Lecture 2: Complete algorithms and proof systems for SAT: DPLL and lookahead. Resolution proof systems.
Jan 21, 2016
On This Lecture

- Background (continued from first lecture): Refresher on computational complexity / NP
- The DPLL SAT solving algorithm
- Propositional proof systems
 - Resolution and its refinements
 - Resolution and SAT solvers
Refresher on Computational Complexity
A computation problem consists of
- an *instance* of the problem (the input instance)
- a *question* applicable to any instance of the problem

- *Decision problems*:
 - the question has a yes/no answer for any instance of the problem.
 - An algorithm that can provide the correct answer to any instance of a decision problem B is called a *decision procedure* for B.
 - Such an algorithm is said to *decide* B.

Fundamentally, only problems with *an infinite number of instances* are interesting (Why?)
Decision Problems: Examples

k-Coloring

INSTANCE: A graph $G = (V, E)$ and a positive integer k.
QUESTION: Is G k-colorable?

SAT

INSTANCE: A propositional formula F in conjunctive normal form (CNF).
QUESTION: Is F satisfiable?
Other Types of Computational Problems

Instance I of a search / optimization / counting / enumeration problem.

Search problems
Find a *solution* to I:
- a witness for the “yes” answer of the decision problem.
- answer “no” if there is no solution.

Also known as *function problems*.

Optimization problems
Find a *best solution* to I,
minimizing or maximizing some *cost function* over all solutions.

Counting problems
Count the number of solutions to I.

Enumeration problems
List all solutions to I.
Types of Computational Problems related to SAT

Given a CNF formula F:

- **Search:**
 Find a *satisfying assignment* to F, or prove that none exist.

- **Optimization:**
 Find assignment that satisfies the maximum number of clauses in F.
 (MaxSAT)

- **Counting:**
 Count the number of satisfying assignments to F.

- **Enumeration:**
 List all satisfying assignments to F.

SAT solvers (solving the search problem) form a basis for procedures for optimization, counting, and enumeration.
Some Problems are Easy, Some are Hard

Problem P is *computationally easy*:

There is a polynomial time algorithm for P (i.e., an algorithm whose running time is *polynomially-bounded* w.r.t. the input instance size.

Problem P is (seems) *computationally hard*:

No polynomial-time algorithm is known.

⇒ For any known algorithm A:
there is an infinite number of instances of increasing size on which the running time of A increases *super-polynomially* w.r.t. instance size.
Categorization of problems into *problem classes*

The most famous and often practically most relevant distinction is between the problem classes \mathbf{P} and \mathbf{NP}

- \mathbf{P} contains all decision problems for which there are *polynomial-time algorithms*.
- \mathbf{NP} contains decision problems for which there are *small (polynomial-size) certificates*, i.e., any possible solution candidate can be checked in polynomial time.

Example

$\text{SAT} \in \mathbf{NP}$.

$2\text{-SAT} \in \mathbf{P}$.
Special Cases of Hard Problems

Special cases of hard problems can be easy.

Example

- In the k-SAT problem, each clause of the input instance (CNF formula) contains at most k variables.
- There is a known $O(n^2)$ algorithm for 2-SAT, where n denotes the number of variables in the input instance. [See tutorial 1!]
- There is no known polynomial-time algorithm for k-SAT for any $k > 2$.
P vs NP

P
The class of problems decided by \textit{deterministic polynomial-time Turing machines}.

NP
The class of problems decided by \textit{non-deterministic polynomial-time Turing machines}.

- The “\(P = \text{NP}\)” question is still unresolved.
 - If the verification of a solution is easy, finding a solution may still not be easy.
- \textbf{NP} contains a vast number of hard decision problems that have a lot of practical relevance.
- Counting problems are often even harder.
P, NP, and Beyond

- There are infinitely many problems which may be harder than \textbf{NP} — \textit{polynomial hierarchy}
- $L \subseteq P \subseteq \textbf{NP} \subseteq \textbf{NP}^\text{NP} \subseteq \cdots \subseteq \text{PSPACE}$

On this course the main focus is on SAT and SAT-based \textit{practical approaches} to solving problems in \textbf{NP} (and beyond).
NP v coNP

Problems in NP
short certificates (solutions) that are easy to verify
- SAT: the language of satisfiable CNF formulas

Problems in coNP
short counterexamples that are easy to verify
- UNSAT: the language of unsatisfiable CNF formulas

Practical Perspective
SAT solvers can provide
- Solutions to instances of problems in NP
- Counterexamples to instances of problems in coNP
- ... and: proofs of unsatisfiability (not necessary short)
→ SAT solvers as a basis for counterexample-guided abstraction refinement procedures for problems beyond NP
The relationship between two decision problems A and B can be studied via reductions.

- **B reduces to A:**
 There is a transformation (reduction) R which, given any instance x of B, produces an input instance $R(x)$ of A for which the following holds: $R(x)$ is a "yes"-instance of A if and only if x is a "yes"-instance of B.

- Typically reductions are required to be computable in polynomial time.
Example: Reducing 3-Coloring to SAT

Recall \(k \)-coloring for \(k = 3 \):

INSTANCE: A graph \(G = (V, E) \).

QUESTION: Is \(G \) 3-colorable?

A reduction from 3-COLORING to (3-)SAT:

Clauses for each node \(v \in V \):

\[
\begin{align*}
& v_r \lor v_g \lor v_b \\
& \neg v_r \lor \neg v_g \\
& \neg v_r \lor \neg v_b \\
& \neg v_g \lor \neg v_b
\end{align*}
\]

Clauses for each edge \((v, u) \in E \):

\[
\begin{align*}
& \neg v_r \lor \neg u_r \\
& \neg v_g \lor \neg u_g \\
& \neg v_b \lor \neg u_b
\end{align*}
\]

Has the properties of a reduction:

(i) Can be computed efficiently.

(ii) For any 3-COLORING instance, produces a SAT instance \(\text{SAT} \): the graph is 3-colorable if and only if the produced CNF formula is satisfiable.
Reductions in Practice

Reductions are useful in (at least) two ways:

- A reduction R from B to A implies that A is computationally at least as hard as B.

 For example, any decision problem in \textbf{NP} can be reduced to SAT.

- An algorithm for B can be build from R and an algorithm for A.

In practice

- Reductions are often called encodings.

- The goal is to develop encodings such that $R(x)$ is linear, or close to linear, in the size of x for any syntactically valid input x.
Complete algorithms for SAT: DPLL
Categorizing SAT Solvers

- **Complete**
 - Given enough time, will give correct answer (UNSAT or SAT)
 - Modern SAT solvers: DPLL, CDCL
 - Best for:
 - proving unsatisfiability
 - real-world applications

- **Incomplete**
 - Modern SAT solvers: stochastic local search
 - Heuristically walk around the space of truth assignments
 - Unable to determine unsatisfiability
 - Best for:
 - Random SAT
DPLL: Depth-First Search for Satisfiability

Davis–Putnam–Logemann–Loveland Procedure [DP’60, DLL’62]
- Classical complete search algorithm for SAT
- Nowadays often dominated by *conflict-driven clause learning* (CDCL) solvers in real-world problem domains
- Still competitive at times on certain types of hard problems

DPLL
- Backtracking depth-first search
 - **Branch** by assigning $x = 0$ and $x = 1$ for a currently unassigned variable
 - **Unit propagation**: central pruning technique in SAT solvers
 - **Backtrack** if there is a clause with all literals assigned to 0 (*conflict*)
- Unit propagation applied after every branching step
- Backtracking: undo last branching step
Unit Propagation

One unit propagation step

Each literal \(l_i \) in a clause \((l \lor l_1 \lor \cdots l_k)\) assigned to 0.
\[\Rightarrow \text{Assign } l \text{ to } 1. \]

Resulting formula: \(F[l = 1] \).

Alternative view

Unit propagating a unit clause \((l)\) over a CNF formula \(F \):
- Remove each clause with \(l \) from \(F \).
- Remove \(\neg l \) from each clause in \(F \).

Resulting formula: \(F[l = 1] \).

Unit propagation: Fixed-point computation

- Successful unit propagation steps produce new assignments / units
- Iterate until no new units are produced
DPLL Pseudocode

\[
\text{DPLL}(F) = \\
F \leftarrow \text{UnitPropagation}(F) \\
\text{if } (F = \emptyset) \text{ return } "\text{satisfiable}" \\
\text{if } (\emptyset \in F) \text{ return } "\text{unsatisfiable}" \\
x \leftarrow \text{ChooseVariable}(F) \\
\epsilon \leftarrow \text{ChooseValue}(F, x) \\
\text{if } (\text{DPLL}(F[x = \epsilon]) = "\text{satisfiable}" \text{) return } "\text{satisfiable}" \\
\text{if } (\text{DPLL}(F[x = 1 - \epsilon]) = "\text{satisfiable}" \text{) return } "\text{satisfiable}" \\
\text{return } "\text{unsatisfiable}" \\
\]

Can also produce a satisfying assignment
DPLL: Example

Unsatisfiable CNF formula F:
$$(x_1 \lor x_2) \land (x_4 \lor \neg x_2) \land (x_5 \lor \neg x_4) \land (x_3 \lor \neg x_4) \land (\neg x_5 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_6) \land (\neg x_6)$$

DPLL search tree (proof) for F
DPLL Branching Heuristics

How to

- ... choose the next variable \(x \) to branch on?
- ... choose which value to assign first?

Classical heuristics

Based on counting variable occurrences in clauses. Intrinsically greedy

- Bohm
- MOMS
 - Branch on variable that has the maximum number of occurrences in clauses of minimum size
- Jeroslaw-Wang
 - Counting literal occurrences, inverse exponential weighting
 - Two-sided: both literals of variable, choose which branch to search first based the counts
Further Propagation/Inference Mechanisms

Pure literal elimination:
If a variable x occurs only positively (x) or only negatively ($\neg x$) in the formula:
Assign x according to the polarity ($x = 1$ or $x = 0$).

Failed literal elimination:
If assigning $x = 0$ (or $x = 1$) results in a conflict after unit propagation:
Assign $x = 1$ (or $x = 0$).
Lookahead

Lookahead on variable \(x \)
1. Assign \(x = 0 \) (or \(x = 1 \)).
2. Unit propagate.
3. Evaluate the effects \(\Delta(F, x = 0) \) (or \(\Delta(F, x = 1) \)) of 1) and 2).

Lookahead-based branching heuristics for DPLL
1. Lookahead on the variables in the formula.
2. Choose “a best” variable to branch on based on the effects of looking ahead.
Lookahead: Practical Considerations

A concrete heuristic

- Let $\Delta(F, x = \epsilon) =$ the number of additional variable assignment by unit propagation after assigning $x = \epsilon \in \{0, 1\}$.
- Branch on a variable in $\arg \max_x \Delta(F, x = 0) \cdot \Delta(F, x = 1)$.

Pitfalls of looking ahead

- With millions of variables, too costly to perform on all variables
 - Possible solution: restrict lookahead to a subset of “promising” variables
- Implementation requires care
 - Tree-based lookahead in the March lookahead solver
 [HeuleJB CPAIOR’14]
 - Can at the same time detect
 - Failed literals
 - Equivalent literals
 - …
Propositional Proof Systems: Resolution
Resolution

Classical complete proof system for SAT

The Resolution rule

\[
\frac{(x \lor C) \land (\neg x \lor D)}{(C \lor D)}
\]

- \(C \lor D\) is the resolvent of \(x \lor C\) and \(\neg x \lor D\), obtained by resolving on
 \(x\).

- Resolution derivation of a clause \(C\) from a CNF formula \(F\):
 Sequence of clauses \(\pi = (C_1, C_2, \ldots, C_k = C)\) such that for each \(C_i\), either
 - \(C_i \in F\), i.e., \(C_i\) is an original clause in \(F\); or
 - \(C_i\) is a resolvent of two clauses \(C_j, C_{j'}\) with \(j, j' < i\) in \(\pi\).

- Resolution refutation (i.e., proof for the unsatisfiability) of a CNF formula \(F\): Derivation of the empty clause \(\emptyset\) from \(F\).
Resolution Proof DAGs

Any resolution derivation $\pi = (C_1, C_2, \ldots, C_k)$ can be represented as a directed acyclic graph (DAG):

- Each C_i in π is represented as a unique node.
- C_i is a resolvent of two clauses C_j, C_j' with $j, j' < i$ in π: directed edges (C_j, C_i) and $(C_{j'}, C_i)$

Note:

- Each $C_i \in F$ is a source node
- The empty clause \emptyset is the unique sink node.
Resolution Proofs: Example

Unsatisfiable CNF formula F:

$$(x_1 \lor x_2) \land (x_4 \lor \neg x_2) \land (\neg x_5 \lor \neg x_4) \land (x_3 \lor \neg x_4) \land (x_5 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_6) \land (\neg x_6)$$

Resolution proof for F:

```
\text{Resolution Proofs: Example}

Unsatisfiable CNF formula $F$:

$$(x_1 \lor x_2) \land (x_4 \lor \neg x_2) \land (\neg x_5 \lor \neg x_4) \land (x_3 \lor \neg x_4) \land (x_5 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_6) \land (\neg x_6)$$

Resolution proof for $F$

```

![Resolution Proof Diagram]

\[\text{Resolution Proofs: Example} \]

Unsatisfiable CNF formula F:

$$(x_1 \lor x_2) \land (x_4 \lor \neg x_2) \land (\neg x_5 \lor \neg x_4) \land (x_3 \lor \neg x_4) \land (x_5 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_6) \land (\neg x_6)$$

Resolution proof for F:

```
\text{Resolution Proofs: Example}

Unsatisfiable CNF formula $F$:

$$(x_1 \lor x_2) \land (x_4 \lor \neg x_2) \land (\neg x_5 \lor \neg x_4) \land (x_3 \lor \neg x_4) \land (x_5 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_6) \land (\neg x_6)$$

Resolution proof for $F$

```

![Resolution Proof Diagram]
Soundness and Completeness

Important properties of proof systems

- Practical perspective: all generated proofs (and satisfying truth assignments) are correct

Completeness: A propositional proof system is *complete* if any unsatisfiable CNF formula can be refuted in the system.

Soundness: A proof system is *sound* if any CNF formula, that can refuted in the system, is unsatisfiable.

Resolution is sound and complete
Resolution Refinements

Various *refinements* of Resolution have been proposed and studied.

- Refinements are defined via imposing restrictions on (eg) the structure of available proofs.

Some important sound and complete refinements:

- **Treelike Resolution:**
 Resolution proof DAGs that are trees.
 - Resolvents must be re-derived each time they are used as antecedents.
Resolution Refinements

Some important sound and complete refinements:

- **Regular Resolution:**
 Proof DAGs in which each variable is resolved on at most ones on each path in the DAG.

- **Linear Resolution:**
 Resolution proof DAGs that are linear.
 - Every clause C_i in the proof has to be derived from C_{i-1} and some other clause C_j, $j < i - 1$.

- **Ordered Resolution / DP Resolution:**
 Eliminate variables by producing all possible resolvents obtained by resolving on a variable
 - Davis-Putnam Resolution [DP’60]
Complexity Measures

Assume a Resolution proof $\pi = (C_1, C_2, \ldots, C_k = \emptyset)$.

Length: length of π is k.
The most studied measure.

Width: the width of π is
$$\max_{i=1..k} |C_i|,$$
i.e., the length of a longest clause in π.

Space: maximum number of clauses needed in memory while verifying the correctness of a proof.
Resolution Refinements and SAT Solvers

Although partially coincidental:
Proofs available for Resolution refinements and proofs produced by SAT solvers have tight connections.

- Proofs produced by DPLL essentially coincide with Treelike Resolution proofs.
- Proofs produced by CDCL SAT solvers are tightly (polynomially) related with (unrestricted) Resolution proofs.
- Clauses produced by the clause learning mechanism of CDCL solvers can be derived with “Trivial” Resolution

These connections can be formalized via the concept of polynomial simulation.
Comparing Proof Systems: Simulation

Polynomial simulation

Showing that proof system P polynomially simulates proof system P'

Show that, given any CNF formula F, there is a P proof p for F such that p has polynomial length wrt the length of the shortest P' proofs for F.

P and P' are polynomially equivalent if they polynomially simulate each other.

Practical perspective: assuming optimal search heuristics
Comparing Proof Systems: Separation

Superpolynomial/Exponential Separation

Showing that proof system P does not polynomially simulate P'

Show that there is an infinite family $\{F_n\}_n$ of CNF formulas such that for any i, there is no P proof for F_i of polynomial length wrt the length of the shortest P' proofs for F_i.

P is superpolynomially stronger than P' if

- P polynomially simulates P'; and
- P' does not polynomially simulate P.

- Practical perspective: assuming optimal search heuristics
Relative Power of Resolution Refinements

$P \rightarrow P'$: P is stronger than P'.

On the relative power of Resolution refinements

Resolution \rightarrow Regular \rightarrow Treelike
Resolution and SAT Solvers
Resolution and SAT Solvers

\[P \rightarrow P': \] \quad P \text{ is stronger than } P'.
\[P \approx P': \] \quad P \text{ and } P' \text{ are polynomially equivalent.}

Res. \approx \text{CDCL}^* \quad \rightarrow \quad \text{Regular Res.} \quad \rightarrow \quad \text{DPLL} \approx \text{Treelike Res.}

CDCL*: CDCL with relatively realistic assumptions

Next lecture focuses on CDCL — more details then
Treelike Resolution and DPLL are Polynomially Equivalent

Idea, from DPPL to Treelike Resolution:

- View unit propagation steps as branching steps
 - “other” branch with give a direct conflict with a unit clause
- Search tree root: empty formula \emptyset
- For every branch in the tree:
 - assignment in branch falsifies an original clause
 - attach such a clause in the leaf

Whiteboard example, for unsatisfiable CNF formula F:

$$(x_1 \lor x_2) \land (x_4 \lor \neg x_2) \land (x_5 \lor \neg x_4) \land (x_3 \lor \neg x_4) \land (\neg x_5 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_6) \land (\neg x_6)$$

$x_6 = 0$

$x_1 = 0, x_2 = 1, x_4 = 1, x_5 = 1, x_3 = 1$
Resolution and CDCL

- Due to CDCL SAT solvers being more complex than DPLL, arguing about the power of CDCL is more challenging
 - CDCL solvers include a variety of refined search techniques:
 - Clause learning + learning heuristics
 - Decision heuristics
 - Clause forgetting heuristics
 - Restart policies
 - Capturing behavior of CDCL in an abstract proof system is a challenge

Under relatively realistic assumptions:
CDCL SAT solvers are polynomially equivalent to Resolution.
[PipatsrisawatD’11]

Next lecture focuses on CDCL — more details then
Transferring Results for Resolution to SAT Solvers

If smallest Resolution proofs for a family of CNF formulas $\{F_n\}_n$ are of superpolynomial length, then the running time of CDCL SAT solvers is bound to scale exponentially on these formulas.

Understanding what is provable hard to solve for state-of-the-art SAT solvers may give hints towards developing new solving techniques.
Hard Examples for Resolution

Examples:

Pigeon-Hole Problem PHP

PHP$_n$: Cannot put $n + 1$ pigeons into n holes so that each pigeon gets its own hole.

Haken'85: There are no polynomial-length Resolution proofs for PHP$_n$.

Random k-CNF

For example:

Any Resolution proof of a randomly chosen 3-CNF formula with at most $n^{6/5-\epsilon}$ clauses is of exponential length. [BeameP’96]

- First exponential lower bounds for random formulas by Chvatal and Szemeredi ’88

Practical Perspective

The running times of DPLL and CDCL SAT solvers are bound to scale exponentially on such families of formulas.
Hard Examples for Resolution: PHP

Variables:

\[p_{i,j} = \text{“pigeon } i \text{ sits in hole } j \text{”} \quad \text{for } i = 1..n+1, \quad j = 1..n \]

Clauses:

- Each pigeon gets at least one hole:

\[
\bigwedge_{i=1}^{n+1} \bigvee_{j=1}^{n} p_{i,j}
\]

- No two pigeons get the same hole:

\[
\bigwedge_{j=1}^{n} \bigwedge_{i=1}^{n} \bigwedge_{i<i'\leq n+1} (\neg p_{i,j} \lor \neg p_{i',j})
\]
Beyond CDCL: Extended Resolution

Extension Rule

Given a CNF formula F, let x, y be variables in F.

The extension rule of Extended Resolution allows adding to F the clauses

$$(\neg e \lor x), (\neg e \lor y), (e \lor \neg x \lor \neg y),$$

where x, y are variables in F, and e is a new variable.

- The clause represent $e \leftrightarrow x \land y$.

Extended Resolution

- Extension rule
- Resolution rule

There are polynomial-length Extended Resolution for PHP$_n$.

- In fact: Extended Treelike Resolution is enough.
Short Extended Resolution Proofs for PHP

Cook'76: There are polynomial-length Extended Resolution for PHP\(_n\).

Basic idea:
- Build an extension which allows to simulate the induction proof for refuting PHP
 - “If PHP\(_n\) holds, then PHP\(_{n-1}\) holds.”
 - That is: remove one pigeon and hole at a time.

Lower bounds for Extended Resolution?

Extended Resolution has not been shown to have superpolynomial proofs
- If there is a polynomially-bounded propositional proof system, then NP=coNP!
Extended Treelike Resolution proofs are “enough”

For every extended resolution proof of length l, there is a Extended Treelike Resolution proof of length $O(l)$.

- Assume Extended Resolution proof $(C_1, \ldots, C_i, C_{i+1}, \ldots, C_k)$:
 - C_j for $j \leq i$ either original clauses or clauses produced with the extension rule
 - C_j for $j > i$ derived with the resolution rule

- Treelike proof:
 - Start with C_1, \ldots, C_i.
 - For each C_j for $j > i$, add extension $e_j \leftrightarrow C_j$.
 - Apply treelike resolution by resolving on the $e_j's$ from $j = i + 1$ to $j = k$.

Viewed as DPLL (lookahead!) proof of the extended formula

- Branch according to $e_{i+1}, e_{i+2}, \ldots, e_k$

- Branch with $e_j = 0$ (given $e_{j'} = 1$ for all $j' < j$) gives a conflict by unit propagation (why?)

- The branch with $e_j = 1$ for all j gives a conflict (why?)
Summary

Take-home message
- Reductions allow for solving various NP problems via SAT solvers
- SAT solvers form a basis for optimization, counting, and enumeration
- DPLL: classical complete search procedure for SAT
- Connections between SAT solvers and Resolution refinements

Study goals
- DPLL and unit propagation
- Resolution proofs

Next time
- The Conflict-Driven Clause Learning (CDCL) algorithm