Satisfiability, Boolean Modeling and Computation
Spring 2016

Matti Järvisalo

Lecture 1: Practical Arrangements,
Introduction and Basic Concepts
January 19, 2016
On This Lecture

- Course information
- Motivation: what, why?
- Course outline
- Basics/refresher on propositional logic
Course Information

Lectures: Tuesdays and Thursdays 12–14
during Jan 19 – Mar 1 (≈ 10 lectures)
 ▶ No lectures during Feb 11–18
 ▶ March 3 on reserve

Lecturer: Dr. Matti Järvisalo
 matti.jarvisalo@cs.helsinki.fi

Reception: During lectures / contact lecturer by email
for an appointment

Tutorials: Tuesdays 10–12
during Jan 26 – Mar 1 (6 sessions)

Assistant: M.Sc. Jeremias Berg,
 jeremias.berg@cs.helsinki.fi

Course code: 582742

Credit units: 5 ECTS

WWW:
 https://www.cs.helsinki.fi/en/courses/582742/2016/k/k/1
Course Requirements and Grading

- Final exam: Mar 9 at 9 AM
- Active participation in lectures
- Active participation in tutorials
- Weekly hand-in exercises, must obtain $> 50\%$ points
- Final grade: final exam grade

Active participation in lectures and tutorials is recommended

Final exam covers lectures, lecture slides, and tutorials
Weekly hand-in exercises

- Solve a set of weekly assignments (2–3 per week)
- Tutorial sheet with assignments made available by Thursday the week before
- Return to course assistant at the tutorials
- Deadline: beginning of the weekly tutorial session
- Each solution is graded on the scale 0-2
- To pass the course, you must obtain at least 50 % of the total number of available points

Tutorials consist of

- discussing solutions the weekly home assignments (if you want)
- additional tutorial exercises (similar to problems in final exam)
Prerequisites

Background:

- Design and Analysis of Algorithms (algorithmic thinking)
- Introduction to Artificial Intelligence (search)
- Models of Computation (complexity of problems)
- Basics of propositional logic

Either you have the necessary formal background, or are willing to do the extra work to figure things out yourself.
Materials and Further Reading

- Course materials = lecture slides + tutorials
- Since the lecture slides are new, there will likely be mistakes in the slides presented at lectures
- A revised slide package, including all lectures, will be made available after the last lecture
- *Not based on any single book*
- Possible further reading
 - See “Further Reading” list on the course webpage
- *Not necessary to purchase a book*

Acknowledgements

Lectures at times rely on material from my collaborators, including Fahiem Bacchus, Anton Belov, Armin Biere, Marijn Heule, Joao Marques-Silva, and others. Many thanks!
Materials and Further Reading

- Course materials = lecture slides + tutorials
- Since the lecture slides are new, there will likely be mistakes in the slides presented at lectures
- A revised slide package, including all lectures, will be made available after the last lecture
- *Not based on any single book*
- Possible further reading
 - See “Further Reading” list on the course webpage
- *Not necessary to purchase a book*

Acknowledgements

Lectures at times rely on material from my collaborators, including Fahiem Bacchus, Anton Belov, Armin Biere, Marijn Heule, Joao Marques-Silva, and others. Many thanks!
What This Course is about

- A computer science perspective to solving hard problems
- Focus on *practical* algorithmic methods
- Based on automated logical reasoning
 - Efficient implementations will allow you to solve *real* problem instances
- Focusing on the declarative approach
 - Constraint satisfaction and optimization
 - Linear and integer programming
 - Modelling and solving
Motivation
Combinatorial Problems in the Real World

- Automated planning
 - Planning for executing tasks
 (e.g., optimizing packet delivery services)
- Scheduling
 - Given N tasks with earliest start times, completion deadlines, and set of M machines on which they can execute, schedule them so that they all finish by their deadlines
- Model checking
 - Does a (formal model of a) hardware or software design satisfy a formal specification (e.g., “an operating system driver will never cause the computer to deadlock”)

Interesting problems are often characterized by computational intractability — \textbf{NP}-complete or even harder

\textit{no general polynomial algorithms known}
Algorithm Design Techniques

- There are several approaches to developing specialized efficient algorithms for computationally difficult problems
 - Specialized exact algorithms with provably good *(but exponential)* worst-case behavior
 - Fast (polynomial-time) approximation algorithms
 - Randomized algorithms

- All of the above require expertise in developing algorithms for the *specific problem* at hand
 - Changing the problem even in a small way may require one to develop a new specialized algorithm from scratch

Focus on this course: the *declarative programming* approach

Modelling + search

- *Generic* approaches for attacking hard computational problems
Declarative Programming

Two-step approach to solving hard combinatorial problems:

1. **Encoding**: *Domain-specific* declarative formulation of problem using chosen *(constraint) modelling language*
 - Given any problem instance, formulate the instance in terms of *mathematical constraints*

2. **Solving**: A *generic* solver—a search algorithm—for the chosen modelling language, which can find a *solution* (or determine that none exist) to any formulation in the modelling language
 - Found solution mapped back to a solution of the original problem instance

Various approaches based on *different modelling languages*

integer programming, linear programming, constraint programming, *Boolean satisfiability*
Boolean Satisfiability

- In general, SAT the question of whether a given *propositional logic formula is satisfiable*
- Typically SAT refers to CNF SAT
 - The satisfiability problem of propositional (Boolean) formulas in *conjunctive normal form*, CNF formulas
- Very simple, low-level modelling language

Constraint language that provides a highly efficient approach to solving various hard computational problems
Speaker Dress Code as SAT

- Variables: tie, shirt
- Three conditions / clauses:
 - clearly one should not wear a tie without a shirt
 \[\neg\text{tie} \lor \text{shirt} \]
 - not wearing a tie nor a shirt is impolite
 \[\text{tie} \lor \text{shirt} \]
 - wearing a tie and a shirt is overkill
 \[\neg(\text{tie} \land \text{shirt}) \equiv \neg\text{tie} \lor \neg\text{shirt} \]
- Is the formula
 \[(\neg\text{tie} \lor \text{shirt}) \land (\text{tie} \lor \text{shirt}) \land (\neg\text{tie} \lor \neg\text{shirt}) \]
satisfiable?
CNF Formulas: Syntax

- **Literal**: a Boolean variable x, or the *negation* $\neg x$ of x
 - $\neg x$ is the *negative literal* of x, x the positive literal

- **Clause**: $l_1 \lor \cdots \lor l_k$, where each l_i is a literal
 - \lor is called *disjunction*, i.e., logical OR
 - Short-hand: $\lor_{i=1}^{k} l_i$
 - k: *length* of the clause
 - $k = 1$: unit clause
 - $k = 2$: binary clause

- **CNF formula**: $C_1 \land \cdots \land C_m$, where each C_i is a clause
 - \land is called *conjunction*, i.e., logical AND
 - Short-hand: $\land_{i=1}^{m} C_m$
 - Often viewed as a set of clauses
A truth assignment τ maps Boolean variables to $\{0, 1\}$
- 0: false, 1: true

τ satisfies a literal l, $\tau(l) = 1$, iff
- l is a positive literal x and $\tau(x) = 1$, or
- l is a negative literal $\neg x$ and $\tau(x) = 0$

Satisfying a clause $C = l_1 \lor \cdots \lor l_k$:
$\tau(C) = 1$ iff $\tau(l_i) = 1$ for some $i = 1..k$.

Satisfying a CNF formula $F = C_1 \land \cdots \land C_m$:
$\tau(F) = 1$ iff $\tau(C_i) = 1$ for each $i = 1..m$.

The Boolean Satisfiability (SAT) problem

Input: A CNF formula F.

Question: Is F satisfiable?

Model of F: an assignment that satisfies F
Example: 3-Coloring as SAT

- INSTANCE: A graph \(G = (V, E) \).
- QUESTION: Is \(G \) 3-colorable?
- Encoding 3-COLORING as SAT:

Clauses for each node \(v \in V \):
\[
\begin{align*}
&v_r \lor v_g \lor v_b \\
&\neg v_r \lor \neg v_g \\
&\neg v_r \lor \neg v_b \\
&\neg v_g \lor \neg v_b
\end{align*}
\]

Clauses for each edge \((v, u) \in E \):
\[
\begin{align*}
&\neg v_r \lor \neg u_r \\
&\neg v_g \lor \neg u_g \\
&\neg v_b \lor \neg u_b
\end{align*}
\]

Polynomial-size encoding of the NP-complete 3-Coloring problem

- Given any graph \(G \):
 1. Generate the clauses
 2. Input to a SAT solver
- SAT solver answers
 - “No”: we have proven that \(G \) cannot be 3-colored
 - “Yes”: a coloring can be read from the satisfying truth assignment output by the solver.
Example: 3-Coloring as SAT

- INSTANCE: A graph $G = (V, E)$.
- QUESTION: Is G 3-colorable?
- Encoding 3-COLORING as SAT:

 Clauses for each node $v \in V$:
 \[
 v_r \lor v_g \lor v_b \\
 \neg v_r \lor \neg v_g \\
 \neg v_r \lor \neg v_b \\
 \neg v_g \lor \neg v_b
 \]

 Clauses for each edge $(v, u) \in E$:
 \[
 \neg v_r \lor \neg u_r \\
 \neg v_g \lor \neg u_g \\
 \neg v_b \lor \neg u_b
 \]

Polynomial-size encoding of the NP-complete 3-Coloring problem

- Given any graph G:
 1. Generate the clauses
 2. Input to a SAT solver

- SAT solver answers
 - “No”: we have proven that G cannot be 3-colored
 - “Yes”: a coloring can be read from the satisfying truth assignment output by the solver.
A central research area in theoretical computer science

- Cook-Levin Theorem
 - Polynomial-time reductions
- P vs NP
 - One of Clay Institute’s Millenium Problems
 - Resolution worth $1 Million
Hundreds of practical applications:

- **Hardware model checking, Automated Planning**

 Software model checking; Termination analysis of term-rewrite systems; Test pattern generation (testing of software & hardware); Model finding; Symbolic trajectory evaluation; Knowledge representation; Games (n-queens, sudoku, etc.); Haplotype inference; Pedigree checking; Equivalence checking; Delay computation; Fault diagnosis; Digital filter design; Noise analysis; Cryptanalysis; Inversion attacks on hash functions; Graph coloring; Traveling salesperson; van der Waerden numbers; itemset mining; etc. etc.

- **Polynomial-time reductions meet the real world!**
Hundreds of practical applications:

- **Hardware model checking, Automated Planning**

 Software model checking; Termination analysis of term-rewrite systems; Test pattern generation (testing of software & hardware); Model finding; Symbolic trajectory evaluation; Knowledge representation; Games (n-queens, sudoku, etc.); Haplotype inference; Pedigree checking; Equivalence checking; Delay computation; Fault diagnosis; Digital filter design; Noise analysis; Cryptanalysis; Inversion attacks on hash functions; Graph coloring; Traveling salesperson; van der Waerden numbers; itemset mining; etc. etc.

Polynomial-time reductions meet the real world!
SAT — a Success Story of CS

- Remarkable improvements since mid 90s in SAT solvers: practical decision procedures for SAT

From 100 variables, 200 constraints (early 90s) up to >10,000,000 vars. and 40,000,000 cls. in 20 years.

Beyond Satisfiability

SAT solvers provide highly efficient NP-solvers for tackling real-world search and optimization problems
SAT — a Success Story of CS

- Remarkable improvements since mid 90s in SAT solvers: practical decision procedures for SAT

From 100 variables, 200 constraints (early 90s) up to >10,000,000 vars. and 40,000,000 cls. in 20 years.

Beyond Satisfiability

SAT solvers provide highly efficient NP-solvers for tackling real-world search and optimization problems
Industrial Applications: Examples

SAT solvers a central in various types of software or hardware verification tasks in the industry
 ▶ Indirectly impacting our everyday lives

Examples:
 ▶ Intel core i7 processor designed with the help of SAT solvers [Kaivola et al, CAV 2009]
 ▶ Windows 7 device drivers verified using SAT related technology (Z3, SMT solver) [De Moura and Bjorner, IJCAR 2010]
 ▶ The Eclipse open platform uses SAT technology for resolving dependencies between components [Le Berre and Rapicault, IWOCE 2009]
SAT Solver Competitions

See http://satcompetition.org/

<table>
<thead>
<tr>
<th>SAT 2014 competition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizing committee</td>
</tr>
<tr>
<td>Judges</td>
</tr>
<tr>
<td>Proceedings</td>
</tr>
<tr>
<td>Benchmarks</td>
</tr>
<tr>
<td>Solvers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application</th>
<th>Gold</th>
<th>Silver</th>
<th>Bronze</th>
<th>Hard combinatorial</th>
<th>Gold</th>
<th>Silver</th>
<th>Bronze</th>
<th>Random</th>
<th>Gold</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT+UNSAT</td>
<td>Lingeling</td>
<td>SWDiA5BY</td>
<td>Riss BlackBox</td>
<td>glueSplit_clasp</td>
<td>Lingeling</td>
<td>SparrowToRiss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAT</td>
<td>minisat_blbd</td>
<td>Riss BlackBox</td>
<td>SWDiA5BY</td>
<td>SparrowToRiss</td>
<td>CCA+glucose</td>
<td>SGSeq</td>
<td>Dimetheus</td>
<td>BalancedZ</td>
<td>CSCCSat2014</td>
</tr>
<tr>
<td>Certified UNSAT</td>
<td>Lingeling (druplig)</td>
<td>glucose</td>
<td>SWDiA5BY</td>
<td>Riss BlackBox</td>
<td>Lingeling (druplig)</td>
<td>glucose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAT+UNSAT</td>
<td>Plingeling</td>
<td>PeneLoPe</td>
<td>Treengeling</td>
<td>Treengeling</td>
<td>Plingeling</td>
<td>pmcSAT 2.0</td>
<td>pprobSAT</td>
<td>Plingeling</td>
<td>CSCCSat2014</td>
</tr>
<tr>
<td>SAT</td>
<td>MiniSat HACK_999ED</td>
<td>minisat_blbd</td>
<td>ROKKminisat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core solvers

Core solvers, Parallel

Minisat hack
Improvements in SAT Solvers

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

CPU Time (in seconds) vs. Number of problems solved

- Limmat (2002)
- Zchaff (2002)
- Berkmin (2002)
- Forklift (2003)
- Siege (2003)
- SatELite (2005)
- Minisat 2 (2006)
- Picosat (2007)
- Rsat (2007)
- Minisat 2.1 (2008)
- Precosat (2009)
- Glucose (2009)
- Clasp (2009)
- Cryptominisat (2010)
- Lingeling (2010)
- Minisat 2.2 (2010)
- Glucose 2 (2011)
- Glueminisat (2011)
- Contrasat (2011)
Modern SAT Solvers

- Black-box, no command line parameters necessary
- Input: CNF formula, in the standard DIMACS CNF file format
- Output:
 - “UNSATISFIABLE” (+ proof), or
 - “SATISFIABLE” + solution → complete solvers

Freely available open-source implementations

- Minisat
 - http://minisat.se/
- Lingeling
 - http://fmv.jku.at/lingeling/
- Glucose
 - http://www.labri.fr/perso/lsimon/glucose/
- ...

- Implement variants of the CDCL algorithm
Preprocessing, Inprocessing, and Search: Example

Instance: aaai10-planning-ipc5-TPP-21-step11.cnf

c Lingeling SAT Solver
c Copyright (C) 2010-2014 Armin Biere JKU Linz Austria.
c read 99736 variables, 783991 clauses, 1708562 literals in 0.00 seconds
...
s UNSATISFIABLE
...
c 2.344 1% preprocessing 2%
c 140.829 30% inprocessing 98%
c ============
c 143.173 31% simplifying
c 320.824 69% search
c ============
c 464.001 100% all
c 4456232 decisions, 9603.9 decisions/sec
c 1181243 conflicts, 2545.8 conflicts/sec
c 2443039996 propagations, 5.3 megaprops/sec
c 464.0 seconds, 42.1 MB
Categorizing SAT Instances

- Random k-SAT instances:
 - Fixed clause-length k
 - Clauses generated uniformly at random
- Real-world (application) instances
 - (Some examples already discussed)
- “Crafted” instances
 - “In-between” application instances and random instances
 - Often non-random instances which are hard to solve

No clear categorization

Consider the following examples:
- Graph coloring of randomly generated graphs
- Cryptanalysis

Our focus on this course will be on real-world SAT
Categorizing SAT Instances

- Random k-SAT instances:
 - Fixed clause-length k
 - Clauses generated uniformly at random
- Real-world (application) instances
 - (Some examples already discussed)
- "Crafted" instances
 - "In-between" application instances and random instances
 - Often non-random instances which are hard to solve

No clear categorization

Consider the following examples:

- Graph coloring of randomly generated graphs
- Cryptanalysis

Our focus on this course will be on real-world SAT
Categorizing SAT Instances

- Random k-SAT instances:
 - Fixed clause-length k
 - Clauses generated uniformly at random

- Real-world (application) instances
 - (Some examples already discussed)

- “Crafted” instances
 - “In-between” application instances and random instances
 - Often non-random instances which are hard to solve

No clear categorization

Consider the following examples:

- Graph coloring of randomly generated graphs
- Cryptanalysis

Our focus on this course will be on real-world SAT
Categorizing SAT Solvers

Complete
- Given enough time, will give correct answer (UNSAT or SAT)
- Modern SAT solvers: DPLL, CDCL
- Best for:
 - proving unsatisfiability
 - real-world applications

Incomplete
- Modern SAT solvers: stochastic local search
- Heuristically walk around the space of truth assignments
- Unable to determine unsatisfiability
- Best for:
 - Random SAT

\[x^3 = 0 \]
\[x^8 = 0 \]
\[x^3 = 1 \]
\[x^8 = 1 \]
\[x^{56} = 0 \]
\[x^{56} = 1 \]
\[x^5 = 1 \]

\[2^n \] possible solutions

Solution found!

\[n \text{ variables} \]
Course Outline

Lecture 1: Motivation and Basic Concepts
Lecture 2: The DPLL search procedure and Resolution
 - SAT solvers and proof systems
Lecture 3: Conflict-driven clause learning (CDCL)
 - The most important SAT solving algorithm
Lecture 4: Preprocessing
 - Most important SAT preprocessing techniques
 - Interleaving CDCL search and additional reasoning
Lecture 5: Modelling and Encoding
 - How to represent (encode, model) problems in SAT
Course Outline

Lectures 6–9: Incremental SAT solving.
- How to use SAT-solvers incrementally for developing complex search procedures
 - Lectures 6–7: Extracting minimal unsatisfiable cores
 - Analysing sources of inconsistency
 - Lectures 7–8: Maximum Satisfiability
 - SAT-based Boolean optimization
 - Modern MaxSAT algorithms
 - Lecture 9: Counterexample guided abstraction refinement (CEGAR)
 - Going beyond NP
 - Solving satisfiability of quantified Boolean formulas (QBFs)
Basic Concepts
Propositional Logic

The alphabet of propositional logic:

- Propositional (Boolean) variables x, y, z, \ldots
- Parentheses (,)
- Logical connectives (basic Boolean functions)
 - \neg: negation (NOT)
 - \land: conjunction (AND)
 - \lor: disjunction (OR)
 - \rightarrow: implication (IF-THEN)
 - \leftrightarrow: equivalence (IF AND ONLY IF)
 - \oplus: exclusive-or (XOR)
 - \ldots
Connectives

Typical ones:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>\top</th>
<th>\bot</th>
<th>$\neg x$</th>
<th>$x \land y$</th>
<th>$x \lor y$</th>
<th>$x \rightarrow y$</th>
<th>$x \leftrightarrow y$</th>
<th>$x \oplus y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Overall, there are 16 different binary connectives.
Connectives

Different notations:

<table>
<thead>
<tr>
<th>operator</th>
<th>“standard”</th>
<th>“alternative”</th>
<th>C/C++/Java/...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>⊤</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>negation</td>
<td>¬x</td>
<td>¯x</td>
<td>!x</td>
</tr>
<tr>
<td>conjunction</td>
<td>x ∧ y</td>
<td>x · y</td>
<td>x && y</td>
</tr>
<tr>
<td>disjunction</td>
<td>x ∨ y</td>
<td>x + y</td>
<td>x</td>
</tr>
<tr>
<td>equivalence</td>
<td>x ↔ y</td>
<td>x = y</td>
<td>x == y</td>
</tr>
</tbody>
</table>
Propositional variables are propositional formulas

If ϕ and ψ are propositional formulas, then

$\neg \phi$,

$(\phi \land \psi)$,

$(\phi \lor \psi)$,

(... and the other connectives...)

are propositional formulas

There are no other propositional formulas
Precedence Rules

How strongly connective bind variables — when to use parenthesis?

Standard:

1. \(\neg \) is stronger than \(\lor \) and \(\land \)
2. \(\lor \) and \(\land \) are stronger than \(\rightarrow \) and \(\leftrightarrow \)

Examples

- \(((\neg x) \lor y) \lor (\neg z)) \) can be written as \(\neg x \lor y \lor \neg z \)
- \(\neg x \lor y \land z \) not ok — either \((\neg x \lor y) \land z \) or \(\neg x \lor (y \land z) \)

When in doubt, use parentheses!
Syntax Trees

Example: \((((x \lor y) \lor \neg z)) \leftrightarrow (\neg x \to (\neg y \to z))\)

Subformulas

The set of propositional formulas rooted at the different nodes in the tree form the set of subformulas of the formula.

Example: \((((x \lor y) \lor \neg z)) \leftrightarrow (\neg x \to (\neg y \to z)), (x \lor y) \lor \neg z), \neg x \to (\neg y \to z), (y \lor \neg z, \neg y \to z, \neg x, \neg y, \neg z, x, y, z\)
Syntax Trees

Example: \(((x \lor y) \lor \neg z)\) \iff (\neg x \rightarrow (\neg y \rightarrow z))

Subformulas

The set of propositional formulas rooted at the different nodes in the tree form the set of *subformulas* of the formula.

Example: \(((x \lor y) \lor \neg z)\) \iff (\neg x \rightarrow (\neg y \rightarrow z)), (x \lor y) \lor \neg z), \neg x \rightarrow (\neg y \rightarrow z), (y \lor \neg z), \neg y \rightarrow z, \neg x, \neg y, \neg z, x, y, z
Propositional Logic: Semantics

- A truth assignment \(\tau : X \rightarrow \{0, 1\} \) assigns truth values to each Boolean variable in a variable set \(X \).
- Semantics of propositional logic is defined recursively:
 - \(\tau(\top) = 1 \)
 - \(\tau(\bot) = 0 \)
 - For propositional formulas \(\phi \) and \(\psi \):
 - \(\tau(\neg \phi) = 1 \) iff \(\tau(\phi) = 0 \).
 - \(\tau(\phi \lor \psi) = 1 \) iff \(\tau(\phi) = 1 \) or \(\tau(\psi) = 1 \).
 - \(\tau(\phi \land \psi) = 1 \) iff \(\tau(\phi) = 1 \) and \(\tau(\psi) = 1 \).
Syntactic Sugar

Semantics for additional connectives:

- For example, the connectives \neg and \land sufficient
- However, other connectives are convenient:
 - $\phi \lor \varphi$ is equivalent to $\neg(\neg\phi \land \neg\varphi)$
 - $\phi \rightarrow \varphi$ is equivalent to $\neg\phi \lor \varphi$
 - $\phi \leftrightarrow \varphi$ is equivalent to $(\phi \rightarrow \varphi) \land (\varphi \rightarrow \phi)$
 - $\phi \oplus \varphi$ is equivalent to $\neg(\phi \leftrightarrow \varphi)$
 - ...

SAT (Lecture 1)

Spring 2016
Properties of Propositional Formulas

- **Satisfiability:**
 - $\tau(\phi) = 1$: truth assignment τ satisfies formula ϕ
 - Formula ϕ is satisfiable if there is a truth assignment τ that satisfies it

- **Unsatisfiability:**
 - ϕ is unsatisfiable if there is no truth assignment that satisfies it

- **Validity:** $\models \phi$
 - ϕ is valid if every truth assignment over the variables in ϕ satisfy ϕ
 - ϕ is a tautology

- **Logical equivalence:**
 - Two propositional formulas ϕ and φ are *logically equivalent* iff they are satisfied by the same set of truth assignments

- **Entailment:** $\phi \models \varphi$
 - φ is *logically entailed* by ϕ iff any truth assignment that satisfies ϕ also satisfies φ.

- **Equisatisfiability:**
 - ϕ and φ are equisatisfiable if both are either satisfiable or unsatisfiable.
Properties of Propositional Formulas

- ϕ is valid iff $\neg \phi$ is unsatisfiable
- ϕ is satisfiable iff $\neg \phi$ is not valid
- ϕ and ψ are equivalent iff
 - $\phi \leftrightarrow \psi$ is valid; or, equivalently
 - $\phi \oplus \psi$ is unsatisfiable.
- ϕ is satisfiable if $\phi \leftrightarrow \bot$ is not valid.
- ...
CNF: Conjunctive normal form

Every propositional formula can be represented as a logically equivalent propositional formula in CNF

- De facto input format for SAT solvers

Essential: every propositional formula can be compactly represented as a logically equivalent CNF formulas

However:
- “Brute-force” CNF translation of propositional formulas can result in exponential blow-up in the formula size
 - Using e.g. de Morgan’s law
 - Without introducing auxiliary variables
Standard “Tseitin” CNF Encoding for Propositional Formulas

- By introducing auxiliary variables, any propositional formula ϕ can be translated into a logically equivalent linear-size CNF in linear-time
 - Often referred to as the standard or Tseitin encoding

Standard linear-size CNF encoding

Given a propositional formula ϕ:

1. For each subformula that is not a literal:
 - Take an auxiliary variable $x_{\phi'}$ for each subformula ϕ' of ϕ
 - Write $x_{\phi'} \leftrightarrow \phi'$ as clauses
 - Clauses for $x_{\phi'} \rightarrow \phi'$ and $\phi' \rightarrow x_{\phi'}$

2. Add unit clause (x_{ϕ}) to enforce that the formula should be satisfied
Standard CNF Encoding: Example

\[\phi : \ a \lor (b \land \neg c) \]

Syntax tree of \(\phi \):

- \(\lor \)
 - \(a \)
 - \(\land \)
 - \(b \)
 - \(\neg c \)

CNF Encoding:

1. \(x_\phi \leftrightarrow a \lor x_{b \land \neg c} \)
2. \(x_{b \land \neg c} \leftrightarrow b \land \neg c \)
3. \((x_\phi) \)
Standard CNF Encoding: Example

\[\phi : a \lor (b \land \neg c) \]

Syntax tree of \(\phi \):

\[
\begin{array}{c}
\lor \\
a \\
\land \\
b \quad \neg c
\end{array}
\]

CNF Encoding:

1. \(x_\phi \leftrightarrow a \lor x_{b \land \neg c} \)
2. \(x_{b \land \neg c} \leftrightarrow b \land \neg c \)
3. \((x_\phi) \)
Standard CNF Encoding: Example

\[\phi : a \lor (b \land \neg c) \]

Syntax tree of \(\phi \):

- \(x_\phi \)
- \(a \)
- \(b \land \neg c \)
- \(b \land \neg c \)

CNF Encoding:

1. \(x_\phi \leftrightarrow a \lor x_{b \land \neg c} \)
2. \(x_{b \land \neg c} \leftrightarrow b \land \neg c \)
3. \((x_\phi) \)
Standard CNF Encoding: Example

\[\phi: \quad a \lor (b \land \neg c) \]

Syntax tree of \(\phi \):

\begin{align*}
\lor \quad & x_{\phi} \\
\land \quad & x_{b \land \neg c} \\
\quad & \\
\land \quad & b \\
\quad & \\
\neg \quad & c
\end{align*}

CNF Encoding:

1. \[x_{\phi} \leftrightarrow a \lor x_{b \land \neg c} \]
2. \[x_{b \land \neg c} \leftrightarrow b \land \neg c \]
3. \((x_{\phi}) \)
Standard CNF Encoding: Example

\(\phi : a \lor (b \land \neg c) \)

Syntax tree of \(\phi \):

CNF Encoding:

1. \(x_\phi \iff a \lor x_{b \land \neg c} \)

2. \(x_{b \land \neg c} \iff b \land \neg c \)

3. \((x_\phi) \)
Standard CNF Encoding: Example

\[\phi : \quad a \lor (b \land \neg c) \]

Syntax tree of \(\phi \):

CNF Encoding:

1. \(x_\phi \leftrightarrow a \lor x_{b \land \neg c} \)
2. \(x_{b \land \neg c} \leftrightarrow b \land \neg c \)
3. \((x_\phi) \)
Standard CNF Encoding: Example

\[\phi : (a \lor (b \land \neg c)) \]

Syntax tree of \(\phi \):

- **CNF Encoding:**
 1. \(x_\phi \leftrightarrow a \lor x_{b \land \neg c} \)
 2. \(x_{b \land \neg c} \leftrightarrow b \land \neg c \)
 3. \((x_\phi) \)
Standard CNF Encoding: Example

\(\phi : \ a \vee (b \wedge \neg c) \)

Syntax tree of \(\phi \):

CNF Encoding:

1. \(x_\phi \leftrightarrow a \vee x_{b \wedge \neg c} \)
 \(\sim (x_\phi \rightarrow a \vee x_{b \wedge \neg c}) \land (a \vee x_{b \wedge \neg c} \rightarrow x_\phi) \)

2. \(x_{b \wedge \neg c} \leftrightarrow b \wedge \neg c \)

3. \((x_\phi)\)
Standard CNF Encoding: Example

\[\phi : \overbrace{a \lor (b \land \neg c)}^{x_\phi} \land x_{b \land \neg c} \]

Syntax tree of \(\phi \):

<table>
<thead>
<tr>
<th>CNF Encoding:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (x_\phi \iff a \lor x_{b \land \neg c})</td>
</tr>
<tr>
<td>(\sim \quad (x_\phi \rightarrow a \lor x_{b \land \neg c}) \land (a \lor x_{b \land \neg c} \rightarrow x_\phi))</td>
</tr>
<tr>
<td>(\sim \quad (\neg x_\phi \lor a \lor x_{b \land \neg c}) \land (\neg a \lor x_\phi) \land (\neg x_{b \land \neg c} \lor x_\phi)) in CNF</td>
</tr>
<tr>
<td>2 (x_{b \land \neg c} \iff b \land \neg c)</td>
</tr>
<tr>
<td>3 ((x_\phi))</td>
</tr>
</tbody>
</table>
Standard CNF Encoding: Example

\[\phi : \quad \left\{ \begin{array}{l} \quad a \vee (b \land \neg c) \\ \quad x_b \land \neg c \end{array} \right. \]

Syntax tree of \(\phi \):

CNF Encoding:

1. \(x_\phi \iff a \lor x_b \land \neg c \)
 \[\sim (x_\phi \to a \lor x_b \land \neg c) \land (a \lor x_b \land \neg c \to x_\phi) \]
 \[\sim (\neg x_\phi \lor a \lor x_b \land \neg c) \land (\neg a \lor x_\phi) \land (\neg x_b \land \neg c \lor x_\phi) \quad \text{in CNF} \]

2. \(x_b \land \neg c \iff b \land \neg c \)
 \[\sim (x_b \land \neg c \to b \land \neg c) \land (b \land \neg c \to x_b \land \neg c) \]

3. \((x_\phi) \)
Standard CNF Encoding: Example

\[\varphi : a \lor (b \land \neg c) \]

Syntax tree of \(\varphi \):

\[
\begin{array}{c}
\lor \\
x_\varphi \\
\land \\
a \\
b \\
\neg c
\end{array}
\]

CNF Encoding:

1. \[x_\varphi \leftrightarrow a \lor x_{b \land \neg c} \]
 \[\sim \rightarrow \left(x_\varphi \rightarrow a \lor x_{b \land \neg c} \right) \land \left(a \lor x_{b \land \neg c} \rightarrow x_\varphi \right) \]
 \[\sim \rightarrow \left(\neg x_\varphi \lor a \lor x_{b \land \neg c} \right) \land \left(\neg a \lor x_\varphi \right) \land \left(\neg x_{b \land \neg c} \lor x_\varphi \right) \text{ in CNF} \]

2. \[x_{b \land \neg c} \leftrightarrow b \land \neg c \]
 \[\sim \rightarrow \left(x_{b \land \neg c} \rightarrow b \land \neg c \right) \land \left(b \land \neg c \rightarrow x_{b \land \neg c} \right) \]
 \[\sim \rightarrow \left(\neg x_{b \land \neg c} \lor b \right) \land \left(\neg x_{b \land \neg c} \lor \neg c \right) \land \left(\neg b \lor c \lor x_{b \land \neg c} \right) \text{ in CNF} \]

3. \[(x_\varphi) \]
Summary

Take-home message
- SAT is a major research field, both theoretical and applied aspects
- SAT solvers are generic NP-solvers with

Study goals
- Propositional logic: syntax, semantics, properties
- CNF: conjunctive normal form
 - Standard DIMACS input format of SAT solvers
 - Standard “Tseitin” encoding: linear-size CNF representation of propositional formulas

Next time
- Refresher on computational complexity: NP, reductions
- The classical DPLL SAT solving algorithm
- Lookahead solvers
- SAT solvers and Resolution proofs systems