
1/23

Introduction to Model Checking

Keijo Heljanko

Department of Computer Science
University of Helsinki

keijo.heljanko@helsinki.fi

3.9-2019

2/23

Reactive Systems

Reactive systems are a class of software and/or hardware

systems which have ongoing behavior where they react to

inputs provided by the environment.

(They do not terminate.)

Examples of reactive systems include:

◮ Mobile phones

◮ Data communication protocols (Internet,telephone

switches)

◮ Traffic lights

◮ Elevators (lifts)

◮ Operating systems

3/23

Reactive Systems vs. Algorithms

Reactive systems do not fulfill the definition of an algorithm,

which says that an algorithm should:

◮ Terminate

◮ Upon termination, provide a (hopefully correct) return

value.

If we want to specify the correctness of an algorithm, we

usually specify it as follows:

◮ The algorithm should terminate on all (allowed) inputs

◮ On termination, the provided output should correct (with

respect to a specification).

4/23

Software failures

Software is used widely in many applications where a bug in

the system can cause large damage:

◮ Safety critical systems: airplane control systems, medical

care, train signalling systems, air traffic control, power

plants, etc.

◮ Economically critical systems: e-commerce systems,

Internet, microprocessors, etc.

5/23

A Software Bug in Mars: Pathfinder

◮ In a real time operating system a high priority process

waits for a lower priority process to release a lock but the

lower priority process never gets runtime by the OS

scheduler. Resulted in lockups of the Mars Pathfinder

software that caused watchdog reboots.

◮ Problem could be reproduced with an identical copy on the

spaceship after 18 hours. The software running on Mars

was patched from the Earth.

6/23

Finding Bugs in Reactive Systems

The principal methods for the validation of complex reactive

systems are:

◮ Testing (using the system itself)

◮ Simulation (using a model of the system)

◮ Deductive verification (mathematical (manual) proof of

correctness, in practice done with computer aided proof

assistants/proof checkers)

◮ Model Checking (≈ exhaustive testing of a model of the

system)

This course will focus on the model checking approach.

7/23

Model Checking

In model checking every execution of the model of the system

is simulated obtaining a Kripke structure M describing all its

behaviors. M is then checked against a system property ϕ:

◮ Yes: The system functions according to the specified

property (denoted M |= ϕ).

The symbol |= is pronounced “models”,

hence the term model checking.

◮ No: The system is incorrect (denoted M 6|= ϕ), a

counterexample is returned: an execution of the system

which does not satisfy the property.

8/23

Models and Properties

Executing

Modelling

Kripke

System Property

model
System

structure
Formalized

propertyModel checking

Formalization
of property

the model

M ϕM |= ϕ ?

9/23

Kripke Structures

Kripke structure is a fully modelling language independent way

of representing the behavior of parallel and distributed system.

Kripke structures are graphs which describe all the possible

executions of the system, where all internal state information

has been hidden, except for some interesting atomic

propositions.

10/23

Example: Mutex - Kripke structure

L = {TRY0, TRY1}

L = {TRY0, NC1}

L = {TRY0, TRY1}

L = {NC0, NC1}

L = {NC0, TRY1}

L = {CS0, NC1} L = {NC0, CS1}

L = {CS0, TRY1} L = {TRY0, CS1}

s1 s2

s3s4

s7

s5 s6

s8

s0

11/23

Kripke structure

Kripke structure is a directed graph, where:

◮ The states of the graph are all possible reachable states of

the system.

◮ There is an arc from state s to state s′ if and only if (iff

from now on) it is possible to move with an atomic action

from state s to the state s′.

◮ The valuation L of each state contains exactly those atomic

propositions which hold in that state.

12/23

Formal Definition

Definition
Let AP be a finite set of atomic propositions. Kripke structure is

a four-tuple M = (S, s0
,R,L), where

◮ S is a finite set of states,

◮ s0 ∈ S is the initial state (marked with a wedge),

◮ R ⊆ S × S is the transition relation,

((s, s′) ∈ R is drawn as an arc from s to s′), and

◮ L : S → 2AP is a valuation, i.e. a function which maps each

state to those atomic propositions which hold in that state.

13/23

Kripke Structures and Automata

Kripke structures have a close relationship with finite state

automata (FSA):

The changes are the following:

◮ labelling is on states instead of having labels on arcs,

◮ alphabet Σ consists of the subsets of AP,

◮ there is at most one arc between any two states, and

◮ there is no definition of final states.

(All the states are final.)

It is easy to derive a FSA out of a Kripke structure.

14/23

Example: The Mutex Automaton AM

s1 s2

s3s4

s7

s5 s6

s8

s0

si

All states are final.

{NC0, NC1}

{NC0, NC1}
{NC0, NC1}{NC0, NC1}

{TRY0, NC1} {NC0, TRY1}

{NC0, TRY1}

{CS0, TRY1} {CS0, TRY1}

{TRY0, TRY1} {NC0, CS1}

{TRY0, CS1} {TRY0, CS1}

{TRY0, NC1}

{TRY0, TRY1}{CS0, NC1}

15/23

Model Checking - Ingredients

◮ A way of modelling the system conveniently - modelling

language

◮ A way of describing all the behaviors of the system model

in a modelling language independent way - Kripke

structure

◮ A way of specifying properties - assertions, automata,

regular expressions, temporal logics

◮ An algorithm to check whether the property holds for the

system - model checker

16/23

Benefits of Model Checking

◮ In principle automated: Given a system model and a

property, the model checking algorithm is fully automatic

◮ Counterexamples are valuable for debugging

◮ Already the process of modelling catches a large

percentage of the bugs: rapid prototyping of concurrency

related features

17/23

Drawbacks of Model Checking

◮ State explosion problem: Capacity limits of model checkers

often exceeded

◮ Manual modelling often needed:
◮ Model checker used might not support all features of the

implementation language
◮ Abstraction needed to overcome capacity problems

◮ Reverse engineering of existing already implemented

systems to obtain models is time consuming and often

futile

18/23

Model Checking in the Industry

◮ Microprocessor design: All major microprocessor

manufacturers use model checking methods as a part of

their design process

◮ Design of Data-Communications Protocol Software: Model

checkers have been used as rapid prototyping systems for

validating new data-communications protocols under

standardization.

◮ Critical Software: NASA space program is model checking

code used by the space program.

◮ Operating Systems: Microsoft is using model checking to

verify the correct functioning of new Windows device

drivers.

19/23

Automata Theoretic Approach

A short theory of model checking using automata

◮ Assume you have a finite state automaton (FSA) of the

behavior of the system A

(see automaton AM obtained from the Kripke structure M

as an example)

◮ Assume the specified property is also specified with an

FSA S

◮ Now the system fulfils the specification, if the language of

the system is contained in the language of the

specification:

i.e., it holds that L(A) ⊆ L(S)

20/23

Language Inclusions

L(S)

L(A)

Good
behaviours behaviours

Bad

Σ∗

L(P) =

L(S)

L(A) ∩ L(S)

21/23

Automata Theoretic Approach (cnt.)

◮ We need to generate the product automaton: P = A ∩ S,

where S is an automaton which accepts the complement

language of L(S)

22/23

Automata Theoretic Approach (cnt.)

◮ If L(P) = ∅, i.e., P does not accept any word, then the

property holds and thus the system is correct

◮ Otherwise, there is some run of P which violates the

specification, and we can generate a counterexample

execution of the system from it (more on this later)

23/23

State Explosion from Intersection

◮ Note, however, that even if A1,A2,A3,A4 have k states

each, the automaton

A′

4 = A1 ∩ A2 ∩ A3 ∩ A4 (sometimes alternatively called

the synchronous product and denoted

A′

4 = A1 × A2 × A3 × A4) can have k4 states, and thus in

the general A′

i
will have k i states.

◮ Therefore even if a single use of ∩ is polynomial, repeated

applications often will result in a state explosion problem.

◮ In fact, the use of × as demonstrated above could in

principle be used to compose the behavior of a parallel

system from its components.

