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Abstract

Maximum satisfiability (MaxSAT) is a viable approach
to solving NP-hard combinatorial optimization problems
through propositional encodings. Understanding how prob-
lem structure and encodings impact the behaviour of differ-
ent MaxSAT solving algorithms is an important challenge.
In this work, we identify MaxSAT instances in which the
constraints entail an ordering of the objective variables as
an interesting instance class from the perspectives of prob-
lem structure and MaxSAT solving. From the problem struc-
ture perspective, we show that a non-negligible percentage of
instances in commonly used MaxSAT benchmark sets have
ordered objectives and further identify various examples of
such problem domains to which MaxSAT solvers have been
successfully applied. From the algorithmic perspective, we
argue that MaxSAT instances with ordered objectives, pro-
vided an ordering, can be solved (at least) as efficiently with
a very simplistic algorithmic approach as with modern core-
based MaxSAT solving algorithms. We show empirically that
state-of-the-art MaxSAT solvers suffer from overheads and
are outperformed by the simplistic approach on real-world
optimization problems with ordered objectives.

1 Introduction
Building on the success of Boolean satisfiability (SAT)
solving (Biere et al. 2021; Fichte et al. 2023), maxi-
mum satisfiability (MaxSAT) is today a noteworthy declara-
tive approach to solving computationally hard combinato-
rial optimization problems (Bacchus, Järvisalo, and Mar-
tins 2021; Li and Manyà 2021). Currently, the most suc-
cessful algorithmic approaches to MaxSAT solving are
(i) core-based algorithms—namely, core-guided (Andres
et al. 2012; Ansótegui, Didier, and Gabàs 2015; Ansótegui
and Gabàs 2017; Bjørner and Narodytska 2015; Fu and Ma-
lik 2006; Marques-Silva and Planes 2007; Morgado, Do-
daro, and Marques-Silva 2014; Narodytska and Bacchus
2014) and implicit hitting set (IHS) algorithms (Davies and
Bacchus 2013; Saikko, Berg, and Järvisalo 2016)—based
on iteratively identifying sources of inconsistency in terms
of unsatisfiable cores using a SAT solver; (ii) solution-
improving algorithms (Berre and Parrain 2010; Eén and
Sörensson 2006; Paxian, Reimer, and Becker 2018) based
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on querying a SAT solver for better solutions until there
are none; and (iii) branch-and-bound approaches (Abramé
and Habet 2014; Li, Manyà, and Planes 2005) with re-
cent improvements through integration of clause learning
techniques (Li et al. 2021, 2022). A majority of modern
MaxSAT solvers implement variants of the core-based al-
gorithms (Bacchus, Järvisalo, and Martins 2021).

Understanding how problem structure and encodings im-
pact the efficiency of solvers is an important challenge
towards further improving the current state of the art
in MaxSAT solving. Previous work in this context in-
cludes structure-based heuristics for increased solver effi-
ciency, such as the so-called at-most-ones technique (Ig-
natiev, Morgado, and Marques-Silva 2019) based on iden-
tifying cliques of objective variables, and multilevel opti-
mization (Argelich, Lynce, and Marques-Silva 2009), based
on partitioning the objective into independent subparts. Both
are widely employed in current solvers.

We identify MaxSAT instances in which the constraints
entail an ordering of the objective variables as an interesting
instance class from the perspectives of problem structure,
encodings, and MaxSAT solving. Various examples of do-
mains in which MaxSAT encodings yielding instances with
such ordered objectives can be identified. As we will expli-
cate, one specific example are problems in which the un-
derlying objective is to minimize the maximum of a spe-
cific measure, i.e., min-max type optimization problems.
MaxSAT encodings for min-max type problems in the litera-
ture include e.g. treewidth (Berg and Järvisalo 2014; Robert-
son and Seymour 1986), judgment aggregation in computa-
tional social choice (Conati, Niskanen, and Järvisalo 2024;
Endriss 2016), inconsistency measurement of propositional
knowledge bases (Grant 1978; Niskanen et al. 2023), in-
terpretable clustering (Shati, Cohen, and McIlraith 2023),
task allocation (Zheng, Cherif, and Shibasaki 2024), as
well as graph coloring (Glorian et al. 2019; Van Gelder
2008). Specifically, natural encodings of such objectives re-
sult in binary objective variables indicating that the maxi-
mum value under minimization being bounded by different
constants. This yields an ordering among the MaxSAT ob-
jective variables that essentially hides the structure of the
original objective. While this “hidden structure” in terms of
the underlying semantics of such objective variables occurs
naturally in various types of problems viewed as MaxSAT,



modern solvers do not use it, and—despite successful ap-
plications in such problem domains—actually incur runtime
overheads on such encodings.

Our main contributions are five-fold: (i) We define
MaxSAT instances with ordered and almost-ordered objec-
tives, and relate these properties with minimal unsatisfiable
cores of instances being unit and all optimal solutions in-
curring cost on the same soft constraints. (ii) We show em-
pirically that a non-negligible percentage of MaxSAT in-
stances in recent MaxSAT Evaluation benchmark sets can be
identified to have ordered objectives by outlining algorith-
mic ways for identifying whether a given MaxSAT instance
has an ordered objective without knowledge of the under-
lying problem structure. (iii) We identify various examples
of MaxSAT encodings from the literature which yield in-
stances with ordered objective, pointing out that care needs
to be taken in the encodings to guarantee ordered objectives.
(iv) We formally analyze the behaviour of core-based al-
gorithms on MaxSAT instances having ordered objectives,
and pointing out that the algorithms essentially “trivialize”
to simplistic iterative approaches on such instances. (v) We
empirically evaluate the performance various state-of-the-art
MaxSAT solvers on problems yielding ordered objectives,
showing that that state-of-the-art solvers can suffer from un-
necessary performance overheads on such instances against
a more simplistic iterative approach.

Formal proofs, additional details, empirical data and im-
plementation code are available in an online supplement at
https://doi.org/10.5281/zenodo.17601897.

2 Maximum Satisfiability
A literal ℓ is a Boolean variable x or its negation ¬x. A
clause C = ℓ1 ∨ · · · ∨ ℓn is a disjunction of literals and
a (CNF) formula F = C1 ∧ · · · ∧ Cm is a conjunction of
clauses. A clause may be viewed as a set of literals and a
formula as a set of clauses. An assignment α maps vari-
ables to 1 (TRUE) or 0 (FALSE). The semantics of assign-
ments are extended to literals, clauses, and formulas stan-
dardly: α(¬x) = 1 − α(x), α(C) = max{α(ℓ) | ℓ ∈ C}
and α(F ) = min{α(C) | C ∈ F}. α is a solution to F if
α(F ) = 1. A formula is satisfiable if it has a solution and
unsatisfiable otherwise. A solution α may be viewed as the
set of literals it assigns to 1, i.e., write ℓ ∈ α if α(ℓ) = 1.

An objective O ≡
∑

icibi is a pseudo-Boolean expres-
sion where wlog. each bi is a variable and ci a positive con-
stant. An assignment α over the (objective) variables in O
has cost α(O) =

∑
iciα(bi). For representational conve-

nience, we use an “objective-based” view to (weighted par-
tial) MaxSAT which is equivalent to the classical view of via
soft and hard clauses (Ihalainen et al. 2024; Leivo, Berg, and
Järvisalo 2020) and better captures the representation that
core-based MaxSAT solvers work with. An instance (F,O)
of (weighted partial) MaxSAT consists of a formula F and
an objective O. The goal in MaxSAT is to find an optimal
solution, i.e., a solution α of F minimizing α(O) over all
solutions to F . The optimal cost of (F,O) is the cost of
its optimal solutions. For representational simplicity, we as-
sume that MaxSAT instances have solutions. The restriction
of a solution α to objective variables is denoted by α|O.

Core-based MaxSAT solvers use (unsatisfiable) cores. For
convenience, with slight abuse of terminology, we say that
a clause C is a core of a MaxSAT instance (F,O) if (i) C
contains only objective variables and (ii) every solution α of
F satisfies C, i.e., F ∧ ¬C is unsatisfiable (with ¬C more
typically called an unsatisfiable core). A core C is minimal
(an MUS) if no subset Cs ⊂ C is a core. A core C of an
instance (F,O) can be seen as a local witness for a lower
bound on its optimal cost: since any solution α must satisfy
each core C, the cost of α cannot be lower than the smallest
objective coefficient among the variables in C.

3 Ordered Objectives in MaxSAT Instances
We turn to MaxSAT instances with ordered objectives.

3.1 Ordered Objectives
As a running example, we will use graph coloring, where
the task is to compute the chromatic number of a given
undirected graph G = (V,E), i.e., the minimum number
of colors required to color each vertex without monochro-
matic edges. Encoded as MaxSAT, we obtain for a given
graph G a MaxSAT instance (FG, OG) with a one-to-one
correspondence between solutions of FG and colorings of
G so that the cost of a solution α is the number of col-
ors used in the coloring χα given by α. A natural such en-
coding (see e.g. (Glorian et al. 2019)) defines the objective
OG ≡

∑n
k=1bk, where n is the number of nodes in G and

bk is an indicator for using at least k colors. More precisely,
α sets α(bk) = 1 if χα maps the nodes in V to at least k
different colors. Evidently, if χα uses more than k colors, it
uses more than k − 1 colors. Stated in terms of MaxSAT,
if α(bk) = 1, then α(bk−1) = 1 also holds. The following
definition of an ordered objective captures more generally
MaxSAT instances in which the constraints entail such an
ordering on the objective variables.
Definition 1. A MaxSAT instance (F,O) has an ordered ob-
jective if there is an ordering ≺ of the variables in O such
that α(b ∨ ¬b′) = 1 (i.e., α(b′ → b) = 1) holds whenever α
is any solution to (F,O) and b and b′ are objective variables
for which b ≺ b′.

For a specific ordering ≺, an instance (F,O) has
an ordered objective wrt ≺. We say that an instance
(F,

∑n
k=1 ckbk) has an ordered objective to mean that it has

an ordered objective wrt the natural ordering ≺ for which
bi ≺ bj whenever i < j.

Instances with ordered objectives have simple MUS struc-
tures; each MUS contains only a single literal. When instan-
tiated for graph coloring, the following general proposition
states that every coloring of a graph with a chromatic num-
ber t has to use at least k colors for all k = 1, . . . , t.
Proposition 1. Any MUS C of an instance (F,

∑n
k=1 ckbk)

that has an ordered objective contains a single literal.
An ordered objective also implies that the MUSes them-

selves are ordered.
Corollary 1. The set of MUSes of an instance
(F,

∑n
k=1ckbk) that has an ordered objective is ex-

actly the set of unit clauses {(bi) | i < t} for some
1 ≤ t ≤ n+ 1.



As every optimal solution to a MaxSAT instance assigns
at least one variable in each of its MUSes to 1, by Corollary 1
all optimal solutions to a MaxSAT instance (F,

∑n
k=1ckbk)

with an ordered objective, assign bi = 1 for i = 1, . . . , t
to 1 for a fixed constant t and the rest to 0. In this sense,
an ordered objective implies that fewer assignments of the
objective variables need to be considered when computing
optimal solutions.

While an ordered objective implies unit-MUSes, the con-
verse does not hold in general.

Example 1. Consider the instance (F,O) with F =
{(b1), (b1 ∨ b2), (b1 ∨ b3)} and O = b1 + b2 + b3. The
only MUS of (F,O) is (b1). The instance does not have
an ordered objective. To see this, consider the two solutions
α1 = {b1, b2,¬b3} and α2 = {b1,¬b2, b3} and observe that
α1(b3 ∨ ¬b2) = 0 while α2(b2 ∨ ¬b3) = 0.

3.2 Almost-Ordered Objectives
When devising MaxSAT encodings, the semantics of objec-
tive variables are often encoded using implications instead
of bi-implications (equivalences). In case of graph coloring,
e.g., implications are used to encode that bk is set to 1 when-
ever at least k colors are used. The other direction would
encode that bk is set to to 0 whenever fewer than k col-
ors are used. However, this is not necessary as it is covered
through minimizing the objective. This does, however, mean
that there can be non-optimal solutions that assign objective
variables to 1 “unnecessarily”. Consequently, the resulting
instance may not have an ordered objective in the sense of
Definition 1, even if the semantics of graph coloring imply
that it should. The following definition of an almost-ordered
objective captures more generally this intuition.

Definition 2. An instance (F,O) has an almost-ordered ob-
jective if there is an ordering ≺ of the variables in O for
which α(b ∨ ¬b′) = 1 holds whenever α is an optimal solu-
tion to (F,O), and b, b′ objective variables for which b ≺ b′.

For a specific ordering ≺, we say that an instance (F,O)
has an almost-ordered objective wrt ≺. When writing an in-
stance with an almost-ordered objective as (F,

∑n
k=1ckbk),

we implicitly assume that the ordering is natural.
In contrast to an ordered objective, an almost-ordered ob-

jective does not generally imply that all MUSes are units.

Example 2. Consider the MaxSAT instance (F,O) with
F = {(b1 ∨ x),∨(¬x∨ b2)} and O = b1 + 2b2. The unique
optimal solution is α = {¬x, b1,¬b2}. Thus α(b1 ∨ ¬b2) =
1 so (F,O) has an almost-ordered objective. One non-unit
MUS of the the instance is (b1 ∨ b2).

On the other hand, any instance that only has unit-MUSes
has an almost-ordered objective. This follows from a more
general observation: any MaxSAT instance for which all op-
timal solutions assign the objective variables in the same
way has an almost-ordered objective. The following defini-
tion makes this precise.

Definition 3. A MaxSAT instance (F,O) has a unique opti-
mal objective-solution if α1|O = α2|O holds for any optimal
solutions α1 and α2 of (F,O).

Having an almost-ordered objective is equivalent to hav-
ing a unique optimal objective-solution.
Proposition 2. A MaxSAT instance (F,O) has a unique
optimal objective-solution if and only if it has an almost-
ordered objective.

As any instance for which all MUSes are unit has a unique
optimal objective-solution, we have the following.
Corollary 2. Assume that every MUS of an instance (F,O)
is a unit. Then (F,O) has an almost-ordered objective.

Any instance with an almost-ordered objective can be ex-
tended to an instance with an ordered objective by comput-
ing the ordered extension.
Definition 4. Let (F,O) be an instance with an almost-
ordered objective wrt ≺. The ordered extension of (F,O)
is (F ∧ {(bi ∨ ¬bj) | bi ≺ bj}, O).

The following observation summarizes properties of or-
dered extensions.
Observation 1. Let (FE , O) be the ordered extension of an
instance (F,O) with an almost-ordered objective wrt≺. The
following hold. (i) (FE , O) has an ordered objective wrt ≺.
(ii) An optimal solution α to (FE , O) is an optimal solution
to (F,O) and vice versa.

We end this section by noting that (almost-)ordered ob-
jectives could also be studied through the lens of redundant
clauses (Ihalainen, Berg, and Järvisalo 2022). From that per-
spective, an instance has an (almost-)ordered objective wrt.
≺ if (b ∨ ¬b′) is entailed by the other clauses in (preserves
the optimal solutions of) the instance for all b ≺ b′.

4 Prevalence of Ordered Objectives
We show—both algorithmically and through a literature
survey—that MaxSAT instances with (almost-)ordered ob-
jectives arise in practice from various settings. Algorith-
mically, we show that a non-negligible fraction of stan-
dard MaxSAT Evaluation (MSE) benchmarks have (al-
most-)ordered objectives. We also give concrete examples
of problem domains in which natural MaxSAT encodings
can be identified to result in instances with (almost-)ordered
objectives without resorting to algorithmic identification.

4.1 Algorithmic Detection
To decide if an instance (F,O) has an ordered objective,
we first let PREC(b) = { b′ : F entails b → b′ } for
each objective variable b Then, we define ≺ by b ≺ b′ iff
|PREC(b)| ≤ |PREC(b′)|, with ties broken arbitrarily. Our
approaches for detecting ordered objectives are based on the
following proposition.
Proposition 3. Let (F,O), PREC(b) and ≺ be as defined
earlier. The following statements are equivalent.
(1) (F,O) has an ordered objective.
(2) (F,O) has an ordered objective wrt ≺.
(3) PREC(b) ⊆ PREC(b′) for all b ≺ b′.
3⇒ 2⇒ 1 also hold for any subsets of PREC(b).

Thus, given the sets PREC(b) for each objective vari-
able, deciding if the instance has an ordered objective is



Instances # Ord. Not Ord. AO Not AO

Unweighted 1558 134 1266 589 556
Weighted 1545 29 1421 616 439

Table 1: MaxSAT Evaluations 2022–2024 benchmarks: In-
stances determined (not) to have ordered and almost-ordered
objectives are shown in the columns Ord., (Not Ord.) and
AO. (Not AO), respectively.

equivalent to checking if PREC(b) ⊆ PREC(b′) for all
b ≺ b′. We consider two methods for computing PREC(b)
for each objective variable b, the exhaustive approach
and unit-propagation-based lookahead. The exhaustive ap-
proach uses a SAT solver to check if F ∧ ¬(b → b′) is un-
satisfiable for each pair b, b′. If it is, F entails (b → b′) so
b′ ∈ PREC(b). The exhaustive method correctly computes
the full PREC(b) for each b and thus, by Proposition 3, can
identify any instance with an ordered objective. However,
the number of SAT calls required is worst-case quadratic in
the number of objective variables.

Standard unit-propagation (UP) based lookahead provides
an alternative polytime incomplete approach to constructing
a subset of each PREC(b). Specifically, propagating a vari-
able b on F returns some of the literals ℓ such that F implies
b→ ℓ. Any objective variables returned when unit propagat-
ing b are thus in PREC(b). While UP cannot in general con-
struct the full PREC(b) for each b, by Proposition 3 checking
if PREC(b) ⊆ PREC(b′) holds for all b ≺ b′ and any subsets
of PREC(b) is sufficient for detecting an ordered objective.

By Proposition 2, almost-ordered objectives can be de-
tected by first obtaining an optimal solution α with one call
to an exact MaxSAT solver, and then calling the solver again
after adding the clause {¬ℓ | ℓ ∈ α|O} that blocks the as-
signment α over objective variables. If the MaxSAT solver
returns a higher optimal cost on the second call than on
the first call, the instance has a unique optimal objective-
solution and thus, by Proposition 2, an almost-ordered ob-
jective. Alternatively, by Corollary 1, some of the instances
with almost-ordered objectives can be identified by check-
ing if all MUSes are unit by enumeration (terminating early
whenever a non-unit MUS is found).

We applied the just-described detection algorithms (more
details provided in the online supplement) on the 1558 un-
weighted and 1545 weighted benchmarks MSE 2022-2024
benchmark sets (https://maxsat-evaluations.github.io) with
duplicate instances filtered by filename. Table 1 reports
the number of instances that could be detected to have an
(almost-)ordered objective using a per-instance 5-h time and
32-GB memory limit. We detected ordered objectives in six
unweighted domains and two weighted domains (in a total
of 163 instances), and could determine the non-existence of
ordered objectives on 1266 unweighted and 1421 weighted
benchmarks, respectively. While unable to decide the non-
existence of ordered objectives, UP-based lookahead was
fast, taking on average 44 seconds. Turning to almost-
ordered objectives, we found definitive answers for 1145 of
1558 unweighted and 1055 of 1545 weighted instances. Ap-

proximately half of the instances with a definitive answer
have an almost-ordered objective. We conclude that almost-
ordered objectives indeed appear in a non-negligible fraction
of the instances.

4.2 Problems with (Almost-)Ordered Objectives
Complementing detecting ordered objectives algorithmi-
cally, encodings of various problem domains can be iden-
tified by inspection to give rise to MaxSAT instances having
(almost-)ordered objectives. We provide an overview of a(-
n incomplete) selection of such MaxSAT applications from
the literature.

In min-max optimization the goal is to compute a so-
lution α of a CNF formula F that minimizes max{gi(α) |
i = 1..n} where each gi is a positive integer-valued func-
tion. As max{gi(α) | i = 1..n} ≥ k implies max{gi(α) |
i = 1..n} ≥ k − 1, it follows that MaxSAT encodings of
such problems naturally yield instances with almost-ordered
objectives. A natural encoding that uses a low number of
clauses encodes the (integer) values of each gi into CNF us-
ing the order encoding (Bailleux and Boufkhad 2003; Craw-
ford and Baker 1994) with variables oik for which a solution
α sets α(oik) = 1 if gi(α) ≥ k. The minimization of the
maximum value of the gi is achieved by introducing (i) new
variables bk, (ii) clauses equivalent to ¬bk →

∧n
i=1(¬oik),

and (iii) the objective O ≡
∑

k bk. Note that if α is a so-
lution with α(bk) = 0, then α(oik) = 0 for all i and thus
max{gi(α) | i = 1..n} < k. This abstract encoding scheme
of min-max optimization results in instances with almost-
ordered objectives but not ordered ones. Intuitively, this is
because optimal solutions will not assign objective variables
to 1 “unnecessarily”, but non-optimal solutions can. There
are several ways of turning the instance into one that has
an ordered objective. The ordered extension (Definition 4)
would add clauses of the form bk → bk−1. Alternatively,
one can add clauses equivalent to bk → (o1k ∨ . . . ∨ onk ) and
oik → (gi(α) ≥ k), effectively enforcing the semantics of
the bk and oik variables with equivalences.

Various problem domains are intrinsically min-max op-
timization. Even graph coloring fits this encoding scheme
by taking gi(α) to be the index of the color of the ith node
in the coloring α represents. Beyond coloring, we shortly
overview further min-max optimization problem settings
for which MaxSAT encodings yielding instances with (al-
most-)ordered objectives have been proposed.

Treewidth is a central graph-theoretic measure generally
for problems where their underlying structure can be repre-
sented as a graph (Cygan et al. 2015). A proposed MaxSAT
encoding for treewidth (Berg and Järvisalo 2014; Samer and
Veith 2009) minimizes the maximum out-degree of the ver-
tices in the so-called triangulated graph induced by elimi-
nation orderings. It includes for each vertex v the variables
cv,k, where cv,k = 1 if the degree of v in the triangulated
graph is larger than k, and thus fits the abstract encoding
scheme of min-max optimization.

Judgment aggregation (JA) is a well-studied problem in
computational social choice (COMSOC) research (Endriss
2016) that deals with aggregating judgment sets expressed



by individual agents regarding the validity of logical state-
ments into a collective judgment. As one of the central rules
studied in the COMSOC literature, the MaxHamming ag-
gregation rule minimizes the maximum Hamming distance
between the collective judgment set and the judgment sets of
the voters. A recently-proposed MaxSAT encoding (Conati,
Niskanen, and Järvisalo 2024) of this problem can be viewed
as an instantiation of the abstract encoding scheme as its ob-
jective variables explicitly represent the range of possible
values for the maximum Hamming distance.

Inconsistency measurement (IM) (Grant 1978; Grant
and Martinez 2018; Thimm 2018; Thimm and Wallner 2019)
refers to providing a quantitative characterization of the level
of inconsistency of a knowledge base. A MaxSAT approach
to IM (Niskanen et al. 2023), captures among others the so-
called max-distance IM measure. While the problem encod-
ings differ in terms of their underlying constraints, it can
be identified that the MaxSAT encoding of the max-distance
IM measure is analogous—in terms of its objective—to the
encoding of JA under the MaxHamming rule.

A further example of min-max problems comes from in-
terpretable clustering under the objective of minimizing
the maximum diameter (MD) of the clusters, i.e., the maxi-
mum distance between two points assigned to the same clus-
ter (Shati, Cohen, and McIlraith 2023). A recent MaxSAT
encoding of the problem includes objective variables b−w for
which a solution α that assigns α(b−w) = 0 represents a clus-
tering in which any pair of datapoints x, y with a pairwise
distance larger than w are assigned to different clusters. This
encoding yields instances with an almost-ordered objective
by the semantics of clusterings; if w1 ≤ w and α is opti-
mal, then α(b−w1

) = 0. Finally, MaxSAT has also been pro-
posed for solving min-max problems related to task alloca-
tion with the aim to minimize the maximum power output
of workstations (Zheng, Cherif, and Shibasaki 2024).

5 MaxSAT Solving on Ordered Objectives
We analyze the search performed by state-of-the-art
MaxSAT algorithms on instances with ordered objectives.

5.1 Core-Based MaxSAT Solving
Essentially all core-guided and IHS-based MaxSAT solvers
extract unsatisfiable cores with the assumption interface of-
fered by modern CDCL SAT solvers (Eén and Sörensson
2003; Marques-Silva, Lynce, and Malik 2021). Given a
MaxSAT instance (F,O) we abstract the core extraction step
into the procedure ExtCore(F,A) where A is a set of as-
sumptions that contain negations of the variables in O. The
call returns a triplet (sat?, α, C). The Boolean sat? indicates
the satisfiability of F ∧

∧
ℓ∈A ℓ. If sat? = TRUE, C is un-

defined and α is a solution of F that assigns each ℓ ∈ A to
1, extending A. If sat? = FALSE, α is undefined and C is
an unsatisfiable core over the variables in A, serving as an
explanation for the unsatisfiability of F ∧

∧
ℓ∈A ℓ in terms

of A.

Example 3. Consider the instance (F,O) with F = (b1 ∨
x) ∧ (¬x ∨ b2 ∨ b3) ∧ (b2 ∨ y) ∧ (¬y ∨ b4) and O = b1 +
3b2 + 5b3 + 5b4. An optimal solution α to (F,O) assigns

Algorithm 1: CG, core-guided MaxSAT search
Input: Instance (F,O)
Output: Optimal solution αbest

1: (CARD, OW )← (∅, O)
2: while TRUE do
3: A ← {¬b | cb ∈ OW }
4: (sat?, αbest , C)← ExtCore(F ∧ CARD,A)
5: if sat? then return αbest

6: (OW , NC)← Relax(C,OW )
7: CARD ← CARD ∧NC

α(x) = α(b2) = 1 and the other variables to 0, with optimal
cost 3. The clause C = (b1 ∨ b2 ∨ b3) is an MUS of (F,O).
ExtCore(F, {¬bi | i = 1..4}) returns sat? = FALSE and,
e.g., the (non-minimal) core C2 = (b1 ∨ b2 ∨ b4).

Algorithm 1 details an abstraction of the core-guided ap-
proach to computing an optimal solution to a MaxSAT in-
stance (F,O). Initially the set CARD of additional clauses is
empty and the working objective OW is O (Line 1). Each
iteration of the main loop (Lines 2–7) starts by invoking a
SAT solver (Line 4) on F ∧ CARD assuming the negation
of each variable in the working objective OW . This check
returns TRUE if there is a solution α of F ∧ CARD with
α(OW ) = 0. If so, α is optimal for F , resulting in termi-
nation (Line 5). Otherwise, a new core C is obtained and the
instance is relaxed (Line 6). The Relax subroutine returns a
new working objective OW and additional clauses NC that
are added to CARD (Line 7) before the loop is reiterated.

Core-guided algorithms differ in the specifics of Relax
(see the online supplement for the OLL instantiation (An-
dres et al. 2012; Morgado, Dodaro, and Marques-Silva
2014)). Our observations apply generally to core-guided al-
gorithms via the intuition that for a core-guided algorithm to
make progress, the relaxation must allow at least one vari-
able in a core to be assigned to 1 in subsequent iterations.
Specifically, when relaxing a core of size 1, core-guided al-
gorithms remove the variable in the core from OW and do
not add new clauses.

Algorithm 2 details the implicit hitting set approach to
MaxSAT. First (Line 1) the set CORES of cores is empty.
Each iteration of the main loop (Lines 2–7) begins by com-
puting wrt O a minimum-cost solution γ of CORES (Line 3).
A SAT solver is then invoked (Line 5) on the clauses in F as-
suming the negation of each objective variable in O assigned
to 0 by γ. This query returns TRUE if there is a solution α of

Algorithm 2: IHS, IHS-based MaxSAT search
Input: Instance (F,O)
Output: Optimal solution αbest

1: CORES ← ∅
2: while TRUE do
3: γ ← MinCost-Sol(CORES, O)
4: A ← {¬b | γ(b) = 0})
5: (sat?, αbest , C)← ExtCore(F,A)
6: if sat? then return αbest

7: CORES ← CORES ∪ {C}



F with α(O) = γ(O). If so, α is optimal and the algorithm
terminates (Line 6). Otherwise, a new core falsified by A is
obtained, added to CORES (Line 7) and the loop reiterated.
Example 4. Invoke IHS on the instance from Example 3.
Take (b1∨b2∨b3) as the first core extracted on Line 5. Then
MinCost-Sol returns the solution γ assigning γ(b1) = 1
and all other objective variables to 0. The next call to
ExtCore is made with A = {¬b2,¬b3,¬b4} as assump-
tions. The call returns e.g. (b2 ∨ b4). In the next iteration the
only minimum-cost solution γ to CORES assigns γ(b2) = 1
and others to 0, and IHS terminates after calling ExtCore.

We use CG-mus and IHS-mus to denote variants of CG
and IHS, respectively, in which the call to ExtCore on
Line 5 is guaranteed to return an MUS. In practice, extract-
ing an MUS by complete core minimization requires further
SAT solver calls.

5.2 Core-Based Search and Ordered Objectives
We analyze the search of CG and IHS on instances with or-
dered objectives. By Proposition 1 such instances also have
unit-MUSes. Unit cores trivialize the computation of both
CG and IHS; the Relax subroutine of CG simply removes
the variable in each MUS from the working objective, while
the only minimum-cost solution over a set of unit-MUSes
that the MinCost-Sol subroutine of IHS can return as-
signs the variables that occur in the discovered MUSes to
1 and the rest to 0. As a consequence (as formalized next),
CG-mus and IHS-mus, the versions of CG and IHS guar-
anteed to extract MUSes on each iteration, perform essen-
tially the same search on instances with unit-MUSes.
Proposition 4. Consider invoking CG-mus or IHS-mus
on a unit-MUS instance (F,O). Assume that (i) there are
m MUSes in total, and that (ii) when given a unit-core (b),
Relax removes b from OW and does not add any clauses
to CARD. Then the following hold.
1) The main loop (Lines 2 to 7) of both algorithms is re-
peated m+ 1 times.
2) The set A formed on iteration i consists in both algo-
rithms of exactly the negations of the objective variables that
did not appear in the i− 1 first MUSes extracted.
3) CARD in CG-mus will be empty on every iteration.

Consequently, the CG-mus and IHS-mus algorithms ex-
hibit best-case performance in the number of iterations re-
quired by CG and IHS when solving instances with unit-
MUSes, which include instances with ordered objectives.
More specifically, by Proposition 4, both CG-mus and
IHS-mus require m+1 iterations when solving a unit-MUS
instance (F,O) that has m MUSes. To see that IHS and CG
need to perform at least m+ 1 iterations, note that any opti-
mal solution to (F,O) assigns exactly m objective variables
to 1 and that the number of variables of O that can be as-
signed to 1 by (potential) solutions extending the assump-
tions A used in the ExtCore invocations of both CG and
IHS will be 0 on the first iteration and increase by at most
one on subsequent ones.

Furthermore, CG and IHS may require more iterations if
the algorithms do not always extract MUSes (which is in-
deed the case in practical implementations), since this can

Algorithm 3: SimpleUS, simple search over an ordered
objective.
Input: Instance (F,O) with O ordered wrt ≺
Output: An optimal solution αbest

1: {b1, . . . , bn} ← sort({b | c · b ∈ O},≺);
2: for i = 1..n do
3: (sat?, αbest , )← ExtCore(F, {¬bi})
4: if sat? then return αbest

lead to CG adding unnecessary clauses and IHS making the
hitting-set instance unnecessarily large. To see this, consider
an instance (Fn, On) with On =

∑n
i=1i · bi and assume that

(bn) is its only MUS. An optimal solution α of the instance
assigns α(bn) = 1 and α(bi) = 0 for all other i. By Propo-
sition 4, CG-mus and IHS-mus require two iterations to
return an optimal solution of (Fn, On). In contrast, the next
example describes a (worst-case) execution of IHS that re-
quires n+ 1 iterations.

Example 5. Invoke IHS on (Fn, On). Assume that the core
extracted in the first iteration is C1 = b1 ∨ · · · ∨ bn. The
only minimum-cost solution γ to {C1} assigns γ(b1) = 1
and γ(bi) = 0 for all other i so the next assumptions used
on Line 5 will be A = {¬b2, . . . ,¬bn}. Assume that the
second core extracted is C2 = b2 ∨ · · · ∨ bn. Then the next
call to MinCost-Sol returns the solution γ that assigns
γ(b2) = 1 and γ(bi) = 0 for all other i, which in turns leads
to the next call to ExtCore having {¬b1,¬b3, ..,¬bn} as
assumptions. If IHS continues in the same manner, it will
require in total n+ 1 iterations before terminating.

An analogous example for the OLL algorithm, showing
that a worst-case quadratic number of extra variables and
clauses are introduced in the relaxation steps necessary for
termination, is provided in the online supplement.

5.3 Ordered Objective-Specific MaxSAT Solving
We have established that on MaxSAT instances with ordered
objectives (i) CG-mus and IHS-mus perform essentially
the same search, and that (ii) CG and IHS algorithms might
incur overhead in terms of iterations required and additional
constraints added. We now discuss two simple MaxSAT al-
gorithm variants for instances with ordered objectives. The
algorithms can be instantiated without (costly) MUS extrac-
tion, but still avoid the potential overheads of CG and IHS.

The first algorithm, SimpleUS outlined as Algorithm 3,
starts by sorting the variables in the objective according to
≺. Then, for increasing i, the algorithm invokes ExtCore
with the negation ¬bi of the ith objective variable bi in
the sorted order as a single assumption. If sat? = FALSE,
the only core that ExtCore can return is the MUS (bi).
If sat? = TRUE, the obtained solution α is optimal as
it assigns α(bj) = 1 for each j < i (since (bj) is an
MUS), and α(bk) = 0 for all k ≥ i (as (bi ∨ ¬bk) holds
due to the instance having an ordered objective). The nat-
ural counterpart of this lower-bounding search performed
by SimpleUS is SimpleSIS which—as a simple form
of solution-improving search—tries the objective variables



UW W Col JA TW
(108) (17) (415) (50) (287)

Solver # P2 # P2 # P2 # P2 # P2

SimpleSIS 88 1.8 13 2.4 387 0.5 27 3.8 143 3.8
SimpleUS 86 2.0 14 1.8 386 0.5 27 4.1 136 4.0
EvalSCIP 84 2.2 12 2.5 392 0.5 19 5.0 123 4.4
EvalNoSCIP 83 2.2 13 2.3 387 0.5 19 5.0 126 4.2
MaxHS 86 2.0 14 2.0 387 0.5 23 4.4 133 4.0
MaxCDCL 81 2.4 12 2.6 385 0.6 21 4.9 115 4.5
Pacose 70 2.9 11 3.3 380 0.6 13 5.7 85 5.2

Virtual Best 89 1.7 14 1.6 393 0.4 28 3.7 143 3.8

Table 2: Runtime comparison. #: number of solved in-
stances. P2: PAR-2, average runtime in 1000-s units each
unsolved instance contributing 2x the time limit.

in reverse order and iterates until ExtCore returns UNSAT
at which point the final solution is optimal.

Note that we detailed SimpleSIS and SimpleUS to
enable a comparison to modern core-based MaxSAT al-
gorithms, with the aim of understanding the behaviour of
core-based algorithms on instances with ordered objec-
tives. SimpleSIS and SimpleUS are simplifications of
solution-improving search (SIS) (Berre and Parrain 2010;
Eén and Sörensson 2006; Paxian, Reimer, and Becker 2018)
and UNSAT/SAT search, respectively. Both use extra con-
straints to represent the cost of solutions, and refine either a
lower (UNSAT/SAT) or an upper (SIS) bound until an opti-
mal solution is found. SimpleUS and SimpleSIS avoid
the use of extra constraints by using the fact that an instance
has an ordered objective.

5.4 Overhead of Core-Based MaxSAT in Practice
We evaluate the behavior of state-of-the-art core-based
MaxSAT solvers on real-world problems yielding MaxSAT
instances having ordered objectives. Specifically, we use
both the unweighted (UW) and weighted (W) MSE 2022-
2024 benchmark identified to have ordered objective and,
as specific domains, judgment aggregation (JA) (Conati,
Niskanen, and Järvisalo 2024), graph coloring (Col) (Glo-
rian et al. 2019; Van Gelder 2008) and treewidth (TW) (Berg
and Järvisalo 2014; Fichte, Hecher, and Szeider 2020; Samer
and Veith 2009). The 50 JA instances based on real-world
PrefLib data are from (Conati, Niskanen, and Järvisalo
2024), encoding judgment aggregation under the MaxHam-
ming rule. The 287 treewidth instances based on Treewidth-
LIB graphs were obtained from the authors of (Fichte,
Lodha, and Szeider 2017), limited due to problem hard-
ness to graphs with at most 200 vertices. For graph color-
ing, we obtained a total of 415 instances by using both the
TreewidthLIB graphs and the DIMACS graph coloring in-
stances (https://sites.cc.gatech.edu/dimacs10/).

We evaluate the following state-of-the-art MaxSAT
solvers: the OLL solver EvalMaxSAT (Avellaneda 2020)
(both its pure OLL implementation EvalNoSCIP and the
variation EvalSCIP that first attempts to solve the instance
with the MIP solver SCIP (Bolusani et al. 2024) for 500 s

before starting OLL search); MaxHS (Davies and Bac-
chus 2013) as the state-of-the-art IHS solver; the solution-
improving solver Pacose (Paxian and Becker 2023; Paxian,
Reimer, and Becker 2018); and the clause learning branch-
and-bound MaxSAT solver MaxCDCL (Li et al. 2022). We
compare the runtime performance of these solvers and our
implementations (available in the online supplement) of the
the simple SimpleUS and SimpleSIS algorithms (recall
Section 5) using the PySAT 1.8.dev13 interface (Ignatiev,
Morgado, and Marques-Silva 2018) and Cadical 1.9.5 (Biere
et al. 2024) as the SAT solver. The experiments were run un-
der Ubuntu 18.04 on 10-core 2.4-GHz Intel Xeon E5-2640
v4 CPUs and 160 GB memory, enforcing a per-instance
3600-s time and a 32-GB memory limit.

The results are shown in Table 2. The simplistic solvers
perform slightly better than the state-of-the-art solvers on
all benchmark domains. This is surprising as state-of-the-
art MaxSAT solvers make use of a number of additional
search heuristics and are typically considered more perfor-
mant than performing linear search on the objective func-
tion range (Bacchus, Järvisalo, and Martins 2021). These
results are in line with our theoretical observations for core-
based algorithms: on ordered MaxSAT instances the typ-
ically performance improving techniques implemented in
state-of-the-art implementations of of core-based MaxSAT
solvers are essentially rendered useless, as the performance
of the solvers is at best similar to (or weaker than) the sim-
plistic SimpleUS and SimpleSIS algorithms.

5.5 On Solving Almost-Ordered Objectives

Neither SimpleUS and SimpleSIS are directly guar-
anteed to in general compute optimal solutions on in-
stances with almost-ordered objectives, to see this invoke
SimpleUS on the MaxSAT instance (F,O) from Ex-
ample 2. However, both can be used to solve instances
that have unit-MUSes. We also evaluated the performance
of SimpleUS and SimpleSIS against state-of-the-art
solvers on instances with almost-ordered objectives and
unit-MUSes. The results show (see the online supplement)
that the simplistic solvers outperform state-of-the-art solvers
on instances with almost-ordered objectives, and that state-
of-the-art solvers perform better on the ordered objective
variants than on the almost-ordered variants.

6 Conclusions
We identified MaxSAT instances with ordered objectives as
an interesting class of MaxSAT. A non-negligible fraction of
MSE benchmarks have ordered objectives, as various prob-
lem encodings (when taking care) yield ordered objectives.
Core-based algorithms—both core-guided and implicit hit-
ting set approaches—essentially trivialize (at best) to sim-
plistic iterative search on MaxSAT instances with ordered
objectives. Empirically, state-of-the-art MaxSAT solvers can
suffer from overheads on MaxSAT instances having ordered
objectives even against simplistic iterative search, suggest-
ing that knowledge of ordered objectives can be beneficial
when solving MaxSAT instances.
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Eén, N.; and Sörensson, N. 2003. Temporal induction by in-
cremental SAT solving. In BMC@CAV, volume 89 of Elec-
tronic Notes in Theoretical Computer Science, 543–560. El-
sevier.
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Li, C. M.; Manyà, F.; and Planes, J. 2005. Exploiting
Unit Propagation to Compute Lower Bounds in Branch and
Bound Max-SAT Solvers. In CP, volume 3709 of Lecture
Notes in Computer Science, 403–414. Springer.
Marques-Silva, J.; Lynce, I.; and Malik, S. 2021. Conflict-
Driven Clause Learning SAT Solvers. In Handbook of Sat-
isfiability, volume 336 of Frontiers in Artificial Intelligence
and Applications, 133–182. IOS Press, 2 edition.
Marques-Silva, J.; and Planes, J. 2007. On Using Un-
satisfiability for Solving Maximum Satisfiability. CoRR,
abs/0712.1097.
Morgado, A.; Dodaro, C.; and Marques-Silva, J. 2014. Core-
Guided MaxSAT with Soft Cardinality Constraints. In CP,
volume 8656 of Lecture Notes in Computer Science, 564–
573. Springer.
Narodytska, N.; and Bacchus, F. 2014. Maximum Satisfi-
ability Using Core-Guided MaxSAT Resolution. In AAAI,
2717–2723. AAAI Press.
Niskanen, A.; Kuhlmann, I.; Thimm, M.; and Järvisalo, M.
2023. MaxSAT-Based Inconsistency Measurement. In
ECAI, volume 372 of Frontiers in Artificial Intelligence and
Applications, 1779–1786. IOS Press.
Paxian, T.; and Becker, B. 2023. Pacose: An Iterative SAT-
based MaxSAT Solver. In MaxSAT Evaluation 2023, 20.
Paxian, T.; Reimer, S.; and Becker, B. 2018. Dynamic Poly-
nomial Watchdog Encoding for Solving Weighted MaxSAT.

In SAT, volume 10929 of Lecture Notes in Computer Sci-
ence, 37–53. Springer.
Robertson, N.; and Seymour, P. D. 1986. Graph Minors.
II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7(3):
309–322.
Saikko, P.; Berg, J.; and Järvisalo, M. 2016. LMHS: A SAT-
IP Hybrid MaxSAT Solver. In SAT, volume 9710 of Lecture
Notes in Computer Science, 539–546. Springer.
Samer, M.; and Veith, H. 2009. Encoding Treewidth into
SAT. In Kullmann, O., ed., SAT, volume 5584 of Lecture
Notes in Computer Science, 45–50. Springer.
Shati, P.; Cohen, E.; and McIlraith, S. A. 2023. Optimal De-
cision Trees For Interpretable Clustering with Constraints.
In IJCAI, 2022–2030. ijcai.org.
Thimm, M. 2018. On the Evaluation of Inconsistency Mea-
sures. In Grant, J.; and Martinez, M. V., eds., Measuring In-
consistency in Information, volume 73 of Studies in Logic.
College Publications.
Thimm, M.; and Wallner, J. P. 2019. On the complexity
of inconsistency measurement. Artificial Intelligence, 275:
411–456.
Van Gelder, A. 2008. Another look at graph coloring via
propositional satisfiability. Discret. Appl. Math., 156(2):
230–243.
Zheng, Z.; Cherif, S.; and Shibasaki, R. S. 2024. Optimizing
Power Peaks in Simple Assembly Line Balancing Through
Maximum Satisfiability. In ICTAI, 363–370. IEEE.


