solution that
satisfies all hard clauses while maximizing the total weight of the satisfied soft
constraints.

Group MaxSAT formulas can be transformed into an equivalent MaxSAT
formulas by using specific encodings. One of these encodings is known as the
T —encoding [HMM15]. We refer the reader interested in other encodings of group
MaxSAT to [HMM15].

Definition 4 (T—encoding [HMM15]). A group MaxSAT instance F'¢ can be
transformed into an equivalent MaxSAT instance F' by adding all hard clauses
from FC to F. Let the i'th soft constraint, with weight w;, be represented by
the group of soft clauses G; = c1,...,c,. For each ¢ € G; we add the hard clause
(¢ V r;) to F where r; is a brand new variable. Finally, for each group G;, we
include the soft clause (—7;),, to F.

Example 2. Consider the group MaxSAT instance

FG :{(_‘xh 332)7 (ﬁxla x5)7 (“171, ﬁx4)7 (_‘1737 X2, x4)}7



where

G :({(_'373)7 (—|{IZ4), <—|:E5)})2,
Ga =({(=22), (mz1)})s.

This formula can be transformed into an equivalent MaxSAT formula F' by
using the T —encoding, resulting in

F:{(_‘3717372)7(_‘xlax5>a(_‘$la_‘x4)7(_‘37379327x4),
(_'333, Tl)? (_'.174, 7"1), (_'335, 701)7 (_'332, 702)7 (_'xla 702)

(—7r1)2, (—r2)3}.

Note that the number of soft clauses of the transformed MaxSAT formula corre-
sponds to the number of groups in the original group MaxSAT instance.

24.3.1.3. Encoding other Constraint Optimization Languages to MaxSAT

The algorithmic advances of MaxSAT make it appealing to encode problems from
other domains into MaxSAT and solve them with MaxSAT solvers.

For example, other optimization problems such as the maximum constraint
satisfaction problem (MaxCSP) [ACLM12] and minimum satisfiability (MinSAT)
[ZLMA12, LZMS12] can be reduced to MaxSAT and solved with MaxSAT solvers.

Even decision problems such as SAT can be reduced to Horn MaxSAT by
using the dual-rail encoding [IMM17]. This reduction coupled with MaxSAT res-
olution (Section 24.4.1.1.2) constitutes a proof system that has polynomial-time
refutations for pigeonhole formulas. We refer the interested reader to [MIM17]
for more examples of reductions of decision and optimization problems into Horn
MaxSAT.

A common reduction is to transform a pseudo-Boolean optimization problem
to MaxSAT. The interested reader is referred to Chapter 28 for more details on
pseudo-Boolean optimization.

Definition 5 (Pseudo-Boolean optimization, PBO). Pseudo-Boolean optimiza-
tion problems are of the following form:

n
minimize g cjl;
=1

n
subject to Zaijlj < bz Vi = 1, e,y
j=1
where n,m € N and a5, b;, c; € Z.

Example 3. Consider the PBO problem instance FFBO

minimize 1+ x9 + x3 + T4 + x5
subject to —r1+ 2o > 1
—x] + x5 > 1
—x1 + g > 1
—x3+ T2+ x4 > 1



The formula FPBO can be encoded to an equivalent MaxSAT formula F.
The constraints are encoded as hard clauses by using appropriate cardinality and
pseudo-Boolean encodings 24.4.2.1. The objective function can be encoded as
soft clauses: for each literal c;z; in the objective function, create a corresponding
unit soft clause (—x;)c;.

FPBO s equivalent to the following MaxSAT formula

F :{(_‘xla .%‘2), (_'3717 375), (_'*1:17 _‘x4)7 (_‘3737 T2, 374)7
(mw3)1, (T4)1, (725)1, (522)1, (7T1)1]-
Notice that this is the same formula as the one presented in Example 1.

Note, however, that this example has a particularly simple translation to
MaxSAT since all of the linear inequalities can be directly represented as clauses.
In general, a linear constraint of the form ajx1 + asxs + -+ + arxr > t would
have to be translated to CNF using a pseudo-Boolean constraint encoding (Sec-
tion 24.4.2.1) which would add multiple clauses to the resultant MaxSAT formula.

24.3.2. Applications

With significant performance improvements in MaxSAT algorithms over the years
there has been a corresponding increase in the number and diversity of applica-
tions of MaxSAT. Some examples of domains where MaxSAT has been success-
fully used include planning, scheduling and configuration problems, Al and data
analysis problems, combinatorial problems, verification and security, and bioinfor-
matics. We will briefly outline some of these applications and provide references
to further details.

24.3.2.1. Planning, Scheduling, and Configuration

Planning problems [ZB12, MBM16] consist of finding a sequence of actions that
transform an initial to a final state. These problems can be encoded to MaxSAT to
efficiently find solutions that minimize the cost of the actions required to achieve
the final state. MaxSAT has also been used to synthesize linear temporal logic
(LTL) specifications for robot motion planning and control of autonomous systems
in scenarios where specifications may be unrealizable and these can be split into
soft and hard specifications [DGT18].

Scheduling problems are widespread and arise in various contexts. MaxSAT
has been applied to solving different types of scheduling problems, including
course timetabling [DM17, MNRS17, AN14], staff scheduling [DMW17, BGSV15,
CHB17], and even wedding seating arrangements [MS17]. The course timetabling
problem consists of creating a schedule such that it satisfies various constraints
with respect to teachers, rooms, times, lectures and students. These scheduling
problems are often solved manually by a school administrator but can be encoded
into MaxSAT to lever the algorithmic advances for MaxSAT.

MaxSAT has also been used to solve configuration problems such as finding a
pre-production vehicle configuration [MKTR16], solving the package upgradeabil-
ity problem where the goal is to find new packages to be installed in the current
system according to some user preference [ALMO09, ABL*10b, IJM14], and even
for seating arrangements at weddings [MS17].
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24.3.2.2. AT and Data Analysis Problems

MaxSAT has been used in a variety of data-oriented AI problems, starting with
computing most probable explanations (MPE) [Par02] in Bayesian networks,
where the goal is to compute the most likely state of a Bayesian network given
observations on a subset of the random variables. MaxSAT has been shown to
yield competitive approaches to learning different classes of probabilistic graphical
models, including Bayesian network structures with restricted treewidth [BJM14],
causal discovery in very generic model spaces [HSJ17], as well as causal struc-
ture estimation from time series data [HPJT17]. MaxSAT has also been pro-
posed as an alternative approach to inferring problem-specific cutting planes
in a state-of-the-art integer programming approach to Bayesian network struc-
ture learning [SMJ15]. Further recent data-oriented applications of MaxSAT in-
clude learning explainable decision sets [[PNM18] and interpretable classification
rules [MM18], constrained correlation clustering [BJ13, BJ17], and neighborhood-
preserving low-dimensional visualization of high-dimensional datasets [BJB*14].

Other AI applications, specifically within the area of knowledge represen-
tation and reasoning, consist of applying MaxSAT to understand the dynamics
of argumentation frameworks [WNJ17, NWJ16a, NWJ16b] and in model-based
diagnosis [MJIM15]. Given a model of a system and an input-output observa-
tion that is not consistent with the expected behavior, the goal of model-based
diagnosis is to identify a subset of components that when removed make the sys-
tem consistent with the observation. MaxSAT can be used to find the smallest
set of components that need to be removed [MJIM15]. In the realm of abstract
argumentation, MaxSAT enables efficiently reasoning about different notions of
enforcement, dealing with smallest changes required to argumentation frameworks
in light of knowledge on extensions [WNJ17, NWJ16a] as well as synthesis of ar-
gumentation frameworks based on negative and positive examples of extensions
[NWJ16b].

24.3.2.3. Combinatorial Problems

MaxSAT can also be used to encode and solve many combinatorial problems,
such as the Max-Clique problem [LQ10, FLQ™" 14, LJX15] where given a group of
vertices, the maximal clique is the largest subset of vertices in which each point
is directly connected to every other vertex in the subset.

Other combinatorial problems that have been encoded into MaxSAT include
the Steiner tree problem [dOS15], tree-width computation [BJ14] and finding
solutions for the maximum quartet consistency problem [MM10].

24.3.2.4. Verification and Security

Another domain with many successful MaxSAT applications is verification and
security of software and hardware. For instance, MaxSAT can be used to design
and debug circuits [SMV*07, CSVMS09, CSMV10, AIMT13, XRS03]. Other
examples of applications of MaxSAT to hardware consist in solving the hardware-
software partitioning problem which decides during the design phase which parts
should be implemented either in hardware or software [TDFDGDSJ*17].
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MaxSAT also has many applications in security. For instance, solving the user
authorization query problem [WQLO09], reconstructing AES key schedule images
[LZK16], detecting hardware Trojans [SA18], and maximizing the development
assurance level to improve the rigor of the development of software and hardware
on aircraft [BDS11]. Another application in security is to find malware in Android
applications by maximizing the similarity between a malicious application and the
application that is being scanned [FBM™17].

MaxSAT has also been used to minimize cascading style sheets (CSS) in
order to reduce the size of the code transmitted over the web [HLH19]. Another
application is to use MaxSAT for quality of service (QoS) of cloud services where
the goal is to minimize the composition of distributed web services while satisfying
the user preferences [WJH18, BACF17].

When analyzing software, program analysis tools usually trade precision for
scalability and their output often contains undesirable output due to approxima-
tions. MaxSAT can be used in a user-guided program analysis setting where the
hard clauses capture the soundness of the analysis and soft clauses capture the
degrees of approximation and user’s preferences [MZNN15a, SZGN17]. Encoding
user-guided program analysis into MaxSAT can lead to very large formulas which
can be solved by specialized MaxSAT solving algorithms [MZNN15b, ZMNN16].

MaxSAT can also be used for fault localization where the goal is to pin-
point the localization of software bugs [ZWM11, JM11]. In particular, MaxSAT
can be used to reduce the error log reported to the programmer and decrease
the amount of code that needs to be reviewed. The problem of state-space re-
duction for non-deterministic visibly pushdown automata can also be encoded
into MaxSAT, which can be used to improve the performance of software model-
checkers [HST17].

24.3.2.5. Bioinformatics

MaxSAT has applications in many interdisciplinary applications such as bioin-
formatics. One of these applications is to solve the haplotype inference problem
which aims at finding the minimum number of haplotypes which explains a given
set of genotypes [GML11, GMLO11].

Other applications within this domain consist of finding generalized Ising
models [HKD*16], finding the maximum similarity between RNA sequences
[Mar17], modeling biological networks representing the interactions between genes
[GL12], and even applications in cancer therapy to find faulty areas of the gene
regulatory network [LK12].

24.3.2.6. Further Applications

Yet another application of MaxSAT is to improve other constraint solving algo-
rithms. For instance, MaxSAT can be used to restore satisfiability of constraint
satisfaction problems (CSPs). By encoding a CSP instance as a MaxSAT in-
stance, one can identify the smallest set of tuples to be removed from the CSP
instance to restore satisfiability [LM11]. MaxSAT has also been used to enumer-
ate minimal correction sets (MCS) [MLM13] with the goal of removing a minimal
number of clauses such that an unsatisfiable SAT formula becomes satisfiable.
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Propagation complete encodings have the property of being able to iden-
tify inconsistencies via unit propagation, thus allowing the encoding to be more
efficiently solved by SAT solvers. However, this trade-off usually comes at the ex-
pense of larger SAT encodings. MaxSAT can be used to compute approximately
propagation complete encodings [ER18] which allows conflicts to be detected ear-
lier when using a SAT solver.

24.4. Modern MaxSAT Algorithms

In this section, we provide an overview of the currently most important algo-
rithmic approaches to MaxSAT, focusing on SAT-based approaches: the model-
improving approach (based on querying a SAT solver for solutions of increasing
quality), the core-guided approach (in its several variants, based on extracting
MaxSAT cores and compiling each core into the instance until a satisfying as-
signment is found), and the implicit hitting set approach (based on accumulating
a set of MaxSAT cores and computing a minimum-cost hitting set of the cores
until a satisfying assignment for the clauses not in the hitting set is found).

We will not cover branch-and-bound approaches to MaxSAT (e.g., [HLOOS,
LMMP10]). The interested reader is referred to Chapter 23 for an overview of
such approaches. The main feature of the approaches we will present here is
that they scale up to much larger problems than branch-and-bound approaches.
There do exist small MaxSAT instances with a few hundred variables (e.g., find-
ing largest cuts in random graphs) that branch-and-bound algorithms can solve
very quickly (less than ten seconds) while the modern SAT-based MaxSAT al-
gorithms overviewed in this chapter have considerable problem solving (i.e., in-
stances remain unsolved after thousands of seconds). However, branch-and-bound
approaches are typically ineffective on instances with more than a thousand vari-
ables. Problems from various application areas, including ones described in Sec-
tion 24.3.2, are usually much larger, typically involving at least ten thousand
variables and sometimes as many as millions of variables and clauses.

24.4.1. Background

While details on the MaxSAT formalism were already presented in Section 24.2,
in order to properly explain current algorithms for solving MaxSAT we need some
further background.

24.4.1.1. Transformations

MaxSAT algorithms rely on certain transformations that can be applied to a
MaxSAT formula. There are a number of sound ways to transform a MaxSAT
formula F' into a new MaxSAT formula F’ such that from an optimal solution
to F’ we can easily obtain an optimal solution for F. Such transformations
include simplifying transformations used in preprocessing, and transformations
used simply to make it more algorithmically convenient to solve the MaxSAT
problem. Preprocessing is discussed in more detail in Section 24.5.1. In this
section we present some more basic transformations that are useful for algorithmic
convenience (both for MaxSAT solving and for further preprocessing).
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24.4.1.1.1. The Blocking Variable Transformation. The blocking variable trans-
formation is used on the input formula by a number of MaxSAT solvers. It trans-
forms an input MaxSAT formula F into an equivalent formula F® that has only
unit soft clauses. Having a single literal ¢ whose truth value encodes the truth
value of the soft clause ¢, allows us to use ¢ as an assumption to the SAT solver
(Section 24.4.1.2) and to use ¢ as an input to cardinality constraints used when
encoding the cost bound k.

In the F? transformation, the hard clauses F are unchanged. Each soft clause
¢; of F is transformed by adding the negation of a brand new variable b;,? adding
the resultant extended clause ¢; V —b; as a new hard clause, and creating a new
unit soft clause (b;) with weight equal to ¢;’s weight (¢;’s weight is moved to the
new unit soft clause).

Definition 6 (Blocking variable transformation). Given a MaxSAT instance F,
F® is a new MaxSAT instance with:

1. hard(F®) = hard(F) U {(c; V =b;) | ¢; € soft(F)}, where each b; is a new
variable called a blocking or a relaxation variable.

2. soft(F®) = {(b;) | b; was added in step 1}

3. wt((b;)) = wit(c;) (each new soft clause (b;) gets the weight of the original
¢i € soft(F)).

Example 4. If F = {(x,—y, 2), (=y, 2), (2,9)10, (72)5}, then F® = {(x, ~y, 2),
(_'yaz)7 (Zvya ﬁb1)7 (ﬁz,ﬁb2)7 (b1)107 (b2)5}

w

F* has the following useful properties.

1. F* has only unit soft clauses, so there is a single literal denoting the truth
and falsity of each soft clause.

2. If wb is a feasible solution for F? then 7Tb|wm( ) is a feasible solution for
F with cost(n®, F?) > cost(wb|vars(p),F).

3. If 7 is a feasible solution for F, then we can extend 7 to n’, a feasible
solution for F?, with cost(w, F) = cost(n®, F?).

To illustrate property 2, 7° = {x, ~y, z, ~by, ~bo} (listing the literals made
true by 7°) is a feasible solution for F° from Example 4, and cost(n’, F®) = 15.
Restricting 7° to vars(F) we obtain 7rb|wrs(p) = {x,—y, z}, which can be seen to
be a feasible solution to F' with lower cost cost(wb|wrs( ), F) =5.

To illustrate property 3, m = {x,—y, 2} is a feasible solution of F' with
cost(m, F) = 5, and we can extend it to be a feasible solution of F® by set-
ting each b; to true iff 7 = ¢;. In this case, we obtain 7° = {z, -y, 2, by, ~bo } with
equal cost cost(n?, F?) = 5.

Proposition 1. Properties 2 and 3 hold for the blocking variable transformation.

2The idea of adding a new variable to a clause so that the new variable encodes the clause’s
truth value appears in [GW93], but may have been used even earlier.

3For some MaxSAT algorithms it is possible in certain cases to avoid adding a new variable
to soft clauses that are already unit [BSJ15b]. This can significantly reduce the number of new
variables in the formula F® making it more efficient to solve.
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Proof. To see that property 2 is true, observe the following. If 7° is a feasible
solution of F® it must satisfy all hard clauses of F®. Hence, w° satisfies every
hard clause of F since hard(F) C hard(F®). Since none of the hard clauses of F
contain any new b; variables we also have that 7°| vars(F) satisfies every hard clause
of F', and thus 7Tb|vars(F) is a feasible solution for F'. Consider cost(wb|wrs(p), F).
This is the sum of the weights of all soft clauses falsified by 7rb|vars( r)- Let ¢
be one of the soft clauses falsified by 7rb|wrs( F) so that weight wt(c;) is a term
in the sum cost(wb|wm(p), F). Since 7° satisfies the hard clause (¢; V —b;) of F?
and 7Tb|v(m( ) falsifies ¢;, we must have that 7® = —b;. In other words, 7° must
falsify the soft clause (b;) € F°, which contributes the term wt((b;)) (= wt(c;))
to cost(n?, F*). That is, we must have that cost(rw®, F?) > cost(7r6|wrs(p), F).
To see that property 3 is true, let m be a feasible solution for F'. We extend
7 to w° by setting 7° = b; if 7 = ¢; and 7 = —b; if T £ ¢ As a result
7® will satisfy all hard clauses of F°. Also, cost(w®, F*) will include the term
wt((b;)) if and only if cost(m, F') includes the term wt(c;) (= wt(b;)). Hence
cost(m, F) = cost(r®, F?) O

Furthermore, properties 2 and 3 imply that the blocking variable transforma-
tion MaxSAT equivalence in the following sense.

Proposition 2 (MaxSAT equivalence of F°). If n° is an optimal solution of F°
then 7rb|vars(p) is an optimal solution of F.

Proof. The proposition follows from properties 2 and 3 on the blocking variable
transformation. In particular (2) tells us that the cost of an optimal solution to
F? is at least as large as the cost of an optimal solution to F; and (3) tells us
that that is at least as small. 0

This proposition tells us that we can solve a MaxSAT formula F' by solving
F® and then simply discarding the truth assignments to the newly introduced
variables b;.

Historically, the idea of adding “relaxation” or “blocking” variables to the
soft clauses has been used in all MaxSAT algorithms based on solving a sequence
of SAT instances. In the presentation of these algorithms, typically the relaxation
variables are introduced at various stages of the algorithm’s execution rather than
initially. In practice, however, MaxSAT solvers generally introduce the relaxation
variables at the beginning, so as to exploit SAT solving under assumptions to
extract cores, or to impose bounds on how many soft clauses can be falsified
via cardinality or pseudo-boolean constraints. In general, it is simpler and more
uniform to explain these different algorithms as they run in practice—i.e., as they
run on F° rather than as they run on F.

Also typically the positive form of the relaxation variables is added to the
clause. So the soft clause (x,y)19 would become the hard clause (z,y, by), rather
than (z,y,—b1) as we have done here. By adding the negation of the relaxation
variable we avoid a potentially confusing polarity flip. In particular, now when b;
is true ¢; must be satisfied, rather that having —b; imply that ¢; must be satisfied.
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24.4.1.1.2. Soft Clause Cloning and MaxSAT Resolution. Another transforma-
tion that is sometimes used when solving a MaxSAT formula is to split a soft
clause ¢4, into two soft clauses ¢, and ¢,. For example, we can replace the
single soft clause (x,—y)12 with the two soft clauses (z,—y)s and (z,—y)7. In
the literature, this process is called soft clause cloning. It is not difficult to see
that the cost of any feasible solution 7 remains unchanged by soft clause cloning
(and hence the optimal solutions are unchanged). This transformation can also
be performed in reverse, we can combine the weights of all copies of a soft clause
into a single copy. Soft clause cloning is used in many (but not all) MaxSAT
algorithms to deal with weighted instances.

Lifting the classical resolution rule to MaxSAT gives rise to a more complex
transformation [LHO05, BLMO07]. The Larrosa and Heras [LHO05] transformation
is as follows. Given two clauses of the form (z, A),, and (—z, B),, and letting
m = min(ws,wy) we can apply a MaxSAT resolution step as follows.

1. Replace the two original clauses (x, A),,, and (—x, B),, by their residues:
(, A)wy—m and (—mz, B)yy—m.-

2. Add the resolvant (A, B),,.

3. Add the two compensation clauses (z, A,—B),, and (—z, B, 2A),,.

There are a few things to note. First, any soft clause with weight zero can
be removed from the formula—such clauses cannot affect the cost of any feasible
solution. Hence, at least one of the residue clauses will vanish. Second, the
compensation clauses are not clauses (they contain conjunctions of literals —A
or =B). Hence, they have to be converted into a set of clauses, where the size
of that set will depend on whether or not new variables are introduced. And
third, by treating hard clauses as being soft clauses with infinite weight (e.g,
(x,y) = (7,Y)o0), we can apply MaxSAT resolution to combinations of soft and
hard clauses.

Since the MaxSAT resolution rule of Larrosa and Heras can generate non-
clausal formula it cannot form a proof system. In any proof system for CNF each
rule of inference must yield a valid new CNF. Bonet et al. [BLMO07] addressed
this issue and gave a version of MaxSAT resolution that does yield a new CNF.
They also showed that their version of MaxSAT resolution forms a complete proof
system: for any MaxSAT instance F' there exists a MaxSAT resolution proof that
F has optimal cost cost(F'). MaxSAT resolution has been used as a theoretical
underpinning for some MaxSAT algorithms, e.g., PMRes [NB14] and MiniMaxSat
[HLOOS], but directly implementing MaxSAT resolution to solve MaxSAT does
not seem to be practical [MM11].

24.4.1.2. Incremental and Assumption-based SAT Solving for Extracting Cores

An essential technique used in MaxSAT solving is assumption-based SAT solving
[ES03] implemented in most modern SAT solvers. When given an input formula F
a SAT solver can produce either a satisfying truth assignment or conclude that F’
is unsatisfiable. Assumption-based SAT solving extends the capacity of the SAT
solver by asking it to solve F' subject to a set of assumptions A which must be a
set of literals. Now the SAT solver must either find a truth assignment satisfying
FANNjeal (ie., atruth assignment satisfying F' that also makes all of the literals
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in A true), or it must conclude that F' A A is unsatisfiable. Furthermore, and
most critical to MaxSAT solvers, when ' A A are unsatisfiable the SAT solver is
able to return a clause c such that

1. ¢ contains only negated literals of A, i.e., A = —¢ (c is a conflict clause
over A), and
2. F=e

The conflict clause c is thus a subset of A that is sufficient to show that no model
of I satisfies all of A. In particular any model of F' must falsify at least one of
the literals of A whose negation is contained in c.

It should be noted that the conflict clause ¢ returned by the SAT solver need
not be minimal. That is, there could be another clause ¢’ Z ¢ satisfying the above
two conditions. Hence, if F' by itself is unsatisfiable the SAT solver might return
any subset of negated literals of A (including possibly the empty clause).

Assumptions can be used to extract cores when the MaxSAT formula con-
tains unit soft clauses (e.g., after the F® transformation has been applied). In
particular, if (b1)w,,- -+, (bm)w,, are the soft clauses of a MaxSAT formula F' then
using {b1, ..., b, } as assumptions in a SAT solve of hard(F) will either result in a
model of hard(F") that satisfies all of the soft clauses of F', i.e., a zero-cost model,
or it will result in a conflict clause ¢ such that F' = c and ¢ C {=b1,..., b }.
That is, the conflict clause ¢ asserts that at least one of the negated b; literals
in it must be true in any feasible model. In other words, ¢ specifies a set of soft
clauses at least one of which must be falsified by any feasible model, i.e., a core
of F.

Assumptions also play a useful role in incremental SAT solving. In many
approaches to MaxSAT solving a SAT solver is called on a sequence of problems
that are closely related to each other. Each of problems could be solved by
invoking a new instance of the SAT solver. However, then information computed
during one SAT solver invocation (e.g., learnt clauses) cannot easily be exploited
in subsequent solver invocations. The idea of incremental SAT solving is to use
only one instance of the SAT solver for all of the problems so that all information
computed can be retained for the next problem. In this case, we can monotonically
add clauses to the SAT solver or use different sets of assumptions to specify each
new problem to be solved. With assumptions we can add or remove certain
clauses by adding to those clauses a new literal /. When we assume —¢ these
clauses become active (added to the problem), and when we assume /¢ these clauses
become inactive (removed from the problem).

24.4.2. Approaches based on Sequences of Satisfiability Queries

MaxSAT with weighted soft clauses is known to be in the complexity class FPNF
[Pap94]. This means that it can be solved with a polynomial number of calls to
an NP-oracle. In particular, a polynomial number of calls to a SAT solver can be
used to solve the MaxSAT instance F', with each SAT call determining if F' can
be satisfied by a feasible solution with cost less than or equal to k, for various
values of k. With integer weights, if F' can be satisfied with cost k and F' cannot
be satisfied with cost k — 1, then the feasible model achieving cost & must be an
optimal solution.
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Given the effectiveness of modern SAT solvers, the approach of solving
MaxSAT via a sequence of calls to a SAT solver has proved to be both popular
and effective. A number of different techniques have been developed for effec-
tively encoding sequences of the following decision problem D(F, k), for various
values of k, into CNF.

Definition 7 (The decision problem D(F, k)). Let D(F, k) be the decision prob-
lem “does a feasible solution of F' with cost less than or equal to k exist?”

In particular, we want to encode D(F, k), into a CNF formula that can be
effectively solved by a SAT solver. The key to many of these encoding techniques
is the successful exploitation of information returned by the SAT solver when it
either determines D(F, k) to be unsatisfiable or satisfiable. In particular, when
D(F, k) is satisfiable the cost of the model found can be used to determine the
next value of k to test; and when the problem is unsatisfiable the returned core
can be used to add additional constraints to the SAT solver so as to effectively
encode D(F, k") for some value k" larger than k.

MaxSAT solvers using a sequence of SAT queries have been designed in a
number of different ways. In this section, we will survey the main MaxSAT
algorithms using this approach. First, however we introduce some important
features of the CNF encoding of the decision problem “does a feasible solution
of F' with cost less than or equal to k exist”, since these features affect both the
design and effectiveness of the MaxSAT algorithms discussed in this section.

24.4.2.1. Cardinality and Pseudo-Boolean Constraints

Pseudo-Boolean constraints are used to help encode D(F, k). A pseudo-Boolean
constraint over the literals {{1, ..., {,, } has the form a;¢; +- - -+ am by, < k where
the a; and k are integers and the sum is evaluated by regarding ¢; = true as 1 and
¢; = false as 0.* When all of the a; are 1, the pseudo-Boolean constraint is called
a cardinality constraint. Cardinality constraints limit the number of literals ¢;
that can be true.

There is an extensive literature on different methods for encoding pseudo-
Boolean constraints and cardinality constraints, e.g. [War98, FG10, ES06, BB03,
Sin05, ANOR09, OLH*13, BBR09, MPS14, HMS12, JMM15]. The details of
these encodings and their different properties will not be discussed here, but we
will point out some key features of these encodings that are particularly relevant
to their use in MaxSAT solvers.

The first feature of these encodings is their size, i.e., the number of clauses
and new variables needed in the CNF encoding. The main parameters influencing
size are m the number of literals whose sum is being taken, k the size of the upper
bound, and max(a;) the greatest coefficient in the sum.

For cardinality constraints the commonly used CNF encodings (e.g., the to-
talizer encoding [BB03]) the size of the encoding grows as O(mk). So in the worst
case when k = m this can be as large as O(m?). Smaller CNF encodings for car-
dinality constraints exist. For instance, the modulo totalizer encoding [OLH* 13|

4The other relations (=, >, <, and >) can also be represented.
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requires O(m%) clauses, whereas the cardinality network encoding [ANOR09] re-
quires O(mlogs(k)) clauses. However, there are many MaxSAT problems with
over 100,000 soft clauses. After the F° transformation this would yield over
100,000 soft unit clauses. So we can see that naively constructing a cardinality
constraint summing all of these literal might require as much as 10'° clauses. So
MaxSAT solvers must exploit cardinality constraints in more clever ways.

For pseudo-Boolean constraints, the typical encodings are much larger. Some
encodings do not necessarily depend on k but rather on m and log,(max(a;))
(the number of bits required to represent the coefficients in binary). There
are pseudo-Boolean encodings of size as small as O(mlog,(max(a;)) (linear in
m if the size of the coefficients is bounded) [War98], and others that are of
larger size O(m?logy(m)log,(max(a;))) [BBR09], O(m?log,(m)log,(max(a;)))
[MPS14]. Other encodings may depend on k (e.g, the sequential weight counter
encoding [HMS12]) and have size O(mk), or depend on the number of distinct
weights (which is the case for e.g. the generalized totalizer encoding [JMM15]).
The tradeoff between these encodings is that the larger encodings achieve better
propagation, as we discuss next.

The second relevant feature of these encoding is their propagation power.
This is the extent to which unit propagation can find entailed literals. Cardinality
constraint encodings typically allow unit propagation to achieve arc consistency
[Dec03, BB03]. That is, unit propagation on the encoding is able to find all literals
entailed by the cardinality constraint. Since SAT solvers learn clauses based on
the set of unit propagated literals, this degree of propagation power enhances
the effectiveness of the SAT solver. The watchdog encoding [BBR09] was the
first polynomial size pseudo-Boolean encoding that maintains arc consistency.
Since then, several other polynomial arc consistent encodings have been proposed
[MPS14, HMS12]. Encodings that achieve arc consistent are typically very large.
Nevertheless, if the encoding is not prohibitively large then it can have better
SAT solving performance due to greater propagation power.

Finally, the third relevant feature is whether or not the encoding can be
made incremental. That is, given a CNF encoding of a;¢1 4+ - -+ + amly, < k
can we incrementally add additional clauses to encode a;¢1 + -+ + ambly +
Amt1mt1 - Gmyjlmy; < k', where we are summing over more literals and
k' > k. For cardinality constraints incrementality was achieved in [MML14],
and for pseudo-Boolean constraints [MJML14a, PRB18] reported on incremental
ways of changing the left-hand size k to k’. In both cases making these encodings
incremental yielded significant speedups for the underlying MaxSAT solver.

A critical element supporting incremental SAT solving (Section 24.4.1.2) is
that some cardinality constraint encodings (e.g., the totalizer encoding [BB03])
include a set of “output” variables that encode the sum of the input literals in
unary. That is, the encoding has a set of “output” variables o; such that for
any 7, o; is true if and only if the input literals sum to at least ¢. This allows
using incremental SAT solving when changes are made to the the left-hand side
of the constraint simply by making different assumptions. For example, given the
totalizer encoding of the cardinality constraint Z;n:1 ¢; < k we can incrementally
impose the constraint Z;n:l ¢; < for any @ < k, by simply assuming —o; during
the SAT call.
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Figure 24.1: Structure of CNF for solving D(F, k). Note some blocking variable
inputs to the cardinality layer might be passed directly through to the outputs
(i.e., used directly as assumption literals).

24.4.3. General Structure of CNF Encodings of D(F, k)

Figure 24.1 shows the general structure of the CNF formulas typically used for
encoding the decision problem D(F, k). As already mentioned, the MaxSAT al-
gorithms discussed in this section are all based on solving a sequence of D(F k)
decision problems for various values of k using a SAT solver. The encoding
typically used consists of the hard clauses of the blocking variable transforma-
tion, hard(F®), conjoined with clauses of a cardinality layer. The clauses of the
cardinality layer encode various cardinality constraints (or pseudo-Boolean Con-
straints) over the blocking variables of F°, and sometimes over other internal
variables of the cardinality layer.

The soft clauses of F° are all of the form (b;), i.e., positive instances of
the newly introduced blocking variables. Typically, the cardinality layer imposes
constraints on which and how many of the literals —b; can be true. That is, it
imposes constraints on the set of soft clauses of F® that the SAT solver is allowed
to falsify. In addition, various literals from the cardinality layer (including perhaps
some of blocking variables) can be assumed to be true in assumption-based SAT
solving.

The SAT solver, for which all clauses are of course hard, has all of the clauses
of hard(F?). Hence, all satisfying models found by the SAT solver must be feasible
models of F' when restricted to vars(F'). (Since these models are feasible solutions
of F? this follows from the properties of F® described in Section 24.4.1.1.1).
Furthermore, the SAT solver must find a model that satisfies all of the clauses of
the cardinality layer and makes its current set of assumptions true. Of course, if no
such model exists the SAT solver can return a conflict clause over its assumptions,
as described in Section 24.4.1.2.

24.4.4. Model-Improving Algorithms

The first MaxSAT algorithm we present is the model-improving Linear
SAT/UNSAT (LSU) algorithm. LSU follows almost directly from a proof that
MaxSAT is in the complexity class FPNY. That is, it uses a SAT solver to solve
the sequence of decision problems D(F, ko), D(F, k1), ..., D(F, ky), where kg = o0
(i.e., find a feasible solution irrespective of cost), k; is the cost of the model found
when solving D(F, k;_1) minus one, and D(F, k,) is the first decision problem in
the sequence that was unsatisfiable (UNSAT). The feasible solution returned by
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Algorithm 1: Linear SAT/UNSAT algorithm for MaxSAT [BP10]
LSU(F)
Fb = byv_ transform(F); card_layer = {}; Blits = {—b; | (b;) € soft(F?)}
bestmodel = {}; cost = oo; sat? = true
while sat? do
/* SAT solver returns boolean SAT/UNSAT status */
/* if SAT returns 7, the model found */
(sat?, ) = SATSolve (hard(F®) U card_layer)
if sat? then
bestmodel = 7
cost = cost(m)
card_ layer = CNF (ZbieBlits wt((b;)) x —b; < cost)

W N =

© N o o

10 else
11 | return (bestmodel|,qps(), cost)

the last satisfiable instance D(F), k,—1) when restricted to the variables of F' is an
optimal solution of F.

Algorithm 1 gives the details. First any feasible model 7 is found (line 5)
with card_layer equal to the empty set of clauses. Then using either a cardinality
(when wt((b;)) = 1 for all i) or pseudo-Boolean constraint (when the soft clauses
have varying weights) in the cardinality layer (line 9), the SAT solver is asked to
find a feasible solution with cost strictly less than cost(7).5 This is repeated until
the SAT solver returns UNSAT, in which case the last feasible solution returned
is an optimal solution.

The approach of solving a sequence of decision problems D(F,k;) with de-
creasing bounds k; has a long history. The earliest reported use of this approach
in SAT solving appears to be [ARMS02]. The approach was also used in the
Minisat+ solver described in [ES06], and in the Sat4j MaxSAT solver [BP10]
where the name LSU was first used and an algorithm similar to Algorithm 1
was presented. These three systems actually found optimal models with respect
to pseudo-Boolean objective functions. However, pseudo-Boolean objective func-
tions can easily represent MaxSAT when all of the soft clauses are unit (as they
are in the transformed formula F?).

This approach continues to be used in the QMaxSAT [KZFH12] and Pacose
solvers (described in [BJM18]). QMaxSAT includes a number of different cardi-
nality and pseudo-Boolean encodings, and carefully chooses which encoding to use
based on the characteristics of the input problem. Pacose builds on QMaxSAT
by implementing a dynamic construction of one of its pseudo-Boolean encodings
[PRB18].

Recently, the LSU algorithm has seen increasing use in incomplete MaxSAT
solving in which the aim is to return the lowest-cost feasible solution within a given
time bound. As can be seen from Algorithm 1 its chief benefit in this context is
that each completed call to the SAT solver returns an improved solution. Hence,
at any point the best model found so far can be returned.

Overall, however, the downside of this algorithm is that the cardinality or

5Finding a low cost initial feasible model can potentially reduce the size of the cardinality
constraint encoding (see Section 24.4.2.1).

19



pseudo-Boolean constraint needs to be over m literals, where m is the number
of soft clauses. As pointed out in Section 24.4.2.1, this can lead to very large
encodings when the MaxSAT formula has tens or hundreds of thousands of soft
clauses. Hence, solving the resulting SAT problem can become infeasible.

24.4.5. Core-Guided Algorithms

In contrast to LSU, core-guided algorithms work from UNSAT to SAT. That
is, they solve a sequence of decision problems D(F,k;) where k; is increasing
(k; > ki—1). When k; is less than the cost of an optimal solution, D(F, k;) will
be unsatisfiable. Essentially, core-guided algorithms increase k; until the current
D(F, k;) is satisfiable, but do not do this as explicitly as done in the LSU approach.

As with LSU these algorithms utilize information from the SAT solver re-
turned from each UNSAT result, to construct the next decision problem to solve.
The key insight, originally coming from Fu and Malik [FMO06] is that cores can be
extracted from the SAT solver when D(F), k) is unsatisfiable. Every feasible solu-
tion must falsify at least one soft clause of every core. Hence, the cores provide
us information about the subset of soft clauses that the SAT solver can consider
for falsification when solving D(F k).

Empirically, many MaxSAT instances have optimal solutions falsifying very
few soft clauses (relative to the total number of soft clauses). Hence MaxSAT
cores often contain only a small subset of the soft clauses. So instead of having
large cardinality constraints over all of the soft clauses, core-based algorithms
can often utilize much smaller cardinality constraints over only those soft clauses
appearing in the found cores, as these are the only ones that the SAT solver needs
to consider falsifying. The other soft clauses can be required to be satisfied by
using assumptions, rather than via cardinality constraints.

24.4.5.1. Fu-Malik

Fu and Malik presented the first MaxSAT algorithm exploiting cores [FMOG6].
Algorithm 2 gives the details. This algorithm only works on unweighted MaxSAT
instances (i.e., all soft clauses have weight 1).

All blocking variables are always assumed to be true (line 2 and 5). Their
main role is simply to allow the SAT solver to extract cores via its assumption
mechanism. In the initial call, card layer is empty. Hence, the initial call is
asking the SAT solver to find a feasible model satisfying all soft clauses (line 5).
In particular, every soft clause ¢; of F has been encoded in F? as the hard clause
(¢; V —b;). Hence, when we assume b; this clause is reduced to ¢;, and the SAT
solver must satisfy it.

Unless there is a zero-cost feasible solution, this call with result in the SAT
solver declaring unsatisfiability. Furthermore, the SAT solver will also identify
a subset of negated assumptions forming a core, k. That is, at least one of the
literals —b; in kK must be true. The algorithm then modifies the hard clause
corresponding to each of the soft clauses in the core; for —b; this is the hard
clause (¢; V —b;). It adds a brand new relaxation variable r§°* to each such
clause by modifying the ¢; part of the clause (line 8). (Note that “cost” is always
incremented in the loop, line 10, so different variables are added in each iteration).
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Algorithm 2: Fu-Malik algorithm for unweighted MaxSAT [FMO06]

1 FuMalik(F)

2 F? = bv_transform(F); card_layer = {}; assumptions = {b; | (b;) € soft(F?)}
3 F' = hard(F?); cost = 0; sat? = false

4 while not sat? do

/* SAT solver takes as input the CNF to solve and a set of literals to assume */
/* Returns boolean SAT/UNSAT status */
/* If SAT returns =, the model found */
/* If UNSAT returns s, a core (subset of negated assumptions). */
5 (sat?, m, k) = SATSolve (F' U card_ layer, assumptions)
6 if not sat? then
7 for —b; € k do
8 c;, =¢; V r;?OSt
/* Modifying c; modifies the clause (c; V b;) € F’ */
/* Each r§°s* is a brand new variable. */
9 card_ layer = card_ layer U CNF( Z{i|—\bi€fi} rfOSt = 1)
10 cost = cost + 1
11 else
12 return (7|,qrs(F), cOSt)

Finally, it adds a cardinality constraint asserting that one and only one of the
newly added relaxation variables can be made true. Making r{°%* true immediately
satisfies (or relaxes) the clause (¢; V r§°%* v =b;), allowing the SAT solver to set
the assumption b; to true with impunity.

This algorithm does not quite follow the general structure described in Sec-
tion 24.4.3. In particular, each new call to the SAT solver involves changing
hard(F®). Since the change involves adding brand new variables to existing
clauses (line 8), it is not easy to use the SAT solver incrementally in this al-
gorithm.

Example 5. Consider F' = {(z,—y), (v, 2), (y,2), (—2)1, (—y)1}. In this for-
mula both z and y are forced, and thus both soft clauses must be falsified. Any
feasible solution has cost 2, and thus all feasible solutions are optimal solutions.

Fb = {(ZC, _'y)7 (Z/, Z)v (yv _'Z)a (—\37, _'bl)’ (_'yv _'b2)7 (b1)17 (b2)1} The first
iteration of the main loop of Algorithm 2 would call the SAT solver on the CNF
{(z,~y), (y,2), (y,z), (-x,—b1), (—y,by)} with the assumptions {b;,b2}. A
possible core is k = {=b1, 7by}. (Note that the cores returned by the SAT solver
do not have to be minimal.)

The second iteration would then be a call to the SAT solver on the CNF
{(z, ), (y,2), (y,72), (~z,r?,=b1), (-y, 13, =b2)} U CNF(r) + 79 = 1) with the
same assumptions {b1,bs}. Again k = {—b1, b2} is a possible core.

The third iteration would then be a call to the SAT solver on the CNF
{(ZC, _'y)v (yv Z), (yv _'Z)v (_'x7 I‘(l), I‘%, _'bl)v (_'yv I‘g, I‘%, _'b2)} U CNF(T’? +T8 = 1) U
CNF(r{ + r3 = 1) with the same assumptions {b;,b,}. This time the formula
is satisfiable. For example, the truth assignment {z,y,z,r{,rd, —r), —ri by, by}
satisfies all of the clauses. At this point cost = 2.

Each core yields a subset of soft clauses of which at least one must be falsified.
Adding the relaxation variables and the cardinality constraint gives the SAT
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Algorithm 3: WPM1/WMSU1 algorithm for MaxSAT [ABLO09,
MMP0Y]

1 WPM1/WMSUL(F)

2 F? = bv_transform(F); card_layer = {}; assumptions = {b; | (b;) € soft(F®)}
3 F’ = hard(F?); cost = 0; iter = 0; sat? = false

4 m = max({i | b; € assumptions}) + 1

5 while not sat? do

/* SAT solver interface is the same as in Algorithm 2 */
6 (sat?, m, k) = SATSolve (F' U card_layer, assumptions)
7 if not sat? then
8 Wlmin = min{bi|—|bi€n} wt((bi))
9 cost = cost + witmin
10 for —b; € k do
11 if wt((bs)) > Wtmin then
/* Add new copy of clause ¢; with new blocking variable by, */
12 em=ci;m=m+ 1; F/ = F U{(cm V —bm)}
13 assumptions = assumptions U {bn}
14 wt((bm)) = wt((b;)) — Wtmin /* New copy gets residual weight */
15 wt((b;)) = Wtmin /* OId copy gets weight wtmin */
16 ¢ =c¢; Vriter /* Add new relaxation variable to old copy */
/* Modifies clause (c; V —b;) € F' */
17 card_layer = card layer U CNF(Z{i\ﬁbien} r;ter = 1)
18 iter = iter + 1
19 else
20 return (7|,qs(F), cost)

solver the freedom to falsify one (and only one) of these soft clauses by setting
its relaxation variable to true. Each iteration finds a core subject to all of the
previously derived relaxations. That is, at least one clause from the i’th core k;
must be falsified even when we falsify a soft clause from each previously derived
core. Hence, at stage k we have proved that the optimal cost is at least k. Note
that the cores allow us to restrict the set of soft clauses that need to be considered
for falsification. That is, only those soft clauses appearing in the found cores need
be considered for falsification. This makes the size of the cardinality constraint
encodings much smaller.

The example shows that one feature of this algorithm is that it can add
multiple relaxation variables to the same clause if that clause appears in more
than one core. This is a by-product of using an “= 1" cardinality constraint. In the
example, we need to use one relaxation variable from each cardinality constraint in
order to satisfy the two clauses (—z, —by, r{, r1) and (—y, —bs,r9,r3); we cannot
use two relaxation variables from the same cardinality constraint. These multiple
relaxation variables in the soft clause can be a source of significant inefficiency as
they introduce symmetries that can slow the SAT solver down [ABL13].

24.4.5.2. WPM1/WMSU1—Fu-Malik for Weighted MaxSAT

A restriction of the Fu-Malik algorithm is that it only works with unweighted
MaxSAT instances. Soft clause cloning is a technique [ABL09, MMP09] that al-
lows many unweighted algorithms to be extended to the general weighted case.
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This technique was first used in the WPM1 [ABL09] and WMSU1 [MMP09] algo-
rithms which appeared concurrently and independently in 2009. Both algorithms
are essentially identical and extend Fu-Malik to deal with weighted soft clauses.
Details are presented as Algorithm 3.

When a new core k is found after we have already found and relaxed some
previous cores, we know that at least one of the soft clauses in £ must be falsified.
If these soft clauses have different weights, all that can be concluded is that
the lower bound on the cost of an optimal solution must be incremented by
Whnin = Ming_p, ¢} wt((;)), i.e., by the minimum weight among the soft clauses
in k. Clause cloning takes place at this stage, converting x into a core containing
clauses of weight wt,;n by splitting every clause in s into two copies: one with
weight wty;, and one with the residual weight. The copies with the residual
weight are added to the set of soft clauses, while the copies with weight wt,,;, are
processed as an unweighted core.

In Algorithm 3 we again use the blocking variables introduced into F? as
assumptions so that we can extract cores. In processing each core we add a new
relaxation variable to the hard clause corresponding to each of the soft clauses
in the core (line 16). And for those soft clauses with weight greater than the
minimum weight in the core (wtniy), we create a new copy of the clause (line 12),
give it a brand new blocking variable b,,, and add it to the formula F’ (line 12).
The old soft clause (b;), whose hard clause (c; V 71" \V =b;) contains the new
relaxation variable, gets weight wty;,. The new soft clause (b,,), whose hard
clause (¢, V —by,) is a copy of the original clause with a new blocking variable,
gets the remaining weight wt((b;)) — wtmin (line 14). Note that, as in Algorithm 2,
the unit soft clauses of F?, including the new soft clause (b,,), only appear in the
set of assumptions. So we also need to add by, to the set of assumptions (line 13).
This means that the SAT solver is not allowed to falsify the original soft clause
c; until this clause has appeared in cores whose sum of wt,,;, weights is equal to
wt(c;). Only at that point will all copies of ¢; have a relaxation variable allowing
the SAT solver to falsify ¢;. Furthermore, to falsify ¢; the SAT solver will have to
use a relaxation variable from each copy (by setting that variable to true). This
will then “use up” all of the cardinality constraints ¢; appeared in. That is, once
¢; is false, all of the cardinality constraints it appears in will have one relaxation
variable set, and will thus disallow any other relaxation variable in the constraint
from being used.

Example 6. Consider

—q), (72, 7q), (2)1, (¥)1, (2)1, (9)2},
) ( ) ) (33 _‘bl) (ya _‘b2)7_(

}(—'x,—'q), -
wt(b S)—wt« bs)) = 1, wt((bs))

(—y
(_'l', _'Q)v (_'
wt((b1)) =

—b ) ( 7_'b4)7
2}.

On this input, Algorithm 3 could perform the following sequence of iterations

(different iterations are possible depending on what cores are returned by the
SAT solver).
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1. Core k1 = {—by, by}, then wtiy = 1, cost = 0 + wipin = 1, and

F' = {(ZU, _'q)v (yv _‘Q)a (Za _'Q)a (.Z', r(l); _'b1>, (ya _'b2>, (Za _‘b3)7
r$, —bs), (q,—bs)} UCNF(r) +r§ = 1),
assumptions = {b1, b, b3, bs, b5},
wt((b1)) = wi((b2)) = wt((bs)) = 1, wt((ba)) = 1, wt((bs)) = 1.

2. Core kg = {—by, —by, 7y, —bs5 }, then wiyi, = 1, cost = 14 wtymin = 2, and

P = {(l’, _'Q)7 (y7 ﬁQ)7 (Z’ ﬁQ)7 ($7 T’?, I'%, _'b1)7 (ya I‘%, _'b2)7 (Z7 _'b3)7
(Q7 Tz(l)a I'i, _'b4)a (qa I‘%, _'bS)}
UCNF(r{ + 7 =1) UCNF(r{ +r3 +rj +ri = 1),
assumptions and weights unchanged.

3. Now the formula is satisfied by the truth assignment 7 = {z, v, 2z, —q, 79,
Tfl)a _‘T(l)v _‘T%a _‘T%a _‘Tia b1, b2a b37 b47 b5}a and 71"'uars(F) = {xaya 2 _‘Q} is

an optimal solution for F'.

Fu-Malik and its weighted version are mostly of historical interest as the first
application of cores and clause cloning, respectively. To date no one has developed
implementations of these algorithms that perform as efficiently as more recent
algorithms. It is of course always possible that new insight could make these
algorithms competitive.

24.4.5.3. MSU3 for Unweighted MaxSAT

MSU3 [MP07] is a much simpler algorithm than Fu-Malik (Section 24.4.5.1), and,
when implemented with incremental SAT solving [MJML14b], it has proved to
be much more efficient. In fact, at the time this chapter was written, the im-
plementation of MSU3 in the Open-WBO system [MML14] was one of the most
effective solvers for the unweighted MaxSAT problem. MSU3, like the LSU algo-
rithm (Section 24.4.4) and unlike the Fu-Malik algorithm, uses a simple encoding
that transparently captures the decision problem D(F, k). Like Fu-Malik, MSU3
starts with & = 0 and increases k until D(F, k) becomes SAT exploiting the cores
found for each UNSAT decision problem instance D(F, k). In particular, in the
unweighted case, D(F, k) is asking the SAT solver to find a feasible solution that
falsifies at most k soft clauses. The SAT solver need not consider all soft clauses
for falsification. Rather, it needs to consider only those soft clauses that have
appeared in one of the cores obtained from the previous SAT solver calls. This
makes the cardinality constraint used in the encoding of D(F, k) much smaller
and easier for the SAT solver to handle.

Algorithm 4 gives the details. It starts with an empty card layer and as-
sumptions that force all soft clauses to be satisfied (line 2). Hence, the SAT
solver is being asked to find a feasible solution with zero cost. Unless a solution
is found, the SAT solver will return a core specifying a set of soft clauses one of
which must be falsified. The literals b; forcing the satisfaction of these soft clauses
(b;) are then removed from the assumptions (line 9), and added to the cardinality
constraint (line 8). Finally, the cost is incremented and a new cardinality con-
straint is constructed specifying that at most this new “cost” of soft clauses can
be falsified.
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Algorithm 4: MSU3 algorithm for unweighted MaxSAT [MP07]

1 MSU3(F)

2 F? = bv_transform(F); card_layer = {}; assumptions = {b; | (b;) € soft(F?)}
3 inCard = {}

4 F' = hard(F?®); cost = 0; sat? = false

5 while not sat? do

/* SAT solver interface is the same as in Algorithm 2 */

6 (sat?, m, k) = SATSolve (F’ U card_ layer, assumptions)

7 if not sat? then

8 inCard = inCard Uk

9 assumptions = assumptions \ {b; | =b; € x}

10 cost = cost + 1

11 card_layer = CNF( 2 b, cinCard i < cost)
12 else

13 return (7|,qrs(F), COSt)

Note that the initial cardinality constraint is only over the soft clauses that
have appeared in the found core k. In subsequent iterations, the core x will
specify a subset of soft clauses one of which must be falsified even though the
cardinality constraint already allowed some number of soft clauses to be falsified.
Hence, the bound on the cardinality constraint is always incremented by one, and
it is always over the soft clauses in the union of the cores that have been found so
far. Note also that by removing the literal b; from the assumptions, we no longer
require the SAT solver to satisfy the soft clause (b;). However, by adding —b; to
the cardinality constraint we still require the SAT solver to not falsify more than
cost of these soft clauses. Note also that x can be empty. In this case, the SAT
solver has proved that the current bound on the number of soft clauses that can
be falsified in the current cardinality constraint is too low. In this case, the only
change to card_ layer will be to increase the right-hand side bound “cost”.

If we consider the formula being solved by the SAT solver on line 6, we
see that only card_layer changes between SAT solver invocations. Furthermore,
card_layer changes in two ways: (a) the right-hand side cost bound is incre-
mented, and (b) potentially additional literals are added to the left-hand side
sum. Martins et al. [MJML14b] show how, using a totalizer encoding of the
cardinality constraint [BB03|, both changes can be made by only adding new
clauses to the SAT solver and by changing the assumed totalizer output variable
to change the right-hand side bound (Section 24.4.2.1). Hence, the same SAT
solver instance can be used throughout the algorithm giving rise to significant
performance improvements over non-incremental implementations.

24.4.5.3.1. The PM2 Algorithm. Algorithm 4 (MSU3) uses a single cardinality
constraint over all of the soft clauses that have appeared in some core. However,
in some cases, this cardinality constraint can be decomposed into smaller cardi-
nality constraints each over a disjoint set of soft clauses. This is the insight used
in the PM2 algorithm [ABL09, ABL13]. In particular, PM2 operates just like
MSU3 except that in each iteration card_layer will contain a set of cardinality
constraints rather than just one larger cardinality constraint.
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Consider the following sequence of cores (discovered by the SAT solver in
this order): R1 = {_lbl,_'bg,_'bg}, R = {_lb4,_|b5,_|b6}, R3 = {_|b7,_|b8}, R4 =
{=b1,bg}. MSU3 would construct the following sequence of cardinality con-
straints (setting card_layer to the i’th constraint in the i’th iteration):

—

(1) =by + —by + —b3 < 1,
(2) by + -+ + b < 2,
(3) =b1 + -+ b < 3,
(4) =by + -+ —bg < 4.

However, the first three cores are over disjoint sets of soft clauses. PM2 would
instead use a set of cardinality constraints in card_layer during each iteration:

(1) =by +---+=b3 <1,
(2) —b1 + by + —b3 < 1 and —by + —bs + —bs < 1,
(3) —b1 + —bg + —b3 < 1 and —by + —bs + —bg < 1 and —b; + bg < 1.

However, k4 is over soft clauses contained in k1 and ko. So as to ensure that its
cardinality constraints are each over disjoint sets of soft clauses, PM2 would now
merge the soft clauses in k1, k9 and k4 and construct one cardinality constraint
over the union of their soft clauses with a bound of 3 (since 3 cores have been
discovered over this subset of soft clauses). Hence, at iteration 4, PM2 would use
the following set of cardinality constraints in card_ layer: (4) —by + -+ —bg < 3
and —b; + —bg < 1.

By splitting up the cores into multiple cardinality constraints PM2 is po-
tentially giving the SAT solver an easier problem to solve. In particular, there
are fewer settings of the b; variables satisfying the two cardinality constraints
—by + -+ bg < 3 and by + —-bg < 1 than there are settings satisfying the
single cardinality constraint —by 4 --- + —bg < 4.

PM2 also added > cardinality constraints (At-Least) to the SAT solver. How-
ever, these constraints are logically redundant—the SAT solver has already in-
ferred that at least this number of soft clauses must be falsified. Potentially, these
At-Least constraints might slow down the SAT solver.

24.4.5.4. OLL for Weighted MaxSAT

Another algorithm that is very efficient for MaxSAT is the OLL algorithm. OLL
is originally an algorithm for optimization in Answer Set Programming [AKMS12]
and was adapted for MaxSAT by Morgado et al. [MDM14]. The OLL MaxSAT
algorithm was most recently (at the time this chapter was written) implemented
in the RC2 solver.

The key idea of OLL is to utilize what are called “soft cardinality constraints.”
Consider an unweighted instance for which a core kK = {=b;,...—-b,} has been
found (i.e., for each —b; € k, (b;) is a soft clause with wt((b;)) = 1). The formula
can be relaxed by removing the b; from the assumptions and adding a cardinality
constraint » | _ b,cr "0i < j. This allows the SAT solver to falsify up to j—1 of these
soft clauses. Now define new summation output variables o; for j = 1,...n —1
such that o; is true if and only if Zﬁbien —b; > j. That is, o; is true if at least j
of the soft clauses (by), ..., (by,) are falsified; and false if at most j — 1 are falsified.
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Algorithm 5: OLL algorithm for MaxSAT [MDM14]

1 OLL(F)

2 F? = bv_transform(F); card_layer = {}; assumptions = {b; | (b;) € soft(F?)}
3 F’ = hard(F?); cost = 0; iter = 0; sat? = false

4 while not sat? do

/* SAT solver interface is the same as in Algorithm 2 */
5 (sat?, m, k) = SATSolve (F' U card_ layer, assumptions)
6 if not sat? then
7 Whmin = Mingy|pexy wt((=£))
8 cost = cost + wtmin
9 for { € k do /* (=) is a soft clause */
10 wt((—€)) = wt((—£)) — Wemin
11 if wt((—¢)) == 0 then
12 | assumptions = assumptions \ {—¢}
13 for 0; € k do /* Summation output variables */
14 if wt((ﬁoé)) ==0A o§.+1 ezists then
/*i’th summation has another output variable */
15 assumptions = assumptions U {—|0§.+1}
/* Encode clauses that make output variables equal to value of sum */
16 card_layer = card_layer UCNF (Y, 0> j= oijter for olfer, ..., o}f{elr)
17 for j=2,...,|k| do
18 | wt((—0lf°T)) = Wtmin
19 assumptions = assumptions U {—olfeT}
20 iter = iter 4+ 1
21 else
22 | return (7|,qrs(F), cOSt)

We will refer to the o; as being output variables of the cardinality constraint, and
the literals being summed (the left-hand side) as the input variables.

Instead of adding the cardinality constraint > _, . —b; < j, we can add
the clauses specifying that for each output variable o; the equivalence o; =
> —b.ex bj > j holds, and call the SAT solver under the assumption —o; (Sec-
tion 24.4.2.1). This technique is used by [MJML14b] to make MSU3 incremental.
However, the use of soft cardinality constraints takes this idea further. Instead of
treating the literals —o; as hard assumptions, we can regard them to be new soft
clauses (—0;)1. Since 0o; — 0;_1, we observe that any truth assignment falsifying
the soft clause (—0;); must also falsify the j soft clauses {(—01)1, .., (—0;)1}.
Hence any feasible solution falsifying (—o0;); incurs cost j, and this is exactly the
same as the costs incurred by falsifying j of the original soft clauses (b;) (o; is
true implies j of the —b; are true). That is, replacing the soft clauses (b;); by
the soft clauses (—0;); corresponding to the sums of the —b; is a cost-preserving
transformation of the MaxSAT formula.

The main advantage of treating the (—0;) as new soft clauses is that cores can
now be found over these variables. For example, the SAT solver could compute
a core Kk = {—by, —by, 03} where (by); and (by); are soft clauses of F°, and 03 is
the 2nd output of the second cardinality constraint. This core asserts that either
one of (bg)1 or (by); must be falsified or more than two soft clause inputs of the
second cardinality constraint must be falsified. This is clearly a more general
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and potentially more powerful type of core than cores strictly over the original
soft clauses (b;). Furthermore, the outputs of one cardinality constraint (the
right-hand side variables) can end up being used as the inputs (the left-hand side
literals) to additional cardinality constraints, building up new output variables
representing quite complicated constraints on the set of original soft clauses that
can be falsified.

Algorithm 5 gives the details of the weighted case.® One main feature of this
algorithm is that the totalizer encoding [BB03] of cardinality constraints already
provides the summation output variables o; used on line 16 (see Section 24.4.2.1).7
Another feature of the algorithm is that through its use of assumptions it can
perform clause cloning without having to actually duplicate the clauses as was
needed in WPM1/WMSU1 (Section 24.4.5.2); this is described below.

The algorithm starts as normal with an empty card_layer and assumptions
that force the satisfaction of all soft clauses. Whenever a core is found, the
minimum weight over the soft clauses in the core is subtracted from the weight of
every soft clause in the core. Note that with summation output literals ﬂoé being
assumed (lines 15 and 19) the core can contain either negated blocking variables
—b; or positive output variables 0}. In both cases the corresponding soft clause

contains the negation, (b;) or (—0%). Line 10 reduces the weight of these soft
clauses by wtnin. If the weight drops to zero, then that particular soft clause has
been fully absorbed into the card_ layer (i.e., its weight has been fully accounted
for in the cost of the cores found so far). In that case we can remove it from the
assumptions; otherwise, we continue to assume it but now with reduced weight.

The summation output variables appearing in the core require special treat-
ment if their weight drops to zero. If the weight of 0§ drops to zero, the i-th
cardinality constraint has had j of its inputs made true. This corresponds to j
soft clauses being falsified, and the weight of these j falsifications has been fully
absorbed into card layer. Now we must disallow any further falsifications by
assuming —o%, ; (line 15). If further falsifications are needed, the SAT solver will
subsequently generate cores containing 02- +1; eventually the weight of a (j +1)’th
falsification, i.e., wt((—0%,,)), will be absorbed into the card_layer and we will
then assume 0;'- 9. Note that each of the soft clauses (ﬁoé-) has a weight equal
to the minimum weight of the soft clauses in the ¢’th core (line 18). This is in
general different from wt,,;, of the iter’th core currently being processed. If all
of the summation output variables have been absorbed (i.e., there is no 0§~ 41 out-
put variable) then no further assumptions need be added to the SAT solver—the
possible falsification of all of the soft clause inputs to this cardinality constraint
has been fully accounted for by the algorithm.

After updating the weights of the soft clauses a new cardinality constraint is
generated over the literals in the core (line 16) with a corresponding new set of

summation output variables 0. We do not need 0}"*" because we know that at

6The original publication [MDM14] did not detail the general weighted case, so this algorithm
is based on the RC2 implementation.

7 Algorithms that use the cardinality constraint CNF( Zﬂbi cinCard "0i < cost) with a specific
bound, such as MSU3, often use the totalizer encoding that also supplies these summation output
variables o;. To impose the bound of < cost, these algorithms add —0cst+1 to the set of SAT
solver assumptions.
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least one of the literals in x must be true, x specifies a conflict clause satisfied
by all feasible solutions (see Section 24.4.1.2), and so ol**" is already true. These
new summation output variables will count up how many literals —¢ of k are true,
and thus how many of the corresponding soft clauses (¢) are false. Since each of
the summation output variables gets weight wty,i, (line 18), each input clause
(¢) contributes wty;y, if falsified. This is how clause cloning is implemented. If
the soft clause (¢) (for =¢ € k) has weight wt({) > wty, we will have £ as an
assumption with new weight wt(¢) — wtpin, and £ as an input to the cardinality
constraint with weight wt,,;,. These two uses of the literal ¢ correspond to the
two clause copies used in WPM1, and there is no longer a need to add clause

copies to the SAT solver.®

There are a number of options with respect to assuming the new output vari-
ables. In Algorithm 5 the assumptions contain at most one output literal from
each cardinality constraint at any time: initially we add —o} (line 19), and when-
ever wt((—o}) drops to zero we remove it and add the next output literal =0, ;.
However, since -0} — 0%, (equivalently 0%, — 0) it is logically sound to
assume all of the output literals -0’ at once [ADR15]. In the RC2 implementa-
tion (see [BJM18]) only wt((—oifer)) is initialized to wty;, (as in line 18). Then,
whenever weight is removed from (—0}), an equivalent weight is added to (—o%, ;).
Thus by the time (—0lf*") has had its weight reduced to zero, (—o%°") will have
had a total of wty;, weight added to it. That is, instead of starting (—of°") with
weight wt i, as is done on line 18, weight wt,,;, is moved to this soft clause in-
crementally. Hence, by the time (—0%), ..., (—0}) all have weight zero, wtyiy - j

J
weight must have been accumulated into card_ layer.

With multiple output literals o] in the assumptions, the cores (which are

not minimal) can contain multiple output literals from the same cardinality con-

straint. Furthermore, the weight of 0§ might become zero even when 0?_1 still

has positive weight. Hence, solvers such as RC2 might remove 0;. from the as-
sumptions when its weight gets reduced to zero, and then add it back in when
weight is later shifted in from 03-_1. The impact of this on the efficiency of the
algorithm has not been reported to date.

Finally, it can be noted that the cardinality constraint built on line 16 of
Algorithm 5 need not be built all at once. Instead, solvers like RC2 build this
cardinality constraint incrementally, adding output variables oijter only as these
are needed.

24.4.5.5. Other Soft Cardinality Constraint Algorithms

Besides OLL other published algorithms have used the notion of dynamically
creating new soft clauses representing summations or disjunctions of the original
soft clauses. These include, e.g., PMRes [NB14], Maxino [ADR15|, and WPM3
[ADG15], all of which have very good performance. We briefly describe their main
features, leaving the interested reader to consult the references for more detailed
information.

8This can yield a significant improvement in efficiency when the core contains hundreds or
thousands of soft clauses.
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All of these algorithms use the same main loop as Algorithm 5 except that
they process cores differently. That is, initially all soft clauses are assumed to
be true and card_ layer is empty. Then, for every core s that is found, wt, is
determined and subtracted from every soft clause in x (line 10). If the remaining
weight is greater than zero, a “copy” of the soft clause is left in the assumptions;
otherwise, the clause is removed (line 12). This leaves k with soft clauses all with
the same weight wtpiy,.

After this, the core is processed, updating card_layer and assumptions. In
Algorithm 5 this is done on lines 13 to 19. It is this processing and these lines
that are changed by the different algorithms we discuss here.

First, it is useful to describe the properties processing a core must satisfy.
Core processing has to update the formula so that the SAT solver is now allowed
to falsify one of the weight wt;, soft clauses in k: wty,;, has been added to
cost (line 8) so the cost of a single falsification has already been accounted for.
Furthermore, the update must preserve the condition that if a truth assignment
falsifies j soft clauses of k, then that truth assignment must incur a cost of
(j — 1) - wtpin in the new formula.

In OLL this is accomplished by defining the summation output variables
ozter for j = 2 to |k| with totalizer clauses (added to card_layer) ensuring that

0f" =37, £ > j. Then the soft clauses (=07")yy,,,, are added by adding -0l

to the assumptions and setting wt((—0%*")) = wtmin (line 18). These soft clauses

are added incrementally to the assumptions (line 15), with initially only —olfer™

in the assumptions (line 19). Thus, since =0*" is never assumed nor even defined,

the SAT solver is allowed to falsify any single soft clause in k. Furthermore, if

a truth assignment falsifies j soft clauses in x, the variables oi¥°*, ..., oijter will all
be made true, and thus j — 1 soft clauses (705 )utpps o (05w, wWill be

falsified incurring cost (j — 1) - wtpin-

PMRes. The PMRes algorithm processes cores differently. In particular, PMRes
does not use summation output variables. Instead it operates as follows. Let
k= {1, .., 7p} and w = wiyi,. Thus the soft clauses are (£1)y, wy (b )w-
PMRes will define m — 1 variables ds, ..., d,,, such that d; = ¢; vV ({41 N+ ANli—q),
adding the clauses defining this equivalence to card_layer ([NB14] presents a
compact way of encoding these equivalences). That is, each d; is true if either the
soft clause (¢;),, is satisfied or if all prior soft clauses in the sequence ({1)y, ..,
(£;—1) are satisfied. It will then add the soft clauses (d2)w, -, (dm)w by adding
da, .., dp, to the assumptions and setting wt((dy)) = w, .., wt((d,,)) = w.

In the new formula, the SAT solver is now allowed to falsify any single soft
clause in k. If exactly one (¢;),, is falsified, then all of the d; assumptions will
be true: for j # i, {; is true, making d; true, and for j = 4, the conjunction
(6y N --- ANli—q) is true, making d; true. Furthermore, if a truth assignment
falsifies j of the soft clauses (¢;),, then it will make d; true for all ¢ corresponding
to satisfied soft clauses; it will make d; true for i equal to the index of the first
falsified soft since all previous soft clauses are satisfied; and it will make d; false
for ¢ equal to the index of all j — 1 subsequent falsified soft clauses, since in this
case all previous soft clauses are not satisfied. Hence, the truth assignment will
falsify exactly 7 — 1 of the soft clauses (d;), in the new formula incurring cost

(j — 1) . wtmin.
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PMRes has proved to be a very effective algorithm, with the Eva solver im-
plementing it was one of the best performers in the 2014 MaxSAT evaluation. An
open issue with PMRes is that the order of the soft clauses in x has an influence
on the algorithm’s performance. Why this is the case is not well understood. A
better understanding of this issue might lead to improved ordering schemes and
better performance.

Maxino. The Maxino algorithm uses summation output variables to define the
new soft clauses like OLL. Its main innovation is to use a simple technique to
partition the core k into a sequence of smaller subsets that are pairwise disjoint
and whose union is k. The algorithm then constructs a sequence of cardinality
constraints, each cardinality constraint summing the falsified soft clauses of one
partition. It links the cardinality constraints together by including the 1 output
(the output variable indicating that the sum of the inputs is > 1) from the pre-
vious cardinality constraint as an input of the subsequent cardinality constraint.

Each cardinality constraint allows at most one of its inputs to be true (at
most one of its corresponding soft clauses to be false). In particular, its outputs
indicating that that the sum is > 2, > 3, .., are all assumed to be false and
each is given weight wiyi, (i.e., the negation of these output variables become
new soft clauses as in OLL?). Its 1 output indicating that the sum is > 1 is not
made into a soft clause, instead the 1 output is fed into the subsequent cardinality
constraint.

With these new assumptions and clauses capturing the new sequence of car-
dinality constraints, the SAT solver is now allowed to falsify any single soft clause
in k. Say that the single falsified soft clause is an input to the i’th cardinality
constraint in the sequence of cardinality constraints. The first to i(—1)'th car-
dinality constraints will all have only false inputs and thus will set all of their
outputs to false, satisfying the assumptions. The 7’th cardinality constraint has
one true input, the input corresponding to the falsified soft clause, and will set
its 1 output to true and all other outputs to false. This again satisfies all of
the assumptions since the 1-output has not been added to the assumptions. The
(i4+1)’th cardinality constraint will have a true input, the input corresponding to
the 1 output of the i’th cardinality constraint, and will set its 1 output to true
and all other outputs to false. Again this will satisfy all of the assumptions since
the 1 output has not been added to the assumptions. This pattern will continue
for the subsequent cardinality constraints and all assumptions will be satisfied.

Furthermore, if j soft clauses in x are falsified by some truth assignment,
then the sequence of cardinality constraints will have j true input variables. The
first cardinality constraint in the sequence with ¢ > 0 true inputs, will set its i,
i—1, .., 1 outputs to true incurring cost (¢ — 1) - wtyin: the 1 output is not a soft
clause and hence does not incur any cost while the other outputs all falsify soft
clauses with weight wt;,. Every subsequent cardinality constraint with k& true
input variables will also get an additional true input variable from the previous
cardinality constraint’s 1 output. Thus, it will set its k+1, k, ..., 1 outputs to true

9However, all output variables are assumed to be false, whereas in OLL only the > 2 output
is assumed to be false. As already explained, OLL incrementally assumes the output variables
of the cardinality constraint whereas Maxino assumes them all at once.
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incurring cost k - wtnin: again the 1 output does not incur any cost. Summing
over all the cardinality constraints it can be seen that a total cost of (j —1) - wtmin
will be incurred.

The interested reader may consult [ADR15] for further details. However, we
note that in [ADR15] the totalizer encoding is presented in a non-standard way.
In particular, for a totalizer with inputs ¢4, ..., 4, and outputs o; = Z?:l ;>
(1 <i<n), [ADRI15] uses the non-standard but equivalent encoding CNF(—¢; +

-+ =, + 01+ -0, > n) conjoined with /\?:1 0; — 0;. That is, if k inputs ¢;
are true (i.e. at most k — n of the =¢; are true), then at least k outputs must be
true with the true outputs clustered at the lowest indices.

Maxino is another very effective algorithm being one of the best performing
algorithms in the 2018 MaxSAT evaluation. An open issue with Maxino is un-
derstanding more precisely how partitioning the core into smaller subsets helps
the solver, and how this clustering should be done in order to maximize solver
performance.

WPM3. The WPM3 algorithm, like Maxino and OLL, uses summation out-
put variables to define the new soft clauses, but it differs in some ways. First,
the cardinality constraints it uses are always summations of falsified input soft
clauses. The new “meta” soft clauses arising from the output of previous car-
dinality constraints are not used as inputs to new cardinality constraints as in
Maxino, OLL, and PMRes. Second, WPMa3 utilizes a sub-optimization step to
find the best bound for each core.

When processing a new core k, WPM, like OLL, distinguishes between the
soft clauses that are input soft clauses and those that are output variables of
previously constructed cardinality constraints. In particular, if o] € & is the i’th
output of the j’th cardinality constraint ((—@g ) is a soft clause), then WPM3
replaces 03 with the union of the inputs of the j’th cardinality constraint. Since
this replacement is done before the new cardinality constraint over the literals
in the core is constructed, every cardinality constraint will have only input soft
clauses as input (i.e., literals indicating the falsification of some input soft clause).
After building this larger core kK, WPM3 constructs a new cardinality constraint
C with the literals in x as inputs and a corresponding set of output variables oiC
counting the number of falsified soft clauses in k.

Now instead of assuming the 2 output of the new cardinality constraint C' to
limit the number of falsified soft clauses to one, WPM3 does a sub-optimization
to determine if this limit must be higher. This can be done in various ways,
but WPM3 applies the LSU (Algorithm 1) over the subproblem consisting of
hard(Fp) along with only the soft clauses that are inputs to C. Say that this
sub-optimization concludes that k of the soft clause inputs of C' must be falsified.
Then WPM3 will add the output ﬂokCH to the set of assumptions with weight
Whmin and will add (k — 1) - wtyi to the cost. In other words, after concluding
that k soft clauses inputs to C' must be falsified, WPM3 will construct a problem
in which the SAT solver can falsify no more than k£ of these soft clauses without
incurring an additional cost.
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24.4.5.5.1. Remarks. The algorithms mentioned in this section, all of which use
the technique of adding new soft clauses defined in terms of previous soft clauses,
seem to have similar levels of excellent performance. It is not clear if any single
approach is generally the best. In particular, much of the demonstrated perfor-
mance differences seem to arise from the quality of implementation and additional
techniques used in the implementation. We close this section by mentioning some
of the key techniques used to improve the base algorithm.

An important technique for all core-guided algorithms is weight stratification
[ABL09]. This is the technique of partitioning the soft clauses into k sets so that
the soft clauses in set i have higher weight than those in set ¢ — 1. Then the
problem is solved ignoring all soft clauses except those in the k’th set. Once
a solution is found for these higher-weight soft clauses, the k — 1’th set of soft
clauses is added and the problem solved again. This is repeated until the problem
has been solved with all soft clauses.

The reason this technique is useful for core-guided algorithms is that it gener-
ates cores with higher minimum weight. This moves the cost towards the optimum
more rapidly and reduces the amount of clause cloning that needs to occur. In
particular, even with clause cloning optimized to be simply reusing a literal (as
described earlier), excessive cloning will still slow the solver down by forcing it to
generate more cores. For example, if an instance contains a single soft clause of
weight 100 that must be falsified in any optimal solution, along with many other
soft clauses of weight 1, then the solver would have to generate at least 100 cores
if each of these cores has wt,;, of 1. One hundred such cores would be required
to reduce the weight 100 soft clause down to weight zero: before its weight is
reduced to zero it remains in the assumptions and must continue to be satisfied
by the SAT solver. Furthermore, every core generated augments the complexity
of card_ layer, which starts to slow the SAT solver down. Even with stratification,
however, core-guided algorithms become significantly less efficient as the number
of distinct soft clause weights increases.

The WPM3 technique of finding an optimal lower bound for each cardinality
constraint via a sub-optimization also seems to be quite effective. For example,
RC2 implementation of OLL (see [BJM18]) employed this technique (its “ex-
haust__core” method). As pointed out earlier, each added cardinality constraint
slows down the SAT solver. The sub-optimization technique allows the solver to
increase the cost towards the optimum without adding additional cardinality con-
straints; optimization is done by using the output variables of the already added
cardinality constraint as SAT solver assumptions (recall Section 24.4.5.5).

The final technique that we will mention here is that of core minimization.
There are a number of algorithms for reducing the size of a core. For example,
one simple technique is as follows. Given a core Kk = {{1,...,¢,}, we can ask the
SAT solver if it can satisfy —/y,...,—f,_1 using assumptions. In the negative
case, the SAT solver it will provide a new core that must be a strict subset of
k. In the positive case, the test can be performed leaving out a different literal
l;, i # n. Depending on the size of k and the complexity of the current SAT
formula (which is growing as we process more cores and add more cardinality
constraints), this technique can be effective in reducing the size of the core after
which the reduced core can be processed. Core reduction if applied judiciously
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can speed up the solver.

Besides the algorithms already mentioned, it should also be noted that a num-
ber of other core-guided MaxSAT algorithms have been proposed, e.g., [[MM ™14,
MHM12, MMO08, ABL10a]. These algorithms have mostly been subsumed by the
algorithms discussed, but some ideas and insights might still be available by ex-
amining these earlier works more carefully.

24.4.6. The Implicit Hitting Set Approach

Implicit hitting set (IHS) MaxSAT solvers [DB11, DB13a, DB13b, Dav13, SBJ16]
instantiate the implicit hitting set paradigm [DCB10, Kar10] in the context of
MaxSAT. In particular, similarly to the purely SAT-based core-guided approach,
IHS solvers extract cores in an iterative fashion. However, in contrast to the
core-guided approach, in the THS approach hitting sets over the iteratively ac-
cumulated set of cores are computed. If a minimum-cost hitting set (MCHS)!
of the accumulated cores, when removed from the input formula, makes the for-
mula satisfiable, then any satisfying truth assignment must be an optimal solution
[DB11]. In contrast to solvers implementing the purely SAT-based core-guided
approach, IHS solvers do not transform the input instance using core compilation
steps; rather, the input MaxSAT instance is not altered during search. Each SAT
solver call is made on the original hard clauses together with a subset of the orig-
inal soft clauses (selected through the use of assumptions). Thus the MaxSAT
instance does not get larger in size as the search progresses. As a result, the
cores found during search remain relatively small compared to the core-guided
approaches (consisting of no more than a few hundred clauses on current typical
MaxSAT benchmarks).

To obtain a MCHS HS, current IHS solvers for MaxSAT have employed
integer programming (IP) solvers on the following MCHS IP formulation:

minimize Z wt((b;)) - b,

(bi)Esoft(F?)
subject to Z -b; > 1 Vk € K,
—-b;ER
-b; € {0,1} V(b;) € soft(F?),

where K is the accumulated set of cores, the b; are the blocking variables for
the input soft clauses ¢; created by the blocking variable transformation (Sec-
tion 24.4.1.1.1), and —b; = 1 when b; is false and ¢; is falsified.!? In the original

10Given a set of cores, a hitting set of the cores is a set of soft clauses that includes a soft
clause from each core. A hitting set is optimal (of minimum cost) iff the sum of the weights of
the soft clauses in it is smallest among all hitting sets of the set of cores.

1 Other techniques for computing minimum-cost hitting sets besides using IP solvers can
be used. These include branch-and-bound methods [Klell] and SAT based methods, e.g.,
[[PLM15]. In certain contexts these methods can be quite effective, e.g., when recomputing
a minimum-cost hitting set after adding a single new set. However, these alternatives to IP
solvers either cannot handle the weighted case or are not very efficient on the weighted case. In
addition, IP solvers support adding other types of constraints that can be extracted from the
input formula [DB13a], and bounding techniques that can be used to harden some of the soft
clauses [BHJS17]; both of these ideas can yield significant efficiency improvements.
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Algorithm 6: IHS algorithm for MaxSAT [DB13b]

1 THS(F)
2 F® = bv_transform(F); F/ = hard(F®); K = {}; HS = {}

/* Initialize upper and lower bounds (UB and LB). LB is initialized to zero. UB is
initialized to a feasible solution. A feasible solution must exist since by assumption
hard(F") is satisfiable. Remember the solution yielding the UB cost. SAT solver
interface is the same as in Algorithm 2 */

3 (sat?, m, k) = SATSolve (F’, {})
a4 UB = cost(m); LB = 0; best_sol = 7
5 while true do

6 (sat?, m, k) = SATSolve (F’,{b; | (b;) € (soft(F®) \ HS)})
7 if not sat? then

8 K=K U{k}

9 (HS, MCHS?) = ComputeHittingSet ()
10 if MCHS? then

11 LB = max(LB, cost(HS))

12 if LB > UB then

13 | return (best_sol, cost(best_sol))
14 else

15 if cost(m) < UB then

16 UB = cost()

17 best_sol = 7w

18 if LB > UB then

19 | return (best_sol, cost(best_sol))

IHS algorithm for MaxSAT [DB11] each iteration of the algorithm involved com-
puting a MCHS HS of the current set of cores K (which is initially empty) and
then testing the satisfiability of hard(F®) subject to the assumptions {b; | (b;) €
(soft(F®) \ HS)}. That is, a feasible solution satisfying all soft clauses except
those in the MCHS HS must be found. If this formula is satisfiable, the set HS
must hit all cores of the instance [Rei87], and the optimality of HS implies the
optimality of the solution [DB11], terminating the MaxSAT search.

One benefit of the THS approach is the possibility of tightly integrating upper
and lower bound information into search. In fact, starting with [DB13b], more
recent versions of THS MaxSAT solvers have used a different approach that is
better cast as an algorithm computing an upper and lower bound and stopping
when these two bounds meet. This more modern version of the ITHS algorithm is
shown in Algorithm 6.

The algorithm starts by applying the blocking variable transformation and
initializing the set of cores K and the hitting set HS to be empty. It also initializes
the lower bound (LB) to be zero and finds a feasible solution whose cost is used
to initialize the upper bound (UB). Note that by calling the SAT solver with an
empty set of assumptions (line 3) the SAT solver is free to falsify any of the soft
clauses. Hence, this call will return SAT if any feasible solution exists, and since
by assumption the input set of hard clauses, hard(F') are satisfiable, this call
must return SAT (Section 24.4.1.1.1). The feasible solution is stored in best_ sol
so that an optimal solution can be returned on termination.

Then the main loop is entered where the SAT solver is asked to find a solution
satisfying all soft clauses except those in the current hitting set (line 6). If the
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solver reports unsatisfiability, the found core & is added to the set of cores K, and
a new hitting set is computed. If that hitting set is an MCHS, the lower bound
can be updated to be the maximum of its previous value and the cost of the
MCHS HS (line 11). In particular, every truth assignment 7 must falsify at least
one soft clause in every core. Thus the set of soft clauses falsified by 7 forms a
hitting set of K. The cost of 7 is equal to the sum of the weights of these falsified
clauses; that is, it is equal to the cost of the hitting set it generates. Thus cost(m)
must be at least as high as the cost of any MCHS. Since this is true for all truth
assignments including the optimal solutions when HS is an MCHS, its cost must
be a valid lower bound on cost(F).

On the other hand, if the SAT solver returns a satisfying truth assignment,
we can check the cost of the returned solution 7 and update the upper bound if
we have found a new lower cost solution. In both cases when either the lower or
upper bound is updated we check if the bounds now meet. If they do, we return
best__sol, since has now been proven to be an optimal solution.

ComputeHittingSet. 'The one part of Algorithm 6 that is incompletely specified
is how ComputeHittingSet works. This subroutine must satisfy two properties:
(a) it must return a hitting set of IC, and (b) it must always eventually return
an MCHS of K. That is, ComputeHittingSet is free to compute and return non-
optimal hitting sets (in which case MCHS? is returned as false), but there must
always exist a future call that will compute and return an MCHS. In fact, the
ability to postpone computing MCHS (which is a computationally hard problem)
has been shown to be essential for the effectiveness of the IHS approach [DB13b).

It can be shown that as long as ComputeHittingSet satisfies these two
properties, Algorithm 6 will eventually terminate returning an optimal solution
[BHJS17]. Nevertheless, there is still considerable flexibility in how Compute-
HittingSet works, and although effective implementations have been found, deep
insight has not yet been achieved into how to implement this function optimally.
However, Saikko [Sail5] did provide useful empirical evidence about different
techniques.

In current ITHS solvers (MaxHS and LMHS [BJM18]) the following techniques
are used to compute hitting sets.

1. The entire new core k is added to the previously computed hitting set HS.
Clearly, if HS was a hitting set of all previous cores in K, HS U k will
be a hitting set of K U {x}. Typically, this technique is used immediately
after any other more expensive technique for computing a hitting set is
employed, and it is used until the hitting set becomes so large that the
SAT solver returns SAT. Saikko [Sail5] showed that employed in this way
this technique is empirically effective.

2. A greedy algorithm can be used to compute a new hitting set. The stan-
dard greedy heuristic, where the soft clause that hits the most cores for
the least weight is continually selected until all cores are hit, is typically
used.

3. The IP solver can be used to compute a hitting set but it can be stopped
as soon as it finds a feasible solution with a cost lower than the current
upper bound. This technique can help limit the time consumed by the IP
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solver.
4. Finally the IP solver is used when it is time to compute an MCHS

These techniques are listed in order of increasing computational cost. Com-
puteHittingSet implementations typically try to repeat the least expensive tech-
nique as many times as they can before moving on to a more expensive technique,
with the aim of reducing the time required to accumulate a set of cores capable
of raising the lower bound. In particular, when the hitting set returned by a
technique immediately yields a solution, there is no longer any point in repeating
that technique—mno more cores can be found using it until some other cores have
been found by other techniques. This “repeat the cheapest until nothing new can
be computed” method has proved to be quite effective in practice, but other more
sophisticated policies might well be even more effective.

Other Techniques. A number of additional techniques are employed by IHS
solvers to speed up the algorithm. Here we mention some of the most important
ones.

Seeding is the technique of examining the input MaxSAT instance to deter-
mine if any constraints can immediately be added to the IP solver. This technique
is quite effective and is more fully described in [DB13a].

Core minimization (Section 24.4.5.5.1) is very effective for IHS solvers [DB13a]
and is standardly employed. However, as with its use in core-guided algorithms,
the resources expended on core minimization must be limited. For example, it
would be too expensive to compute the smallest core. Nevertheless, core mini-
mization tends to be easier to perform in THS solvers than in core-guided solvers.
As already mentioned, the cores in IHS solvers tend to be smaller to begin with,
and since cardinality constraints are not being added to the formula the SAT
solver calls used during minimization are more efficient. In IHS solvers, minimiz-
ing the cores results in tighter constraints for the IP solver, allowing it to raise
the lower bound with fewer cores.

The final technique that we will mention here is the IP technique of re-
duced cost firing. IP solvers standardly work by iteratively solving linear (LP)
relaxations of the input IP and then refining those relaxations with cuts or by
branching. In the context of THS, the LP relaxation of the minimum-cost hit-
ting set IP provides a lower bound on the value of the MCHS, which in turn
is a lower bound on the cost of an optimal solution to the MaxSAT problem.
Hence, as proposed in [BHJS17], the LP can be used to obtain a reduced cost for
every soft clause by computing the reduced costs of the IP variables —b;. This
allows the solver to make use of the standard IP technique of reduced cost fixing
[Wol98, DFJ54, CJP83, NW99|. Intuitively, the reduced cost of a soft clause
specifies a minimum increase in the cost of the LP relaxation that would arise
from falsifying (respectively, satisfying) a soft clause which was satisfied (respec-
tively, falsified) in a computed optimal LP solution. If this cost increase makes the
lower bound provided by the LP relaxation greater than the current best known
MaxSAT upper bound, the clause (i.e., its blocking variable) can be fixed to its
status as prescribed by the LP solution. Fixing the values of blocking variables
subsequently simplifies both the minimum-cost hitting set computations as well
as the SAT solver calls. This use of a proven IP technique to improve IHS solvers
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is made possible by their hybrid use of both SAT and IP solvers. Potentially,
other ideas from the rich field of IP solving could be discovered to be useful.

24.4.7. Solving MaxSAT Directly via Integer Programming

In addition to developing SAT-based approaches to MaxSAT, integer program-
ming systems can be used to directly solve MaxSAT instances using the standard
encoding of MaxSAT to integer programming [GW93]. In more detail, starting
with the blocking variable transformation F°, an IP 0/1 variable x can be de-
fined for each propositional variable z with —x translated as (1 — x). Then every
clause can be translated into a > 1 linear constraint, and the objective function
can be defined to be the minimization of Z(bi)esaﬁ(w) wt((b;)) - =b; As shown in
[AG13, DB13a], IP solvers can be quite effective on some MaxSAT instances using
this standard IP encoding of MaxSAT. However, in general, their performance is
not competitive with MaxSAT-specific algorithms on most instances.

24.5. Further Developments

Finally, we overview further recent developments in MaxSAT solving involving
preprocessing, practical incomplete algorithms, algorithm portfolios, partitioning-
based, and parallel approaches to MaxSAT solving.

24.5.1. Preprocessing

Preprocessing techniques for SAT provide significant performance improvements
to SAT solving, and preprocessing is today a standard part of the SAT solving
workflow (see also Chapter 9). In comparison, progress on MaxSAT preprocessing
is more recent and preprocessing less routinely applied.

Nevertheless, essentially all major SAT preprocessing techniques can be nat-
urally lifted to MaxSAT. The key to SAT-based preprocessing for MaxSAT is
in introducing first blocking variables through the F° transformation (cf. Sec-
tion 24.4.1.1.1), turning each soft clause c into the hard clause cvV—bec. The clauses
of hard(F?) resulting from this transformation can then be preprocessed using an
SAT preprocessing with one minor but—in terms of correctness for MaxSAT—very
important restriction: the elimination of the blocking variables by resolving on the
variables (e.g., through bounded variable elimination) must be disallowed, in or-
der to preserve the unsatisfiable core structure of the instance [BJM13, BMM13].
By lifting the notions of resolution asymmetric tautologies [JHB12] from SAT
to MaxSAT, a generic proof of correctness for natural MaxSAT liftings of SAT
preprocessing techniques was recently provided [BJ19].

An optimal solution to the original MaxSAT instance can then be obtained
from any optimal solution to the instance after applying SAT preprocessing by
applying the generic solution reconstruction technique for SAT preprocessing
[JHB12] in linear time with respect to the number of preprocessing steps made.

After applying SAT preprocessing the clauses can contain more than one
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blocking variable, and a blocking variable can occur in multiple clauses.'? Hence
the bijective mapping between blocking variables and soft clauses is lost after
SAT preprocessing. For coupling SAT preprocessing with core-guided and ITHS
MaxSAT approaches, this is not problematic, but nevertheless requires atten-
tion. The blocking variables introduced before preprocessing can be directly used
as blocking variables by the MaxSAT algorithms which employ blocking vari-
ables, instead of performing another F? transformation step after preprocessing
[BSJ15a).

Variables that can be directly used as blocking variables can also be de-
tected from input MaxSAT instances and reused as assumptions throughout the
MaxSAT solving process, thereby limiting the number of new variables added by
the F® transformation step, as proposed in [BSJ15b] under the notion of group
detection. Group detection refers to detecting auxiliary variables introduced by
MaxSAT encodings of more high-level finite-domain constraints. In more detail,
assume that a set of clauses CNF(C) = {C4, ..., C}} is a conjunctive normal form
encoding of a finite-domain constraint C. Now assume that C is a soft constraint,
with an associated weight We. On the level of group MaxzSAT [HMM15] this
soft constraint can be represented as the soft group {Cy,...,Cy} with weight
We. For employing a standard MaxSAT solver, a natural way of encoding such a
group-level MaxSAT representation is to introduce a single blocking variable be
and add it to each of the clauses C1,...,C}, thereby obtaining the hard clauses
Cy1V —be,...,CkV —be together with the soft clause be with weight We. With
this intuition, group detection refers to pattern matching in a MaxSAT instance
literals that are directly re-usable as blocking variables. In particular, a literal
[ is re-usable as a blocking variable if the literal —l only appears in the hard
clauses of the MaxSAT instance. This captures the auxiliary variables arising from
the already-described general approach of encoding high-level soft constraints in
MaxSAT. In practice, in [BSJ15b] the authors showed that in the industrial and
crafted benchmark instances of MaxSAT Evaluation 2014, variables re-usable di-
rectly as blocking variables were found in a majority of the instances using group
detection, most often in significant numbers.

The impact of SAT preprocessing on the efficiency of MaxSAT algorithms in
practice has been to date less studied, although some theoretical evidence on its
potential is available; see e.g. [BMM13, KBSJ17]. However, it has been shown
that, theoretically, SAT preprocessing has no effect on the best-case number of
iterations of core-guided MaxSAT algorithms [BJ16], which suggests that its im-
pact may mainly be in making the individual SAT solver calls within core-guided
MaxSAT algorithms simpler.

Beyond SAT preprocessing, native MaxSAT-specific preprocessing techniques
have also been proposed. A limited form of variable saturation in the context
of MaxSAT resolution was proposed as a MaxSAT preprocessing technique in
[ALMO8]. More recently, the MaxPre MaxSAT preprocessor [KBSJ17] intro-
duced several further preprocessing techniques native to MaxSAT, including label
matching, binary core removal, and generalized form of subsumed label elimina-

121n this context, blocking variables are sometimes referred to as labels, following the labeled
CNF framework [BM12] that explicitly distinguishes between the blocking variables and original
clauses of each clause.
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tion [BSJ16], the last of which allows for removing blocking variables (labels)
in the following sense: A blocking variable b is subsumed by a set of blocking
variables {b1,...,bx} if one of by, ..., by occurs in a clause whenever b occurs in
the clause, and Zle wt(b;) < wt(b). For k = 1, this gives the original proposed
definition of subsumed label elimination [BSJ16], while in general the conditions
correspond to the NP-complete hitting set problem. In practice, an approximate
version of the generalized form of subsumed label elimination can be computed
using a classical In(n)-approximation algorithm for the hitting set problem.

In terms of implementations of MaxSAT preprocessing, the SAT preproces-
sor Coprocessor [Man12] supports SAT preprocessing techniques for MaxSAT
instances, while the MaxPre preprocessor [KBSJ17] offers combinations of SAT
preprocessing and native MaxSAT preprocessing techniques.

24.5.2. Incomplete Algorithms for MaxSAT

Incomplete MaxSAT solving can primarily be divided into two categories: (i) local
search MaxSAT solvers and (ii) approximation algorithms based on iterative calls
to SAT solvers that may not guarantee optimality.

24.5.2.1. Local Search for MaxSAT

Local search solvers start by finding a random assignment to the MaxSAT for-
mula. Since this assignment is unlikely to satisfy all clauses, they choose a clause
that is unsatisfied and flip the assignment of a variable occurring in that clause.
When compared to local search solvers for SAT, local search solvers for MaxSAT
face additional challenges since they must find an assignment that satisfies all
hard clauses while trying to maximize the sum of the weights of satisfied soft
clauses. To overcome this challenge, local MaxSAT solvers distinguish between
soft and hard clauses and apply weighting schemes that favor satisfying hard
clauses [CLTS14, LCW*15, CJS15, CLLS16, LCSH17, LC18]. For more details
on local search SAT solvers, we refer the interested reader to Chapter 6.

24.5.2.2. Model-Improving Approximation

Model-improving approximation algorithms do not guarantee the optimality of
the final solution. An example of this approach is an enumeration of minimal
correction subsets (MCSes) [MHJ*13, MPM15]. An MCS of an unsatisfiable set
of clauses is a minimal subset that, if removed, makes the formula satisfiable.
There has been a recent trend of using approximation approaches for incomplete
MaxSAT. For instance, an approach based on bit-vector optimization was pro-
posed for unweighted incomplete MaxSAT with promising results [Nad18].

LINSBPS [DS18] is an incomplete MaxSAT solver based on model-improving
algorithms. For weighted instances, they simplify the weights of the formula and
see it in low resolution, i.e., with all their weights divided by a large value. Since
they use integer division, the weights of some soft clauses are set to zero, effectively
removing them. Whenever the solver terminates with an “optimal” solution to
the simplified formula, the resolution is increased by decreasing the divisor value.
Additionally, they use solution-based saving [AG17, DCS18] to guide the search
towards the best solution found so far.
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OPEN-WBO-INc [JKMR18] is another incomplete MaxSAT solver based on
model-improving algorithms. For weighted instances, this solver also simplifies
the weights of the formula by clustering them into k£ different weights. An alter-
native approach also employed by this solver is to consider a weighted instance
as a multilevel optimization problem (even though it may not satisfy the BMO
condition described in Section 24.3.1.1). This alternative approach reduces the
solving of a weighted instance to solving a sequence of unweighted instances,
which significantly improves the performance of model-improving algorithms and
quickly converges to a final solution which corresponds to an upper bound on the
optimal value of the original formula.

24.5.3. Algorithm Portfolios

Given the diversity of MaxSAT algorithms (some of which were overviewed in
Section 24.4), a meta approach that aims at taking advantage of this diversity is
to build an oracle to predict the most suitable MaxSAT algorithm for a particular
instance. Inspired by the success of SATzilla [ XHHLOS] and other algorithm
portfolios for SAT solving, Matos et al. [MPLMOS8] proposed the first algorithm
portfolio for MaxSAT by employing linear regression using three kinds of features
[NLH*04]: problem size features, balance features and local search probe features.

ISAC+ [AMS14] is another algorithm portfolio approach that extends the
instance-specific algorithm configuration (ISAC [KMST10]) by clustering the ben-
chmarks and tuning the parameters of existing solvers on each cluster. ISAC does
not use regression-based analysis but instead computes a representative feature
vector that captures properties of a particular instance in order to identify clus-
ters of similar instances. A single solver is selected for each group based on the
characteristics of those benchmarks. Given a new instance, its features are com-
puted and it is assigned to the closest cluster and solved by the respective solver.
The features used by ISAC+ consider the percentage of clauses that are soft, and
the statistics of the distribution of weights (average, minimum, maximum, stan-
dard deviation). The remaining 32 features are a subset of the features used by
SATZilla that are specific to SAT instances and are applied to MaxSAT instances
by considering all soft clauses as hard. ISAC+ differs from ISAC since it also
applies an algorithm selector to choose the best parameters of existing solvers for
each cluster. Using a portfolio of different MaxSAT solvers, allowed ISAC+ to be
one of the best approaches for MaxSAT in the 2013-2015 MaxSAT Evaluations.

24.5.4. Parallel Solving

Nowadays, extra computational power is no longer coming from higher processor
frequencies but rather from adding additional processors. Distributed systems are
also becoming more predominant and cheaper. For instance, it is not uncommon
to deploy distributed tools to web services such as Amazon Web Services. Even
though parallel approaches for MaxSAT are not as predominant as in SAT solving,
there are a few parallel MaxSAT solvers that can take advantage of these new
architectures. These parallel solvers can be mainly categorized into two classes:
(i) portfolio approaches, and (ii) search space splitting.
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24.5.4.1. Portfolio Approaches

Portfolio approaches are not restricted to sequential solving and can be extended
to a parallel setting where different strategies are run in parallel. These different
strategies can be based on different MaxSAT algorithms (e.g., model-improving al-
gorithms, core-guided algorithms, implicit hitting set algorithms) or by using dif-
ferent settings of a given algorithm (e.g., changing the encoding for cardinality or
pseudo-Boolean constraints). An example of a portfolio solver is PWBO [MML11]
which allocates half of the workers to use model-improving algorithms, and the
other half core-guided algorithms. To further increase diversity between work-
ers using the same algorithm, PWBO translates cardinality and pseudo-Boolean
constraints with different encodings [MML11].

The portfolio approaches for parallel MaxSAT solving are closely related to
portfolio approaches for parallel SAT solving. The main difference consists on
how diversity is employed. Both approaches perform clause sharing where learned
clauses between different workers are exchanged to further prune the search space
and boost the performance of the parallel solver.

Portfolio approaches are better suited for multicore approaches since diversity
does not usually scale and clause sharing is more efficient when performed in
shared memory.

24.5.4.2. Search Space Splitting

Another approach for parallel MaxSAT solving is to split the original problem into
subproblems such that each worker solves a smaller formula that is hopefully easier
to solve. The two main approaches to divide the search space is to (i) perform
interval splitting or (ii) split the search space with guiding paths.

The optimal solution value of a MaxSAT problem is bounded between 0 and
the sum of the weights of the soft clauses. Therefore one way of splitting the search
space is to divide this interval and have different workers searching on different
bounds in order to narrow the search interval and converge to an optimal solution.
This approach is employed in a version of PWBO [MML12].

The search space can also be viewed as a binary tree, where each node corre-
sponds to a variable and each of its edges corresponds to an assignment to that
variable. The search space can then be split by using different paths in the tree
(called guiding paths) to split the search into sub-trees and assign each of them
to a different worker. There are many ways of generating guiding paths. One of
the most successful approaches has been using lookahead solvers [vdTHB12] to
split the search tree. This strategy has been used in a distributed MaxSAT solver
[TLM16].

One of the advantages of this approach is that it is easier to split the search
space into many workers and therefore can be more suitable for a distributed
setting. However, since some of the sub-trees may be much easier to solve than
others, it is necessary to have a dynamic load balancing scheme that continuously
splits the search space and keeps all workers busy.
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24.5.5. Partitioning-based MaxSAT

Divide-and-conquer techniques are not restricted to parallel MaxSAT solving and
can also be applied to sequential MaxSAT solving. For instance, partitioning-
based MaxSAT has been successfully used to improve the performance of core-
based algorithms [MML13, NMJ*15].

Core-based algorithms rely on unsatisfiable cores returned by the SAT solver.
Usually, core-based algorithms perform better when small cores are found early.
However, this is not necessarily the case, since these unsatisfiable cores are not
guaranteed to be minimal, and there are no guarantees that smaller cores will be
found first. The order in which cores are enumerated can have a large impact on
the performance of MaxSAT algorithms.

Similarly to SAT instances, MaxSAT instances can also be represented us-
ing graphs. For instance, a MaxSAT instance can be represented by either the
variable incidence graph (VIG) or the clause variable incidence graph (CVIG)
[MML13]. In the VIG representation, vertices correspond to the variables of the
problem, and edges correspond to clauses where both variables occur. In the
CVIG representation, vertices correspond to both variables and clauses and there
is an edge between the vertices that represent the variables and the clauses where
they occur. One can also use the resolution rule to construct a graph where ver-
tices are clauses and edges correspond to clauses that can be resolved with each
other (RES) [NMJ*15].

Partitioning-based MaxSAT uses graph partition techniques to split the for-
mula into disjoint subsets (e.g., using a modularity clustering approach [GN02]).
By decomposing the MaxSAT instance into disjoint subformulas, the SAT solver
is forced to find unsatisfiable cores on a subset of the formula. If such unsatisfiable
cores exist, then they may be much smaller than if the entire MaxSAT instance
was given to the SAT solver. The RES representation [NMJT15] is implemented
on top of the Open-WBO system [MML14] using the MSU3 algorithm and has
been shown to be particularly effective for unweighted MaxSAT.

24.6. Summary

Advances in practical aspects of maximum satisfiability within the last 10-15 years
have established MaxSAT as a general-purpose Boolean constraint optimization
paradigm. The improvements have come in increasing numbers both in terms
of domain-specific MaxSAT encodings of various hard optimization problems
to novel algorithmic techniques and their efficient implementations in general-
purpose MaxSAT solvers. In terms of algorithmic advances, the advent of SAT-
based approaches to practical MaxSAT solving in its different forms is arguably
at the center of this success. To this end, we have here aimed at covering central
research advances on practical aspects of MaxSAT within the last 10 years, with
a strong focus on the three main SAT-based approaches to MaxSAT solving: the
model-improving, core-guided, and the implicit hitting set approach. Beyond fur-
ther improvements to these algorithmic approaches to MaxSAT, there are plenty
of avenues for further research on MaxSAT in terms of novel applications of the
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technology, as well as further advances in the recent research directions on in-
complete and parallel approaches to MaxSAT solving.
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