Satisfiability, Boolean Modeling and Computation
Spring 2016

Matti Järvisalo

Lecture 7: Minimal unsatisfiability, part II: MUS extraction.
February 9, 2016
On This Lecture

MUS Extraction

- SAT-based approaches to finding MUSes
- Group-MUS extraction
Basic concepts
MUSes: Recap

Minimal unsatisfiability

A CNF formula F is *minimally unsatisfiable* (MU) if
- $F \in \text{UNSAT}$, and
- for each clause $C \in F$, the CNF formula $F \setminus \{C\} \in \text{SAT}$.

Minimal unsatisfiable subset (MUS)

A set of clauses M is an MUS of a CNF formula F if
- $M \subseteq F$, and
- M is an MU.

MUS(F): the set of MUSes of a CNF formula F.

Categorizing Clauses wrt MUS Extraction

- MUS extraction algorithms are based on iteratively identifying clauses that are guaranteed to belong to some MUS.
- Such clauses are called *necessary* or *transition* clauses.
- Different algorithms use different ways of identifying such clauses.
Categorizing Clauses wrt MUS Extraction

Necessary clauses for a CNF formula F

Clause $C \in F$ is necessary for F if
(i) $F \in$ UNSAT, and (ii) $F \setminus \{C\} \in$ SAT.

$C \in F$ is necessary for F iff
\exists assignment τ s.t. $\tau(F \setminus \{C\}) = 1$ and $\tau(C) = 0$.

Properties of necessary clauses

Necessary clauses ...
- belong to *all* MUSes of F: in $\bigcap \text{MUS}(F)$.
- are needed in every Resolution proof of F.

If F is MU, then all clauses in F are necessary.

If C is necessary for F, it is necessary for every unsatisfiable $F' \subset F$.

Deciding whether given C is necessary for F is NP–complete.
Categorizing Clauses wrt MUS Extraction

Example: necessary clauses

\[C_1 : (x) \]
\[C_2 : (\neg x \lor z) \]
\[C_3 : (y) \]
\[C_4 : (\neg x \lor \neg y) \]
\[C_5 : (x \lor y) \]
\[C_6 : (\neg y \lor \neg z) \]

\[\text{MUS}(F) = \{ \{C_1, C_3, C_4\}, \{C_1, C_2, C_3, C_6\}\} \]

Necessary clauses:

“Necessary clauses” are a central concept in practical MUS extraction.
Categorizing Clauses wrt MUS Extraction

Example: necessary clauses

\[C_1 : (x) \]
\[C_2 : (\neg x \lor z) \]
\[C_3 : (y) \]
\[C_4 : (\neg x \lor \neg y) \]
\[C_5 : (x \lor y) \]
\[C_6 : (\neg y \lor \neg z) \]

\[\text{MUS}(F) = \{ \{ C_1, C_3, C_4 \}, \{ C_1, C_2, C_3, C_6 \} \} \]

“Necessary clauses” are a central concept in practical MUS extraction
Categorizing Clauses wrt MUS Extraction

Example: necessary clauses

\begin{align*}
C_1 : & \quad (x) \\
C_2 : & \quad (\neg x \lor z) \\
C_3 : & \quad (y) \\
C_4 : & \quad (\neg x \lor \neg y) \\
C_5 : & \quad (x \lor y) \\
C_6 : & \quad (\neg y \lor \neg z)
\end{align*}

- \text{MUS}(F) = \{\{C_1, C_3, C_4\}, \{C_1, C_2, C_3, C_6\}\}
- \text{Necessary clauses: ?}

“Necessary clauses” are a central concept in practical MUS extraction
Example: necessary clauses

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1 : (x)</td>
<td></td>
</tr>
<tr>
<td>C_2 : $(\neg x \lor z)$</td>
<td></td>
</tr>
<tr>
<td>C_3 : (y)</td>
<td></td>
</tr>
<tr>
<td>C_4 : $(\neg x \lor \neg y)$</td>
<td>MUS(F) = {${C_1, C_3, C_4}$, ${C_1, C_2, C_3, C_6}$}</td>
</tr>
<tr>
<td>C_5 : $(x \lor y)$</td>
<td>Necessary clauses: C_1</td>
</tr>
<tr>
<td>C_6 : $(\neg y \lor \neg z)$</td>
<td></td>
</tr>
</tbody>
</table>

“Necessary clauses” are a central concept in practical MUS extraction.
Categorizing Clauses wrt MUS Extraction

Example: necessary clauses

C_1	(x)
C_2	(¬x ∨ z)
C_3	(y)
C_4	(¬x ∨ ¬y)
C_5	(x ∨ y)
C_6	(¬y ∨ ¬z)

- \[\text{MUS}(F) = \{ \{ C_1, C_3, C_4 \}, \{ C_1, C_2, C_3, C_6 \} \} \]
- Necessary clauses: \[C_1, \ldots ? \]

“Necessary clauses” are a central concept in practical MUS extraction
Categorizing Clauses wrt MUS Extraction

Potentially necessary clauses

Clauses in some but not all MUSes of \(F \).

- May become necessary after removing some clauses in \(F \).
 \(\sim \) may become necessary for Resolution proofs of \(F \).

Example

\[
\begin{align*}
C_1 & : (x) \\
C_2 & : (\neg x \lor z) \\
C_3 & : (y) \\
C_4 & : (\neg x \lor \neg y) \\
C_5 & : (x \lor y) \\
C_6 & : (\neg y \lor \neg z)
\end{align*}
\]

- Remove \(C_4 \)
 \(\sim \) only core left is \(\{ C_1, C_2, C_3, C_6 \} \)

- Remove \(C_3, C_4 \) \(\sim \) SAT.

Unnecessary clauses / never necessary clauses

Clauses that can be removed without making the UNSAT CNF formula satisfiable.
Approaches to MUS Extraction

Main approaches to MUS extraction:
- Deletion-based
- Insertion-based
- Dichotomic (binary search)
- Hybrid

Several types of optimization for different types of algorithms:
- Redundancy checking
- Clause-set refinement
- (Recursive) model rotation
MUS Extraction Algorithms
Preliminaries

SAT(F) denotes a SAT solver call on CNF formula F
- Returns UNSAT or SAT

Recall: necessary (or transition) clauses
- Clause C is necessary for UNSAT F if $F \setminus \{C\} \in \text{SAT}$

<table>
<thead>
<tr>
<th>Deletion-based MUS extraction:</th>
<th>destructive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteratively detect necessary clause on transition from SAT to UNSAT.</td>
<td></td>
</tr>
<tr>
<td>• MUS built by excluding unnecessary clauses.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insertion-based MUS extraction:</th>
<th>constructive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteratively detect necessary clauses on transition from UNSAT to SAT.</td>
<td></td>
</tr>
<tr>
<td>• MUS built by including necessary clauses.</td>
<td></td>
</tr>
</tbody>
</table>
Approaches to MUS Extraction: Complexity

One metric: the number of SAT solver calls needed in the worst case

In terms of
- size of F, i.e., the number $|F|$ of clauses in input CNF formula F;
- size of the MUS M of F extracted.

- Deletion-based: $\Theta(|F|)$
- Insertion-based: $O(|M| \cdot |F|)$
- Dichotomic (binary search): $O(|M| \cdot \log |F|)$
Deletion-based MUS Extraction

Input: Unsatisfiable CNF formula F.

Output: An $M \in \text{MUS}(F)$.

1. $M \leftarrow F$
2. for each $C \in M$
 1. if not SAT($M \setminus \{C\}$) then $M \leftarrow M \setminus \{C\}$
3. return M

During execution:

M: over-approximation of an MUS of F.
Insertion-based MUS Extraction

Input: Unsatisfiable CNF formula \(F \).
Output: An \(M \in \text{MUS}(F) \).

1. \(M \leftarrow \emptyset \)
2. while \(F \neq \emptyset \) do
 1. \(S \leftarrow \emptyset \)
 2. while \(\text{SAT}(M \cup S) \) do
 1. \(C \leftarrow \text{a clause in } F \)
 2. \(S \leftarrow S \cup \{C\} \)
 3. \(M \leftarrow M \cup \{C\} \)
 4. \(F \leftarrow S \setminus \{C\} \)
 \ // \ C \text{ is necessary for } M \cup S
3. return \(M \)

During execution:

\(M \): under-approximation of an MUS of \(F \).
\(S \): working formula for detecting a necessary clause.
Comparison to deletion-based MUS extraction

- More SAT solver calls in the worst-case
- However:
 - SAT solver calls made starting with small subsets of F
 - Transition from SAT to UNSAT:
 SAT solver calls faster — SAT often easier than UNSAT for a solver
 - Potential much faster when MUSes of F are small
Optimizations to Insertion-based MUS Extraction: Redundancy Checking

Definition: Redundant clause

Clause $C \in F$ is redundant in F if $F \setminus \{C\} \models C$.

- Note: C is redundant if F and $F \setminus \{C\}$ are logically equivalent.

Observation

Necessary clauses are *irredundant* for $F \in \text{UNSAT}$.

\sim Every clause in MUS of F is irredundant.

Insertion-based MUS Extraction with Redundancy Checking

Add C to S only if $M \cup S \not\models \{C\}$.

- Check redundancy with SAT solver.
Insertion-based MUS Extraction w/Redundancy Checking

Input: Unsatisfiable CNF formula \(F \).

Output: An \(M \in \text{MUS}(F) \).

1. \(M \leftarrow \emptyset \)
2. while \(F \neq \emptyset \) do
 1. \(S \leftarrow \emptyset \)
 2. for each \(C \in F \) do
 1. if \(\text{SAT}(M \cup S \cup \{\neg C\}) \) then
 \(S \leftarrow S \cup \{C\} \)
 \(C_{\text{nec}} \leftarrow C \)
 3. \(M \leftarrow M \cup \{C_{\text{nec}}\} \)
 4. \(F \leftarrow S \setminus \{C_{\text{nec}}\} \)
3. return \(M \)

During execution:

\(M \): under-approximation of an MUS of \(F \).
\(S \): working formula for detecting a necessary clause.
\(\{\neg C\} \): \(\bigcup_{l \in C} \{\neg l\} \) (i.e., negations of literals in \(C \) as unit clauses)
Dichotomic MUS Extraction

Idea:
- Build an MUS via under-approximation M
- Maintain upper bound U and lower bound L on the size of an MUS
- Initialize $L = 1$, $U = |F|$ (number of clauses in F)
- For $middle = \lceil (L + U)/2 \rceil$:
 - If $\text{SAT}\left(\{C_1, \ldots, C_{middle}\}\right)$, let $L \leftarrow middle + 1$
 - Otherwise let $U \leftarrow middle$.
- When $L = U$: C_L is necessary for $M \cup \{C_1, \ldots, C_L\}$
 - \leadsto let $M \leftarrow M \cup \{C_L\}$.
- Return when M becomes unsatisfiable.
Approaches to MUS Extraction: Complexity

One metric: the number of SAT solver calls needed in the worst case

- Deletion-based: $\Theta(|F|)$
- Insertion-based: $O(|M| \cdot |F|)$
- Dichotomic (binary search): $O(|M| \cdot \log |F|)$

However: not the whole story!

- Overall performance also depends on how difficult the SAT solver calls are
Refining MUS Extraction Algorithms
Refinements to MUS Extraction Algorithms

- Redundancy checking
 - Aims at making SAT solver calls easier

- Clause-set refinement
 - Aims at reducing the number of unsatisfiable SAT solver calls

- (Recursive) model rotation
 - Aims at reducing the number of satisfiable SAT solver calls
Hybrid MUS Extraction

Input: Unsatisfiable CNF formula F.

Output: An $M \in \text{MUS}(F)$.

1. $M \leftarrow \emptyset$ // under-approximation

2. while $F \neq \emptyset$ do
 1. $C \leftarrow$ a clause in F
 2. $\text{res} \leftarrow \text{SAT}(M \cup (F \setminus \{C\}))$
 3. if $\text{res} = \text{"SAT"}$ then $M \leftarrow M \cup \{C\}$ // C necessary for $M \cup F$
 4. else $F \leftarrow F \setminus \{C\}$ // C not necessary, remove from F

3. return M

During execution:

M: under-approximation of an MUS of F.

Combines the ideas of refining F and M from deletion and insertion based MUS extraction
Clause-set Refinement for Hybrid MUS Extraction

Takes advantage of the fact that SAT solvers can return UNSAT cores

When the necessity check \(\text{SAT}(M \cup (F \setminus \{C\})) \) fails:

- Obtain also an UNSAT core \(U \) of \(M \cup (F \setminus \{C\}) \)
- Use \(U \) to potentially rule out *multiple* unnecessary clauses, not just \(C \):
 let \(F \leftarrow U \setminus M \).

Focuses on the obtained UNSAT core
Hybrid MUS Extraction w/Clause-set Refinement

Input: Unsatisfiable CNF formula F.
Output: An $M \in \text{MUS}(F)$.

1. $M \leftarrow \emptyset$ \hspace{1cm} // under-approximation
2. while $F \neq \emptyset$ do
 1. $C \leftarrow$ a clause in F
 2. $(\text{res}, U) \leftarrow \text{SAT}(M \cup (F \setminus \{C\}))$
 3. if $\text{res} = "\text{SAT}"$ then $M \leftarrow M \cup \{C\}$ \hspace{1cm} // C necessary for $M \cup F$
 4. else $F \leftarrow U \setminus M$ \hspace{1cm} // Clause-set refinement
3. return M
Model Rotation

Fact

Clause C is necessary for F if and only if

- $F \in \text{UNSAT}$, and
- there is an assignment τ s.t. $\tau(F \setminus \{C\}) = 1$ and $\tau(C) = 0$.

τ is a witness for the necessity of C for F.

Model Rotation

Given witness τ for C:

attempt to locally modify τ to obtain a different witness for some other clause C'.
Model Rotation

Given witness τ for C: attempt to locally modify τ to obtain a different witness for some other clause C'.

In practice

- Try individually flipping the value assigned by τ to each variable in C.
- If one of thus obtained τ' is a witness for some other clause C' in F: C' is also necessary.
 - Very cheap to evaluate each τ'!
- Recurse: try flipping value assigned by τ' to each variable in C', etc.
- Stop when no new necessary clause is found.

Greatly improves performance in practice by lowering the number of needed SAT solver calls.
MUS Extractors

- MUSer2 most algorithmic variants
 https://bitbucket.org/anton_belov/muser2
- HaifaMUC deletion-based, manipulating resolution proofs
- MoUsSaka deletion-based
 http://www-pr.informatik.uni-tuebingen.de/?site=forschung/sat/algo_engineering#Software
- picomus deletion-based
 http://fmv.jku.at/picosat/
- DMUSer formula-trimming based on clausal proofs
 https://bitbucket.org/anton_belov/dmuser
- SAT4J Java-based
 http://www.sat4j.org
 ...

SAT (Lecture 7) Spring 2016 Feb 9 27 / 32
Group-MUS Extraction
Group MUSes: Recap

Example

\(G_1 = \begin{cases}
C_1 : (x) \\
C_2 : (y)
\end{cases} \)

\(G_2 = \begin{cases}
C_3 : (\neg x \lor \neg y) \\
C_4 : (x \lor y)
\end{cases} \)

\(G_3 = \begin{cases}
C_5 : (\neg x \lor z) \\
C_6 : (\neg y \lor \neg z)
\end{cases} \)

\(F = G_1 \cup G_2 \cup G_3, \)

where \(G_i \)s are clause-groups:

\(G_1 = \{ C_1, C_2 \}, \)
\(G_2 = \{ C_3, C_4 \}, \)
\(G_3 = \{ C_5, C_6 \}, \)

\(\{ G_1, G_2 \} \) is a group-MUS of \(F: \)

\(G_1 \cup G_2 \in \text{UNSAT} \)
\(G_1, G_2 \in \text{SAT}. \)

\(\{ G_1, G_3 \} \) is a group-MUS, too.
Group MUSes: Recap

Example

\[G_1 = \begin{cases} C_1 : (x) \\ C_2 : (y) \end{cases} \]

\[G_2 = \begin{cases} C_3 : (\neg x \lor \neg y) \\ C_4 : (x \lor y) \end{cases} \]

\[G_3 = \begin{cases} C_5 : (\neg x \lor z) \\ C_6 : (\neg y \lor \neg z) \end{cases} \]

- \(F = G_1 \cup G_2 \cup G_3 \),
 where \(G_i \)'s are clause-groups:
 \(G_1 = \{ C_1, C_2 \} \), \(G_2 = \{ C_3, C_4 \} \),
 \(G_3 = \{ C_5, C_6 \} \).

- \(\{ G_1, G_2 \} \) is a group-MUS of \(F \):
 \(G_1 \cup G_2 \in \text{UNSAT} \)
 \(G_1, G_2 \in \text{SAT} \).

- \(\{ G_1, G_3 \} \) is a group-MUS, too.
Group MUSes: Recap

Example

\[G_1 = \begin{cases}
C_1 : (x) \\
C_2 : (y)
\end{cases} \]

\[G_2 = \begin{cases}
C_3 : (\neg x \vee \neg y) \\
C_4 : (x \vee y)
\end{cases} \]

\[G_3 = \begin{cases}
C_5 : (\neg x \vee z) \\
C_6 : (\neg y \vee \neg z)
\end{cases} \]

- \(F = G_1 \cup G_2 \cup G_3 \), where \(G_i \)'s are clause-groups:
 - \(G_1 = \{ C_1, C_2 \} \)
 - \(G_2 = \{ C_3, C_4 \} \)
 - \(G_3 = \{ C_5, C_6 \} \)

- \(\{ G_1, G_2 \} \) is a group-MUS of \(F \):
 - \(G_1 \cup G_2 \in \text{UNSAT} \)
 - \(G_1, G_2 \in \text{SAT} \)

- \(\{ G_1, G_3 \} \) is a group-MUS, too.
Definition
Given a group-partitioned CNF formula $\mathcal{F} = G_0 \cup G_1 \cup \cdots \cup G_m$, a group-MUS of \mathcal{F} is a subset $\{G_{i_1}, \ldots, G_{i_k}\} \subseteq \{G_1 \cup \cdots \cup G_m\}$ such that

- $\mathcal{F}' = G_0 \cup \bigcup_{j=1}^k G_{i_j} \in \text{UNSAT}$, and
- $\mathcal{F}' \setminus G_{i_j} \in \text{SAT}$ for each $j = 1..k$.

Example: a group = CNF representation of a gate in a circuit.
Note the special role of G_0 : the “background” clauses.
Example: output constraint in circuit.
$G_0 \in \text{UNSAT} \iff$ unique GMUS \emptyset.
MUS extraction: a special case of group-MUS extraction
Group-MUS extraction can be reduced to MUS extraction
Group-MUS Extraction via MUS Extraction

Given a group-partitioned CNF formula \(F = G_0 \cup G_1 \cup \cdots \cup G_m \):

- Consider the CNF formula
 \[
 F = G_0 \cup \bigcup_{i=1}^{m} \{(C \lor a_i) \mid C \in G_i\},
 \]

where each \(a_i \) is a new (assumption) variable.
 - One-to-one mapping between \(a_i \) and \(G_i \) (a group of clauses)!

Use the assumption interface of a SAT solver to find UNSAT cores of \(F \) over the assumption variables \(a_i \):
 - Can essentially implement any MUS extraction algorithm using assumptions
Summary

Take-home message
- SAT solvers central in MUS extraction
- CDCL SAT solvers used incrementally via the assumption interface
- Also applicable to extracting “MUSes” of high-level

Study goals
- Concepts: necessary clauses
- The central MUS extraction algorithms
- Extracting group-MUSes with “plain” MUS extractors

Next time:
Boolean optimization: maximum satisfiability (part I)