
Learning Optimal Chain Graphs with Answer Set Programming

Dag Sonntag
ADIT, IDA,

Linköping University

Matti Järvisalo
HIIT, Dept. Comp. Sci.,
University of Helsinki

Jose M. Peña
ADIT, IDA,

Linköping University

Antti Hyttinen
HIIT, Dept. Comp. Sci.,
University of Helsinki

Abstract

Learning an optimal chain graph from data is
an important hard computational problem. We
present a new approach to solve this problem
for various objective functions without making
any assumption on the probability distribution at
hand. Our approach is based on encoding the
learning problem declaratively using the answer
set programming (ASP) paradigm. Empirical re-
sults show that our approach provides at least as
accurate solutions as the best solutions provided
by the existing algorithms, and overall provides
better accuracy than any single previous algo-
rithm.

1 INTRODUCTION

Learning an optimal structure for a graphical model is a
well-known and important hard computational problem.
Indeed, various learning algorithms have been proposed
over the years for different classes of graphical models.
These algorithms can be categorized into in-exact (often
local search style) approaches and exact approaches. The
algorithms in the former category typically scale better, but
are not in general guaranteed to produce optimal solutions
without restrictive assumptions on the probability distribu-
tion at hand. The algorithms in the latter category, due to
the NP-hardness of the underlying optimization problem,
require more computational resources, but in turn can pro-
vide optimal solutions in much more general settings.

Two important, widely studied and applied classes of prob-
abilistic graphical models are Bayesian networks (whose
structure is represented by directed acyclic graphs), and
Markov networks (represented by undirected graphs). In
this paper we focus on chain graphs (CGs), a superclass
of both Bayesian and Markov networks. CGs are hybrid
graphs that can contain both directed and undirected edges,
but are not allowed to contain semidirected cycles. This

makes CGs more expressive than Bayesian and Markov
networks in the sense that CGs can model both symmet-
ric (like Markov networks) and asymmetric (like Bayesian
networks) relations between random variables, and hence
allow for a wider range of independence models to be rep-
resented. For example, for 20 random variables, CGs can
represent approximately 1000 times as many models as
Bayesian networks (Sonntag et al., 2015). There exist mul-
tiple interpretations of CGs in the literature. Here we focus
on the classical LWF interpretation by Frydenberg (1990);
Lauritzen and Wermuth (1989).

In this work we take on the challenging task of develop-
ing exact structure learning algorithms for CGs. To our
best knowledge, to date only three learning algorithms CGs
have been proposed: PC (Studený, 1997), LCD (Ma et al.,
2008), and CKES (Peña et al., 2014). Each of these algo-
rithms implement forms of local search, and are guaranteed
to find (inclusion) optimal solutions only under restrictive
assumptions on the input. Specifically, PC and LCD as-
sume that the probability distribution at hand is faithful to a
CG. The CKES algorithm, on the other hand, assumes that
the probability distribution at hand satisfies the so-called
composition property. While this assumption is consid-
erably weaker than the faithfulness assumption, it leaves
room for developing CG learning algorithms that can pro-
vide optimal solutions in more general settings.

The main contribution of this paper is a versatile approach
to learning CGs. Our approach improves on the earlier CG
learning algorithms in that it is guaranteed to find (e.g., in-
clusion) optimal CGs without making assumptions on the
probability distribution at hand. Moreover, our approach
can easily be adapted to produce optimal CGs wrt other
objective functions such as CGs that represent the largest
number of independencies, or CGs with the least number
of edges. Our approach is based on encoding the CG learn-
ing problem in a modular way using the answer set pro-
gramming (ASP) paradigm. This enables the use of re-
cent advances in state-of-the-art exact ASP optimization
solvers that allow for a complete search in the space of
CGs. Moreover, due to the expressive constraint modelling

language offered by ASP, our approach allows for inte-
grating user knowledge into the search. This can, for ex-
ample, be deployed to enforce certain substructures in the
produced solutions or to adopt advanced objective func-
tions taking non-binary information about independence
constraints into account.

We also present results from an empirical comparison of
our approach with the existing CG learning algorithms.
As the existing algorithms make assumptions about the
probability distribution at hand, the experiments involve
only probability distributions that satisfy the assumptions
of the existing algorithms (although unnecessary for our
approach) in order to avoid biasing the results in our favour.
Even in such restricted settings, the results of the evaluation
indicate that our approach provides at least as accurate so-
lutions as the best solutions provided by the existing algo-
rithms, and overall provides better accuracy than any single
previous algorithm.

This work is motivated by recent work on harnessing
declarative programming (including ASP, Boolean satisfi-
ability, maximum satisfiability, and integer programming
solvers) to learn optimal Bayesian networks (Cussens and
Bartlett, 2013; Berg et al., 2014; Parviainen et al., 2014),
Markov networkss (Corander et al., 2013) and causal struc-
tures (Hyttinen et al., 2013, 2014). However, to our best
knowledge, this work is the first investigation into learning
optimal CGs with declarative programming.

The rest of this paper is organized as follows. We start by
reviewing CGs, their semantics, and the three existing CG
learning algorithms (Section 2). We then continue by pre-
senting and extending a set of inference rules for comput-
ing separations and non-separations in CGs (Section 3). In
Section 4 we present an implementation of the CG learning
approach, using the rules from the previous section. This
implementation is then evaluated wrt the existing CG learn-
ing algorithms in Section 5.

2 CHAIN GRAPHS

In this section, we review concepts related to chain graphs
as relevant to this work.

Unless otherwise stated, all the graphs in this paper are de-
fined over a finite set of N nodes. Moreover, the graphs
are simple, i.e., contain at most one edge between any pair
of nodes. The elements of N are not distinguished from
singletons. We consider graphs which may contain both
undirected and directed edges. For a given graph G, we
use x1 − x2 (resp., x1 → x2) to denote that G contains
an undirected (resp., directed edge) between two nodes x1
and x2.

The skeleton of G is the undirected graph that has the same
adjacencies as G. A route between a node x1 and a node
xn in G is a sequence of (not necessarily distinct) nodes

x1, . . . , xn such that xi → xi+1, xi ← xi+1, or xi − xi+1

for all 1 ≤ i < n. A route x1, . . . , xn inG is a semidirected
cycle if (i) xn = x1, (ii) x1 → x2 is in G, and (iii) xi →
xi+1 or xi − xi+1 is in G for all 1 < i < n. A chain graph
(CG) is a graph that contains no semidirected cycles.

A section of a route ρ in a CG is a maximal (wrt set inclu-
sion) undirected subroute of ρ. A section x2−. . .−xn−1 of
ρ is a collider section of ρ if x1 → x2 − . . .− xn−1 ← xn
is a subroute of ρ. Moreover, ρ is Z-open with Z ⊆ N if
(i) every collider section of ρ has a node in Z, and (ii) no
non-collider section of ρ has a node in Z. Let X , Y and
Z denote three disjoint subsets of N . If there is no Z-open
route in a CG G between nodes in X and nodes in Y , X
is separated from Y given Z in G, denoted by X⊥⊥GY |Z,
meaning that X and Y are represented as conditionally in-
dependent given Z in G. Otherwise, X is non-separated
from Y given Z in G, denoted by X 6⊥⊥ GY |Z. An in-
dependence model M is a set of statements of the form
X ⊥⊥MY |Z, meaning that X is independent of Y given
Z. The independence model represented by G, denoted by
I(G), is the set of represented independencies X⊥⊥GY |Z.
We denote by X⊥⊥pY |Z (resp. X 6⊥⊥pY |Z) that X is in-
dependent (resp. dependent) of Y given Z under a proba-
bility distribution p. The independence model induced by
p, denoted by I(p), is the set of statements X⊥⊥pY |Z. A
distribution p is faithful to a CG G when X ⊥⊥ pY |Z iff
X⊥⊥GY |Z for all pairwise disjoint subsets X , Y , Z of N .
Two CGs are Markov equivalent if they represent the same
independence model.

Let X , Y , Z and W denote four disjoint subsets of N .
An independence model M is a semi-graphoid if it has the
following properties: (i) symmetry: X ⊥⊥MY |Z implies
Y ⊥⊥MX|Z; (ii) decomposition: X⊥⊥MY ∪W |Z implies
X ⊥⊥MY |Z; (iii) weak union: X ⊥⊥MY ∪ W |Z implies
X⊥⊥MY |Z ∪W ; and (iv) contraction: X⊥⊥MY |Z ∪W
and X ⊥⊥ M W |Z together imply X ⊥⊥ MY ∪ W |Z. A
semi-graphoidM is a graphoid if it has the property (v) in-
tersection: X ⊥⊥ MY |Z ∪ W and X ⊥⊥ MW |Z ∪ Y to-
gether imply X⊥⊥M Y ∪ W |Z. A graphoid M is com-
positional if X⊥⊥MY |Z and X⊥⊥MW |Z together imply
X⊥⊥MY ∪W |Z. The independence model induced by a
probability distribution is a semi-graphoid, and the inde-
pendence model induced by a strictly positive probability
distribution is a graphoid (Studený, 2005). While the inde-
pendence model induced by a probability distribution is not
a compositional graphoid in general, independence models
induced by Gaussian probability distributions are composi-
tional (Studený, 2005).

The elementary statements of a semi-graphoidM are those
of the form x⊥⊥My|Z, where x, y ∈ N . A semi-graphoid
M is determined by its elementary statements, meaning
that every statement in M follows from the elementary
statements by repeatedly applying the semi-graphoid prop-
erties (Studený, 2005, Lemma 2.2). Thus one can equiv-

x

z

y x

z

y

(a) A graph G (b) A CG H

x⊥⊥Hy|z
y⊥⊥Hx|z

x⊥⊥My|∅
y⊥⊥Mx|∅
x⊥⊥My|z
y⊥⊥Mx|z

(c) The independence
model of H

(d) Another indepen-
dence model M

Figure 1: Example

alently work with the elementary statements of a semi-
graphoid. We do so in the rest of the article. In other words,
we restrict the independence model represented by a CG or
induced by a probability distribution to its elementary state-
ments.

A CG G is inclusion optimal wrt an independence model
M if (i) I(G) ⊆M , and (ii) there exists no CGH such that
I(G) ⊂ I(H) ⊆ M . We say that an inclusion optimal G
is independence optimal if there exists no CG H such that
I(H) ⊆M and |I(H)| > |I(G)|.

Example 1 Although the graphG shown in Figure 1a only
contains directed and undirected edges, it is not a CG since
it contains the semidirected cycle x → z − y → x. The
graph H in Figure 1b is a CG; its independence model
I(H) shown in Figure 1c. For example, x⊥⊥Hy|z holds
because the only route between x and y is x → z − y and
z is in the conditioning set. Moreover, I(H) fulfills the
graphoid properties since it is symmetric and only contains
one pair of independencies. Finally, I(H) ⊂ I(M) holds
for the independence model M shown in Figure 1d. This
means that H is inclusion optimal wrt M , since removing
an edge from H would cause either x⊥⊥Hz|∅ or y⊥⊥Hz|∅
to be true, neither of which are in M . Also note that M is
not faithful to any CG since there is no CG H ′ such that
I(H ′) = I(M).

2.1 Algorithms for Learning CGs

We continue by a short overview of existing algorithms for
CG learning. To our knowledge, only three such have been
proposed earlier.

The first algorithm, proposed in (Studený, 1997), is a PC-
like algorithm that first finds a skeleton, and then orients
the edges according to a specific set of rules. The sec-
ond algorithm, LCD, proposed by (Ma et al., 2008), uses
a divide-and-conquer approach that allows for fast learning

of CGs especially in the space of sparse CGs. If the prob-
ability distribution at hand is faithful to a CG G, then both
Studený’s algorithm and LCD are guaranteed to find a CG
H that is Markov equivalent with G.

The third algorithm for learning CGs, CKES, proposed
in (Peña et al., 2014), can be viewed as an extension of the
KES (Nielsen et al., 2003) Bayesian network learning algo-
rithm. CKES works by iteratively adding (resp. removing)
edges between the variables in the CG that are dependent
(resp. independent) in the probability distribution at hand.
The CKES algorithm guarantees to produce a CG that is
inclusion optimal wrt the independence model induced by
the probability distribution at hand in case the model is a
compositional graphoid.

3 INFERENCE RULES FOR FINDING
SEPARATIONS IN CHAIN GRAPHS

In this work, we rely on inference rules by Studený (1998)
that allow for efficiently computing the separations and
non-separations in a given CG G. We will represent these
rules in our ASP encoding of CG learning, as detailed in
Section 4. The rules are based on four sets of nodes UC

x ,
V C
x , WC

x , and ZC
x , that are saturated for each node x ∈ N

wrt the conditioning set C ⊆ N \ {x}. A node x is then
separated from each node y ∈ N \ (UC

x ∪ V C
x) given the

conditioning set C, i.e., x⊥⊥GN \ (UC
x ∪V C

x)|C. The rules
are shown in Figure 2. For some intuition, note that

• y ∈ V C
x iff there exists a C-open route from x to y

in G which contains the subroute ai → ai+1 − · · · −
ai+k = y, k ≥ 1,

• y ∈ UC
x iff there exists a C-open route from x to y in

G which does not contain the subroute ai → ai+1 −
· · · − ai+k = y, k ≥ 1,

• y ∈ WC
x iff there exists a z ∈ UC

x ∪ V C
x and a route

z = a0 → a1 − · · · − ar = y in G, r ≥ 1, and

• y ∈ ZC
x iff there exists a z ∈ UC

x ∪V C
x and a route z =

a0 → a1 − · · · − ar = y, r ≥ 1, with {a1, . . . , ar} ∩
C 6= ∅.

Note that rule 7 in Figure 2 corrects a small typo in the
original paper (Studený, 1998).

The correctness of these rules can be stated as follows.

Theorem 1 (Adapted from (Studený, 1998))
Given a CG G over a node set N , starting with
UC
x = V C

x = ZC
x = WC

x = ∅ for each node x ∈ N and
C ⊆ N , apply the rules in Figure 2 until fixpoint. Then
y /∈ UC

x ∪ V C
x iff x⊥⊥Gy|C.

0. C ⊂ N , x /∈ C ⇒ x ∈ UC
x

1. x ∈ UC
a , x− y, y /∈ C ⇒ y ∈ UC

a

2. x ∈ UC
a , y → x, y /∈ C ⇒ y ∈ UC

a

3. x ∈ UC
a ∪ V C

a , x→ y, y /∈ C ⇒ y ∈ V C
a

4. x ∈ V C
a , x− y, y /∈ C ⇒ y ∈ V C

a

5. x ∈ UC
a ∪ V C

a , x→ y ⇒ y ∈WC
a

6. x ∈WC
a , x− y ⇒ y ∈WC

a

7. x ∈WC
a , x ∈ C ⇒ x ∈ ZC

a

8. x ∈ ZC
a , x− y ⇒ y ∈ ZC

a

9. x ∈ ZC
a , y → x, y /∈ C ⇒ y ∈ UC

a

Figure 2: Studený’s inference rules

3.1 Refining Studený’s Rules

It turns out that the W sets in Studený’s original rules are
actually redundant. In detail, the W sets can be removed
by replacing the original rules 5–7 by the rules 10–11 pre-
sented in Figure 3.

10. x ∈ UC
a ∪ V C

a , x→ y, y ∈ C ⇒ y ∈ ZC
a

11. x ∈ V C
a , x− y, y ∈ C ⇒ y ∈ ZC

a

Figure 3: Replacement for Studený’s rules 5–7

Proposition 1 Given a CG G over a node set N , starting
with UC

x = V C
x = ZC

x = WC
x = ∅ for each node x ∈ N

and C ⊆ N , the following computations give the same UC
x

and V C
x sets:

• Apply the rules 0–9 in Figure 2 until fixpoint.

• Apply rules 0–4 and rules 8–9 in Figure 2 together
with rules 10–11 in Figure 3 until fixpoint.

Proof (sketch). Without loss of generality, perform the
original and the refined computation by running the fol-
lowing three steps repeatedly until fixpoint. Step 1: Run
rules 0-4 until fixpoint. Step 2: Run rules 5-8 (original
computation) or rules 8,10-11 (refined computation) until
fixpoint. Step 3: Run rule 9 until fixpoint. In order to prove
the lemma, it suffices to prove that ZC

x is the same at the
end of step 2 for both computations.

Consider arbitrary UC
x and V C

x . Recall that by using the
original rules 0-9, a node y ∈ ZC

x only if there exists a

node z ∈ UC
x ∪ V C

x and a route z = a0 → a1 − · · · −
ar = y, r ≥ 1, with {a1, . . . , ar} ∩ C 6= ∅. Let as denote
the first node in the subroute a1 − · · · − ar that is in C.
Observe that as−1 ∈ UC

x ∪ V C
x if s = 1, and as−1 ∈ V C

x

otherwise. One can check that we have exactly as ∈ ZC
x

both by applying rules 10-11 in the refined computation and
by applying rules 5-7 in the original computation. After
this, y ∈ ZC

x is obtained both in the original and in the
refined computation by repeatedly applying rule 8. �

3.2 Additional Rules

On top of the “replacement” rules 10–11, we further iden-
tify additional rules that can be applied soundly together
with Studený’s original rules, i.e., without affecting the re-
sulting U and V sets. While these rules, shown in Fig-
ure 4, are redundant, encoding the rules declaratively as
part of the ASP encoding presented in this work improves
the overall running times of our approach in practice.

Proposition 2 Given a CG G over a node set N , starting
with UC

x = V C
x = ZC

x = WC
x = ∅ for each node x ∈ N

and C ⊆ N , the following computations give the same UC
x

and V C
x sets:

• Apply the rules 0–9 in Figure 2 until fixpoint.

• Apply the rules 0–9 in Figure 2 together with rules
12–17 in Figure 4 until fixpoint.

Proof (sketch). Consider rule 12. According to the head of
the rule, there exists a C-open route from a to x which does
not contain the subroute ai → ai+1 − · · · − ai+k = x with
k ≥ 1. Then, preceding this route with the edge b← awith
b /∈ C results in a C-open route from b to x which does not
contain the subroute ai → ai+1 − · · · − ai+k = x with
k ≥ 1. Then, the body of the rule holds. The correctness
of the rest of the rules can be proven in the same way. �

12. x ∈ UC
a , a→ b, b /∈ C ⇒ x ∈ UC

b

13. x ∈ V C
a , a→ b, b /∈ C ⇒ x ∈ V C

b

14. x ∈ ZC
a , a→ b, b /∈ C ⇒ x ∈ ZC

b

15. x ∈ UC
a , y ∈ UC

x ⇒ y ∈ UC
a

16. x ∈ UC
a , y ∈ V C

x ⇒ y ∈ V C
a

17. x ∈ UC
a , y ∈ ZC

x ⇒ y ∈ ZC
a

Figure 4: Additional sound rules

4 LEARNING CHAIN GRAPHS VIA ASP

In this section we detail our method of learning CGs us-
ing ASP. The approach is constraint-based and allows for
the objective function to take additional domain knowledge
into account. We start with a short informal account of
ASP.

4.1 Answer Set Programming

Answer set programming (ASP) is a rule-based declarative
constraint satisfaction paradigm that is well-suited for rep-
resenting and solving various computationally hard prob-
lems (Gelfond and Lifschitz, 1988; Niemelä, 1999; Simons
et al., 2002). ASP offers an expressive declarative mod-
elling language in terms of first-order logical rules, allow-
ing for intuitive and compact representations of NP-hard
optimization tasks. When using ASP, the first task is to
model the problem in terms of ASP rules (constraints) so
that the set of solutions implicitly represented by the ASP
rules corresponds to the solutions of the original problem.
One or multiple solutions of the original problem can then
be obtained by invoking an off-the-shelf ASP solver on
the constraint declaration. The algorithms underlying the
ASP solver Clingo (Gebser et al., 2011) that we use in
this work are based on state-of-the-art Boolean satisfiability
solving techniques (Biere et al., 2009). These techniques
have during the last 10-15 years emerged as robust and ef-
ficient means of solving various hard search and optimiza-
tion problems and even in cases surpassed specialized al-
gorithms while at the same time offering great flexibility
as general NP-procedures for declarative problem solving.
As a self-contained explanation of ASP syntax and seman-
tics would exceed the page limit, we only aim to give an
intuitive reading of our ASP encoding for learning CGs.

4.2 Encoding the CG structure learning problem

Our exact ASP encoding of the CG structure learning prob-
lem is modular, consisting of three parts: (1) a set of con-
straints representing the space of CGs with a given set of
nodes, including constraints ruling out semidirected cycles
(Section 4.2.1); (2) a set of rules exactly encoding the Stu-
dený inference rules and thereby the separations and non-
separations of a given CG (Section 4.2.2); (3) a set of
soft constraints exactly representing a well-defined objec-
tive function used for finding the optimal CG structure of
a problem (Section 4.2.3). Note that parts 2 and 3 are de-
pendent on the input data. Specifically, part 2 represents
the dependencies and independencies that are determined
by the data. Additional information about the dependen-
cies and independencies can also be added to part 2, such
as the confidence of their correctness. This information can
then be used by the objective function in part 3 as discussed
in Section 4.2.3. Essentially, by calling an ASP solver with
the whole ASP encoding, consisting of parts 1–3, the solver

will perform an intelligent implicit search over the space of
CGs (using part 1), and will output a CG that produces the
best objective function score (based on part 3) by deriv-
ing the separations and non-separations in the CGs (using
part 2). Furthermore, in Section 4.3 we discuss how addi-
tional domain knowledge can be incorporated.

4.2.1 Encoding CGs

We start with part 1, i.e., by describing an ASP program
encoding of the space of CGs. This base encoding is pre-
sented in Figure 5.

In the encoding, the input predicate node represents the fact
that x is a node. We use the predicates edge and arc to rep-
resent the undirected and directed edges, respectively, of
the CG G, i.e., these predicates represent the actual CG
described by a solution to the ASP program. More pre-
cisely, we have that edge(X,Y) is true iff x − y ∈ G, and
arc(X,Y) is true iff x → y ∈ G Informally, the “guess”
part of the program, consisting of the two first rules, en-
codes a non-deterministic guess of the edges in G, which
means that the ASP solver will implicitly consider all pos-
sible graphs during search. The next three rules enforce the
fact that, for any pair x, y of nodes in a CG G, there can be
at most one type of an edge (undirected, directed, or nei-
ther) between them. The predicate ancestor(X,Y) is true
iff there is a semidirected route from a node x to node y,
and is used to enforce that CGs cannot contain semidirected
cycles. This constraint is enforced transitively by the last
five rules in Figure 5.

%%% guess graph:
% directed edges
{ arc(X,Y) } :- node(X;Y), X!=Y,

not edge(X,Y),
not arc(Y,X).

% undirected edges
{ edge(X,Y) } :- node(X;Y), X!=Y,

not arc(X,Y),
not arc(Y,X).

%%% at most one edge between node pairs:
% symmetric undirected edge relation
edge(Y,X) :- edge(X,Y).
% disallow cases with both directed and
% undirected edges over a pair of nodes
:- edge(X,Y), arc(X,Y).
% disallow pairwise opposite arcs
:- arc(X,Y), arc(Y,X).

%%% disallow partially directed cycles
ancestor(X,X) :- node(X).
ancestor(X,Y) :- arc(X,Y).
ancestor(X,Y) :- edge(X,Y).
ancestor(X,Y) :- ancestor(X,Z),

ancestor(Z,Y).
:- ancestor(X,Y), arc(Y,X).

Figure 5: ASP encoding of chain graphs

4.2.2 Encoding Studeny’s Rules

For inferring the separations that hold in a given CG G, we
encode Studený’s inference rules—or more precisely, the
modified rule set consisting of the rules 0–4, 8–9, and 10–
11 (recall Section 3)—in ASP. As shown in Figure 6, the
ASP modelling language allows for very natural encoding
of these rules. The predicates inU(X,A,C), inV(X,A,C),
and inZ(X,A,C), respectively, are used for representing
the facts that a node x ∈ UC

a , x ∈ V C
a , and x ∈ ZC

a ,
respectively. The auxiliary predicate in(C,X), although
its defining rule may seem somewhat complicated, simply
represents the fact that node x ∈ C ⊆ N . As a tech-
nical detail, we use an index-representation for the con-
ditioning sets and the nodes: the index of a given set
C ⊆ N = {1..|N |} is represented as a binary vector
b|N | . . . b2b1, where bi = 1 iff node i ∈ C. The sets
C ⊆ N are represented by the input predicate set. Finally,
the predicate derived dep(X,A,C) is defined to be true iff
x 6⊥⊥Ga|C, where G is the graph represented by the predi-

% in(C,X): node X in set C
in(C,X) :- set(C), node(X),

2**(X-1) & C != 0.
% rule 0
inU(X,X,C) :- set(C), node(X),

not in(C,X).
% rule 1
inU(Y,A,C) :- inU(X,A,C), edge(X,Y),

not in(C,Y), not in(C,A).
% rule 2
inU(Y,A,C) :- inU(X,A,C), arc(Y,X),

not in(C,Y), not in(C,A).
% rule 3
inV(Y,A,C) :- inU(X,A,C), arc(X,Y),

not in(C,Y), not in(C,A).
inV(Y,A,C) :- inV(X,A,C), arc(X,Y),

not in(C,Y), not in(C,A).
% rule 4
inV(Y,A,C) :- inV(X,A,C), edge(X,Y),

not in(C,Y), not in(C,A).
% rule 8
inZ(Y,A,C) :- inZ(X,A,C), edge(X,Y),

not in(C,A).
% rule 9
inU(Y,A,C) :- inZ(X,A,C), arc(Y,X),

not in(C,Y), not in(C,A).
% rule 10
inZ(Y,A,C) :- inU(X,A,C), arc(X,Y),

not in(C,A), in(C,Y).
inZ(Y,A,C) :- inV(X,A,C), arc(X,Y),

not in(C,A), in(C,Y).
% rule 11
inZ(Y,A,C) :- inV(X,A,C), edge(X,Y),

not in(C,A), in(C,Y).

% Derived connections
derived_dep(X,Y,C) :- inU(Y,X,C), X != Y,

not in(C,Y), not in(C,X).
derived_dep(X,Y,C) :- inV(Y,X,C), X != Y,

not in(C,Y), not in(C,X).

Figure 6: ASP encoding of Studeny’s rules

cates edge and arc, exactly following the conditions stated
in Theorem 1.

4.2.3 Optimization

We proceed by detailing how different objective functions
can be encoded within our approach. As noted earlier, the
goal of an objective function is to assign a score to every
CG G, and the set of optimal CGs is defined as those CGs
which minimizes the objective function value. We con-
sider three different objective functions that characterize
different types of optimality conditions for CGs. Follow-
ing Hyttinen et al. (2014)—who focused on causal struc-
ture discovery—each of the objective functions is (in some
cases partially) based on how well the separations and non-
separations of the given CG G corresponds to the indepen-
dencies and dependencies determined from the data. In the
following, we denote by CG(N) the set of CGs over the set
of nodes N , and by I the (complete) set of independencies
and dependencies given as input (determined before-hand
from the data).

The first two objective functions follow the general idea
of minimizing a sum of costs over incorrect separations
and non-separations in G wrt the independences and de-
pendences determined by the data. As a generalization, we
associate for each (in)dependence statement determined by
the data a cost (weight) w(x⊥⊥y|C) and w(x6⊥⊥y|C), which
is incurred on the solution G iff the corresponding separa-
tion statement does not hold in G. This allows for formal-
izing a general weighted objective function

min
G∈CG(N)

∑
(x6⊥⊥y|C)∈I w(x6⊥⊥y|C) · T [x⊥⊥y|C] +∑
(x⊥⊥y|C)∈I w(x⊥⊥y|C) · T [x6⊥⊥y|C], (1)

where T [c] is an indicator for the condition c being true for
graph G.

By setting the weights w appropriately, this gives vari-
ous interesting special cases. For example, to represent
independence optimal CGs as the optimal solutions, let
w(x 6⊥⊥y|C) = ∞ (i.e., all dependencies have to be rep-
resented in any CG G) and w(x⊥⊥y|C) = 1 (i.e., each in-
dependence relation not represented by G adds a unit cost
to G).

On the level of our ASP encodings of the objec-
tive functions considered, we use the input predicates
indep(X,Y,C,W) and dep(X,Y,C,W), to represent
w(x⊥⊥y|C) andw(x6⊥⊥y|C), respectively. Using these pred-
icates, the general weighted objective function is expressed
as the ASP statements shown in Figure 7.

In addition to allowing for associating the same (unit)
weight to all (in)dependence statements, the general
weighted objective function also allows for using more
elaborate weighting schemes where each (in)dependence
statement have a different weight. In contrast, most

% Minimize the sum of the weights of
% unsatisfied (in)dependence constraints
:˜indep(X,Y,C,W), derived_dep(X,Y,C).

[W,X,Y,C]
:˜dep(X,Y,C,W), not derived_dep(X,Y,C).

[W,X,Y,C]

Figure 7: Encoding the general weighted objective

constraint-based structure learning methods only allow
for binary information about an independence statement,
which means that possible additional information about
the independence statements, such as the level of confi-
dence in them, is lost. In fact, as suggested by Hytti-
nen et al. (2014), by developing weighting schemes, one
can bring the constraint-based approaches closer to score-
based methods which have traditionally used local scores
as weights within the implemented objective functions. For
example, a weighting scheme that was proposed and shown
to produce good solutions by Hyttinen et al. (2014) uses
the log of the Bayesian probability of (in)dependence state-
ments (Margaritis and Bromberg, 2009) as weights.

As an alternative to expressing optimality in terms of
weighting incorrectly represented (in)dependencies, we
also consider a novel objective function that aims at min-
imizing the number of edges in the CG while at the same
time representing all conditional dependencies in the data.
The underlying idea of the objective function is to mini-
mize the model complexity and although independence op-
timal solutions can no longer be guaranteed wrt the inde-
pendence model of the data, any solution will still be inclu-
sion optimal. Formally, this gives the alternative objective
function

min
G∈CG(N)

|{(x, y) : x < y, x− y ∈ G}|+

|{(x, y) : x→ y ∈ G}|+∑
(x6⊥⊥y|C)∈I

w(x6⊥⊥y|C) · T [x⊥⊥Gy|C], (2)

wherew(x6⊥⊥y|C) =∞. This objective function is encoded
in ASP as shown in Figure 8, which in itself demonstrates
the versatility of our declarative approach.

4.3 Imposing Additional Constraints

One of the major strengths with our CG learning approach
is the possibility to incorporate further constraints to guide
the search for optimal solutions, in order to e.g. speed up
the search for solutionor to focus the search on specific so-
lutions of interest. In terms of domain knowledge, if we
know that variable x is the direct cause of variable y in the
system we are modelling, we can simply add the constraint
arc(x, y) as input to the ASP solver. In terms of including
redundant constraints for speeding up search, one can e.g.

% satisfy all dependence constraints
:- dep(X,Y,C,_), not derived_dep(X,Y,C).

% minimize undirected and directed edges
:˜ edge(X,Y), X<Y. [1,X,Y]
:˜ arc(X,Y). [1,X,Y]

Figure 8: Encoding the minimize-edges objective

encode the set of redundant rules for how the sets UC
x , V C

x

and ZC
x can be computed as discussed in Section 3.2. An

encoding of the rules are shown in Figure 9. In fact, we ob-
served that the solver running times decreased by approxi-
mately 50% after adding these rules to the ASP encoding.

In terms of focusing search specific solutions of interest, we
now describe an ASP encoding for restricting the search to
only consider so-called largest chain graphs (Frydenberg,
1990; Volf and Studený, 1999). Largest CGs are repre-
sentatives of Markov equivalence classes of CGs. Given
a Markov equivalence class, the largest CG in the class is
the CG which includes a maximal number of undirected
edges. More formally, largest chain graphs are defined as
follows.

A complex in a CG G is a path v1, . . . , vk in G with k ≥ 3,
such that v1 → v2, vi − vi+1 for i = 2, . . . , k − 2, and
vk−1 ← vk, and there are no other edges between the nodes
v1, . . . , vk in G. A complex edge is a directed edge that
belongs to a complex. A directed edge u → v covers a
directed edge x → y in a CG G u is an ancestor of x and
y is an ancestor of v in G. A directed edge u → v is
protected in G if it covers a complex edge. Note that every
complex edge is protected. Now, a CG G is the largest CG
in a Markov equivalence class iff every directed edge of G
is protected.

An ASP encoding of the largest CG constraint is presented
in Figure 10. Here, the predicate complex(X,Y) indi-
cates that x → y is a complex edge. The auxiliary pred-
icate almost undirected path(X,Y, Z) indicates the exis-
tence of a path x → y − · · · − z such that there are no
other edges between the nodes in the path. This predicate

inU(Z,Y,C) :- inU(Z,X,C), arc(X,Y),
not in(C,X), not in(C,Y), not in(C,Z).

inV(Z,Y,C) :- inV(Z,X,C), arc(X,Y),
not in(C,X), not in(C,Y), not in(C,Z).

inZ(Z,Y,C) :- inZ(Z,X,C), arc(X,Y),
not in(C,X), not in(C,Y).

inU(Y,A,C) :- inU(X,A,C), inU(Y,X,C).
inV(Y,A,C) :- inU(X,A,C), inV(Y,X,C).
inZ(Y,A,C) :- inU(X,A,C), inZ(Y,X,C).

Figure 9: Encoding redundant domain knowledge

% derive complex arcs X->Y - ... <-Z
complex(X,Y) :- arc(X,Y), arc(Z,Y), X!=Z,

not edge(X,Z),
not arc(X,Z), not arc(Z,X).

complex(X,Y) :- almost_undirected_path(X,Y,V),
almost_undirected_path(Z,V,Y),
X!=Z, not edge(X,Z),
not arc(X,Z), not arc(Z,X).

almost_undirected_path(X,Y,Z) :- arc(X,Y),
edge(Y,Z), not arc(X,Z).

almost_undirected_path(X,Y,Z) :-
almost_undirected_path(X,Y,V),
edge(V,Z), not arc(X,Z).

% arc U->V covers arc X->Y
covers(U,V,X,Y) :- ancestor(U,X),

ancestor(Y,V),
arc(X,Y), arc(U,V).

% all arcs must be protected
1 {covers(U,V,X,Y) : complex(X,Y)} :-arc(U,V).

Figure 10: ASP encoding of the largest CG constraint

is used for deriving the predicate complex. The predicate
covers(U, V,X, Y) encodes that u → v covers the edge
x → y. The final cardinality constraint states that every
directed edge u→ v must cover at least one complex edge
x→ y, i.e., u→ v has to be protected.

5 EMPIRICAL EVALUATION

We report here on an empirical evaluation comparing our
declarative ASP-based approach with existing CG struc-
ture learning algorithms in terms of accuracy of the pro-
duced solutions. For solving the ASP encodings, we used
the state-of-the-art ASP solver Clingo version 4.4.0. The
CG learning algorithms we compare to are LCD (Ma et al.,
2008) and CKES (Peña et al., 2014), for which we obtained
implementations from the respective authors. We excluded
the PC-like algorithm (Studený, 1997) from the compar-
ison since Ma et al. (2008) have shown that it is outper-
formed by LCD.

For the ASP approach, we illustrate its diversibility by ap-
plying three different objective functions.

(i) ASP-Indep, which implements the general weighted
optimization function with w(x6⊥⊥y|C) =∞ and
w(x⊥⊥y|C) = 1 (cf. Section 4.2.3, Equation 1);

(ii) ASP-Weight, which implements the general weighted
optimization function using a probability-based
weighting scheme from (Hyttinen et al., 2014, Sec-
tion 4.3), following a Bayesian paradigm to assign
probabilities to (in)dependence statements, using code
from the authors;

(iii) ASP-Edge, which implements the minimize edges op-
timization function, (cf. Section 4.2.3, Equation 2).

Since the LCD algorithm assumes faithfulness, to some
CG, from the probability distribution it is trying to learn,
and does not work properly otherwise, we enforced this
assumption for the experiments. However, we want to em-
phasize that our approach works also without such assump-
tions. Hence, due to this strong fairness towards LCD and
CKES, the empirical results may to some extent present
overly positive results for LCD and CKES.

Assuming a faithful underlying probability distribution,
we applied the following process. First, a set of CGs
G were generated with corresponding probability distribu-
tions. These probability distributions were then sampled
into datasets, each determining a set of independence and
dependence statements, forming the inputs to the different
algorithms. We then evaluated the learning results, i.e., the
CGs output as solutions by the algorithms, by comparing
them to the original CG G.

For the experiments, we generated 100 “original” CGs over
N = 7 nodes, with an average node-degree of 2, as well
as corresponding Gaussian probability distributions. For
each distribution, we obtained 500 samples. We used the
simplified Wilks independence test (Wilks, 1938) for LCD,
CKES, ASP-Indep and ASP-Edge. For the ASP-Weight
variant, we used the more advanced, non-binary indepen-
dence test following (Hyttinen et al., 2014). Taking into
account that CKES typically ends up in different local op-
tima (Peña et al., 2014), we ran the CKES algorithm three
times on each input, and report the best found solution—
wrt independence optimality to the independence model
determined by the data—as the final solution produced by
CKES.

To evaluate the accuracy of the learnt CGs we compared
their represented independence model with the indepen-
dence model of the original CG G by calculating the true
positive rate (TPR) and false positive rate (FPR) of learnt
dependencies. A higher TPR means that more dependen-
cies are correctly identified by the algorithm, while a lower
FPR means that more independencies are correctly identi-
fied.

The accuracy of the results is plotted in the ROC space
in Figure 11.1 We observe that LCD does not achieve
as high TPR as the other algorithms, but does obtain rel-
atively low FPR. This is in line with earlier results (Ma
et al., 2008; Peña et al., 2014) that show that LCD includes
edges relatively cautiously. CKES, in turn, achieves rela-
tively high TPR, but with higher FPR, which is in line with
previous evidence suggesting that CKES can have prob-
lems identifying the correct independencies in a probabil-

1Note that the points are not statistical test results obtained
independently of each other. Rather, they are learning results of
algorithms for which the dependencies and independencies log-
ically constrain each other. As a result, some of the algorithms
are not able to produce results with low FPRs at all, making the
curves non-concave.

Figure 11: Comparison of solution accuracy

ity distribution and hence is relatively generous in includ-
ing edges (Peña et al., 2014). In contrast, relative to LCD
and CKES, we observe that the ASP-based approach under
the different objective functions perform well both in the
low FPR range (similarly or better than LCD which in turn
dominates CKES in the range) and the higher FPR range
(similarly or better than CKES which is in turn dominates
LCD in the range). Thus the overall best-performing ap-
proaches are the ASP encoding variants. Among the ASP
encoding variants, we observe that the ASP-Weight variant
shows best performance in the low FPR range < 0.01. The
variants ASP-Weight and ASP-Indep, using instantiations
of the general weighted objective function, fare better than
ASP-Edge that optimally minimizes the number of edges
in the output CG.

As for scalability of our approach, the average and median
running times over 100 inputs in terms of the number of
variables are shown in Table 1, using a single core of an
Intel i5 processor running at 3.4 GHz. For a fair compar-
ison, we note that CKES and LCD do exhibit much faster
running times, e.g., 1-10 seconds per run at N = 7. Note
that the median ASP running times are much lower then the
average running times. We observed that relatively scarce
outliers have a big negative influence on the averages. The
running times include both the time it takes to reach an op-
timal solution as well as the additional time it takes for the
solver to prove that the found solution is optimal. In fact,

Table 1: ASP running times under different objectives

N Median / Average (sec)
ASP-Indep ASP-Edge ASP-Weight

3 0.02 / 0.02 0.02 / 0.02 0.02 / 0.02
4 0.03 / 0.03 0.04 / 0.04 0.03 / 0.03
5 0.11 / 0.15 0.33 / 0.35 0.24 / 0.46
6 0.93 / 2.06 7.84 / 10.10 5.00 / 270.35
7 21.35 / 243.10 366.86 / 489.71 60.70 / 2471.81

typically proving optimality consumes the majority of the
running time of the solver. Moreover, during the search, the
solver actually reports increasingly good solutions, consti-
tuting an anytime learning algorithm.

6 CONCLUSIONS

In this article we presented a first exact approach to chain
graph structure learning. In the approach the computation-
ally hard problem is cast as a constraint optimization prob-
lem using the declarative programming of answer set pro-
gramming. In contrast to previously proposed CG learning
algorithms, our approach enables finding provably optimal
solutions to the learning problem without making assump-
tions on the data. It is at the same time more general since
it enables the use of various types of objective functions for
optimization and specifying domain knowledge in terms
of hard constraints. Via an empirical evaluation we also
showed that the approach exhibits better overall accuracy
than any single previously proposed CG structure learning
algorithm. A topic for further work is to study ways of scal-
ing up the approach to higher numbers of variables while
still maintaining optimality guarantees. It would also be
interesting to extend the approach to accommodate the al-
ternative multivariate regression (Cox and Wermuth, 1993,
1996) and Andersson-Madigan-Perlman (Andersson et al.,
2001; Levitz et al., 2001) CG interpretations.

Acknowledgements This work was supported in part by
the Swedish Research Council (2010-4808), Academy of
Finland (grants 251170 COIN Centre of Excellence in
Computational Inference Research, 276412, and 284591),
and Research Funds of the University of Helsinki.

References

Andersson, S., Madigan, D., and Perlman, M. (2001). An
alternative Markov property for chain graphs. Scandina-
vian Journal of Statistics, 28:33–85.

Berg, J., Järvisalo, M., and Malone, B. (2014). Learn-
ing optimal bounded treewidth Bayesian networks via
maximum satisfiability. In Proc. AISTATS, volume 33
of JMLR Proceedings, pages 86–95. JMLR.org.

Biere, A., Heule, M., van Maaren, H., and Walsh, T., ed-
itors (2009). Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications. IOS
Press.

Corander, J., Janhunen, T., Rintanen, J., Nyman, H. J., and
Pensar, J. (2013). Learning chordal markov networks by
constraint satisfaction. In Proc. NIPS, pages 1349–1357.

Cox, D. and Wermuth, N. (1993). Linear dependencies rep-
resented by chain graphs. Statistical Science, 8:204–218.

Cox, D. and Wermuth, N. (1996). Multivariate Dependen-
cies: Models, Analysis and Interpretation. Chapman and
Hall.

Cussens, J. and Bartlett, M. (2013). Advances in
Bayesian network learning using integer programming.
In Proc. UAI, pages 182–191. AUAI Press.

Frydenberg, M. (1990). The chain graph Markov property.
Scandinavian Journal of Statistics, 17:333–353.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M.,
Schaub, T., and Schneider, M. T. (2011). Potassco: The
Potsdam answer set solving collection. AI Communica-
tions, 24(2):107–124.

Gelfond, M. and Lifschitz, V. (1988). The stable model
semantics for logic programming. In Proc. ICLP, pages
1070–1080.

Hyttinen, A., Eberhardt, F., and Järvisalo, M. (2014).
Constraint-based causal discovery: Conflict resolution
with answer set programming. In Proc. UAI, pages 340–
349. AUAI Press.

Hyttinen, A., Hoyer, P. O., Eberhardt, F., and Järvisalo,
M. (2013). Discovering cyclic causal models with latent
variables: A general SAT-based procedure. In Proc. UAI,
pages 301–310. AUAI Press.

Lauritzen, S. and Wermuth, N. (1989). Graphical mod-
els for association between variables, some of which are
qualitative and some quantitative. The Annals of Statis-
tics, 17:31–57.

Levitz, M., Perlman, M., and Madigan, D. (2001). Sepa-
ration and completeness properties for AMP chain graph
Markov models. The Annals of Statistics, 29:1751–1784.

Ma, Z., Xie, X., and Geng, Z. (2008). Structural learning
of chain graphs via decomposition. Journal of Machine
Learning Research, 9:2847–2880.

Margaritis, D. and Bromberg, F. (2009). Efficient Markov
network discovery using particle filters. Computational
Intelligence, 25(4):367–394.

Nielsen, J., Kočka, T., and Peña, J. (2003). On local optima
in learning Bayesian networks. In Proc. UAI, pages 435–
442. AUAI Press.

Niemelä, I. (1999). Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals
of Mathematics and Artificial Intelligence, 25(3-4):241–
273.

Parviainen, P., Farahani, H. S., and Lagergren, J. (2014).
Learning bounded tree-width Bayesian networks us-
ing integer linear programming. In Proc. AISTATS,
volume 33 of JMLR Proceedings, pages 751–759.
JMLR.org.

Peña, J. M., Sonntag, D., and Nielsen, J. (2014). An inclu-
sion optimal algorithm for chain graph structure learn-
ing. In Proc. AISTATS, volume 33 of JMLR Proceedings,
pages 778–786. JMLR.org.

Simons, P., Niemelä, I., and Soininen, T. (2002). Extending
and implementing the stable model semantics. Artificial
Intelligence, 138(1-2):181–234.

Sonntag, D., Peña, J., and Gómez-Olmedo, M. (2015).
Approximate counting of graphical models via MCMC
revisited. International Journal of Intelligent Systems,
30:384–420.

Studený, M. (1997). On recovery algorithms for chain
graphs. International Journal of Approximate Reason-
ing, 17:265–293.

Studený, M. (1998). Bayesian networks from the point
of view of chain graphs. In Proc. UAI, pages 496–503.
Morgan Kaufmann.

Studený, M. (2005). Probabilistic Conditional Indepen-
dence Structures. Springer.

Volf, M. and Studený, M. (1999). A graphical characteri-
zation of the largest chain graphs. Int. J. Approx. Rea-
soning, 20(3):209–236.

Wilks, S. (1938). The large-sample distributiom of the like-
lihood ratio for testing composite hypotheses. The An-
nals of Mathematical Statistics, 20:595–601.

