
Seminar on Constraint Solving Meets Data Mining and
Machine Learning

Spring 2013

Matti Järvisalo

Practical Arrangements, introduction.

Järvisalo () Spring 2013 March 13 1 / 22

Course Information

Instructor: Dr. Matti Järvisalo
matti.jarvisalo@cs.helsinki.fi

Reception: Contact instructor by email for an
appointment

Credit units: 3 ECTS

Language: English (by default)

WWW:
http://www.cs.helsinki.fi/u/mjarvisa/teaching/seminar13/

Järvisalo () Spring 2013 March 13 2 / 22

Course Requirements

Choose a topic (scientific article) to study

Write a 10-15 page (plus references) report n the topic

Give a 30-min presentation on the topic

Give constructive feedback on another student’s report (and draft)

Act as the opponent of another student’s presentation

Attend the seminar 1-2 workshop day(s) in May

Järvisalo () Spring 2013 March 13 3 / 22

Choosing a Topic

List of topics available on the seminar webpage

If you have not reserved a topic, do this by this Friday March 15

Each topic consists of one scientific article

Can suggest a topic outside the list!

The article provides a starting-point for your work

You may need to read additional articles for necessary background

Synthesis of multiple related articles is a major plus

Järvisalo () Spring 2013 March 13 4 / 22

Deadlines

All deadlines are strict — you will fail the course if you do not meet a
deadline

March 15: vote on the workshop dates, choose topic

April 13: at least 5-page draft report (send to teacher)

April 20: feedback on another student’s report draft
(send to teacher and your opponent)

One week before the workshop: Full-length report and preliminary
presentation slides
(send to teacher and your opponent)

At the workshop: act as an opponent

One week after the workshop: Final report

Järvisalo () Spring 2013 March 13 5 / 22

Report and Presentation

A seminar report is a short review paper: you explain some interesting
results in your own words.
A typical seminar report will consist of the following parts:

I an informal introduction,
I a formally precise definition of the problem that is studied,
I a brief overview of very closely related work— here you might cite

approx. 3–10 papers and explain their main contributions,
I a more detailed explanation of one or two interesting results, with

examples
I conclusions.

Superficially, your report should look like a typical scientific article.
I However, it will not contain any new scientific results, just a survey of

previously published work.

The presentation is an overview of the report
I You should understand what you are saying
I Everyone should understand you
I The abstraction level should be right
I Examples are always good to communicate ideas

Järvisalo () Spring 2013 March 13 6 / 22

Agreeing on the workshop day(s)

We need to agree on two full workshop days during May 6–14

All presentations take place during the workshop days

Go to http://www.doodle.com/xwbnvtvabiftmr7c

Attendance mandatory at least on the day you are scheduled for

Järvisalo () Spring 2013 March 13 7 / 22

What This Course is about

Interplay between onstraint solving and data analysis

How to use constraint satisfaction and optimization techniques to
solve data analysis task

I Providing optimal solutions?
I Addressing more general problems that classical approaches?
I Example: Clustering: from k-means style local search to guaranteed

optimal clustering?

How to use machine learning to speed-up constraint solving in
practice?

I Learning to select the best algorithm for solving a given problem
instance as input

Järvisalo () Spring 2013 March 13 8 / 22

Declarative Programming and Constraint Solving

Two-step approach to solving hard combinatorial problems:
Encoding

(instance)

SolutionProblem

(instance)

1. Encoder

(problem specific)

2. Constraint Solver

(Generic)

1 Encoding: Domain-specific declarative formulation of problem using
chosen (constraint) modelling language

F Given any problem instance,
formulate the instance in terms of mathematical constraints

2 Solving: A generic solver—a search algorithm—for the chosen
modelling language, which can find a solution (or determine that none
exist) to any formulation in the modelling language

F Found solution mapped back to a solution of the original problem
instance

Various approaches based on different modelling languages:
integer programming, linear programming, constraint programming,
Boolean satistiability, Boolean optimization (MaxSAT), . . .

Järvisalo () Spring 2013 March 13 9 / 22

Constraints: A general view

A set of variables X = {x1, . . . , xn}
Each variable xi has domain Di

A constraint C over X is a subset of D1 × · · · × Dn

Example. Let D1 = D2 = {1, 2, 3}. The constraint 6= over x1, x2 is
{(d1, d2) | d1 ∈ D1, d2 ∈ D2, d1 6= d2}

= {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} ⊂ D1 × D2.

The above is an example of a finite-domain constraint, where the
domain of each variable is a finite set of values

I A special case are Boolean constraints that are defined over Boolean
variables, i.e., variables with domain B = {0, 1}.

I 1 is the value true, 0 is the value false

Depending on the constraint language, the variables may also have
infinite domains.

I Examples: R (real domains), Z (integer domains)

Järvisalo () Spring 2013 March 13 10 / 22

Constraint Satisfaction Problems (CSPs)

Given: a set of variables X = {x1, . . . , xn} with domains D1, . . . ,Dn

a constraint satisfaction problem (CSP) is a set of constraints
C = {C1, . . . ,Cm}

I each constraint C is defined over some subset of X .

Value assignment for x1, . . . , xn is a function T that assigns for each
xi a value from the domain Di .

T satisfies a constraint C over variables xi1 , . . . , xik ⊆ X iff
(T (xi1), . . . ,T (xim)) ∈ C .

T is a solution to C iff T satisfies every constraint in C.

If C has a solution, then C is satisfiable, and otherwise unsatisfiable

Järvisalo () Spring 2013 March 13 11 / 22

CSPs: Example
Quasigroup Completion problem:

n × n matrix

Some cells have been pre-filled

Fill each of the cells with integers 1, . . . , n so that:
each 1..n appears exactly once in each column and row 5

5

3

43

4

A CSP encoding:

Let AllDiff(x1, . . . , xk) =
{(v1, . . . , vk) | v1 ∈ D1, . . . , vk ∈ Dk , vi 6= vj ∀i 6= j , i , j ∈ {1, . . . , k}}
Introduce variable xij for each cell in the n × n matrix:
xij represents the value in cell on row i , column j

Domains:
I Dij = {1, . . . , n} for each ij such that the cell ij is empty
I Dij = {vij} for each ij with a pre-filled value vij

Constraints:
I For each row i : AllDiff(xi1, . . . , xin)
I For each column j : AllDiff(x1j , . . . , xnj)

Järvisalo () Spring 2013 March 13 12 / 22

Boolean Satisfiability

An important special case of CSPs is the Boolean satisfiability
problem SAT

In general, SAT the question of whether a given propositional logic
formula is satisfiable

Typically SAT refers to CNF SAT
I The satisfiability problem of propositional (Boolean) formulas in

conjunctive normal form, CNF formulas

Despite its simplicity, SAT is an often used constraint language that
provides a highly efficient approach to solving various hard
computational problems

Järvisalo () Spring 2013 March 13 13 / 22

CNF SAT

A literal is a Boolean variable x , or the negation ¬x of x
I ¬x is the negative literal of x , x the positive literal

A clause is the constraint
∨n

i=1 lk (i.e., l1 ∨ · · · ∨ lk) over distinct
literals li

I ∨ is called disjunction, i.e., logical OR

A CNF formula is a set of clauses
I In other words:

a CNF formula is a constraint of the form
∧

C∈C C ,
where each C ∈ C is a clause

A value assignment T over Boolean variables is a truth assignment

T satisfies a literal l iff
I l is a positive literal x and T (x) = 1, or
I l is a negative literal ¬x and T (x) = 0

T satisfies a clause C = l1 ∨ · · · ∨ lk iff
there is a literal l ∈ {l1, . . . , lk} such that T (l) = 1.

Järvisalo () Spring 2013 March 13 14 / 22

CNF: Example

A CNF encoding of the Quasigroup Completion problem:

Boolean variables xijk , where i , j , k = 1, . . . , n:
xijk means “cell at row i , column j has value k”

Use clauses to enforce that for each cell ij , exactly one of xij1, . . . , xijn
is assigned to 1:

I At least one: (xij1 ∨ · · · ∨ xijn)
I At most one: (¬xijk ∨ ¬xijk′) ∀i , j ∈ {1, . . . , n}, where i 6= j

Similarly, enforce that
I for each row i , exactly one of xi1k , . . . , xink is assigned to 1 for each k

(all cells in row i have different values)
I for each column i , exactly one of x1jk , ..., xnjk is assigned to 1 for each k

(all cells in column i have different values)
I SAT encodings of AllDiff!

Järvisalo () Spring 2013 March 13 15 / 22

Constraint Optimization Problems (COPs)

A CSP has some set S of solutions (possible infinite).

An objective (or cost) function f is a mapping from S to some set of
values (can be reals, integers, etc).

A constraint optimization problem (COP) consists of a set of
constraints and a cost function

Each element in S is a feasible solution
An optimal solution:

I as a minimization problem:
any s ∈ S such that f (s ′) ≥ f (s) for each s ′ ∈ S .

I as a maximization problem:
any s ∈ S such that f (s ′) ≤ f (s) for each s ′ ∈ S .

Search task: find an optimal solution

Different paradigms:
I Maximum Boolean satisfiability (MaxSAT): maximize the number of

satisfied CNF clauses
I Integer/Linear programming (ILP, MIP)
I Some CP solvers can also cope with optimization

Järvisalo () Spring 2013 March 13 16 / 22

Linear and Integer Programs

A linear function is of the form c1x1 + · · ·+ cnxn

Linear constraints over variables x1, . . . , xn are of the form

a1x1 + · · ·+ anxn 2 b,

where a1, . . . , an and b are constants, and 2 is
I = (linear equality/equation), or
I ≥ or ≤ (linear inequality)

A linear program (LP) is a COP such that
I each constraint in the problem is linear,
I the objective function in the problem is linear, and
I the variable domains are real-valued ranges [li , ui], i.e., li ≤ xi ≤ ui .
I Solvable in polynomial-time.

Integer programs (IPs) are like linear programs, except that
the variables can only take integer values. Capture NP.

Mixed integer programs (MIPs) have both integer and real-valued
variables.

Järvisalo () Spring 2013 March 13 17 / 22

Integer Programming: Example
Knapsack problem:

Given: A knapsack of size S (an integer), items 1, . . . , n, and the size
si (integers) and value vi (integers) of each item i .

Find a subset of the n items that fits into the knapsack and
maximizes the total value of the objects in the knapsack.

IP formulation:

Take a binary variable xi for each item i .
I xi = 1 (xi = 0) means that item i is (not) included in the knapsack.

max
∑n

i=1 vixi∑n
i=1 sixi ≤ S

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}

The above formulation is a 0-1 integer program:
all variables have binary domains

Järvisalo () Spring 2013 March 13 18 / 22

Different paradigms

Different constraint solving paradigms have different strengths and
weaknesses

I Deciding whether a given finite-domain CSPs, Boolean formula (SAT),
or (M)IP has a solution is NP-hard

I LPs can be solved in polynomial time
I Tradeoffs between expressiveness (high-level constraints, CP) and fast

solver techniques (low-level, SAT)
I Satisfaction vs optimization:

SAT vs MaxSAT, CP, MIP
I Variable domains (binary, integer, real, ...)

CP / SAT / MIP solvers are algorithmically different

Järvisalo () Spring 2013 March 13 19 / 22

Topics

A: Data Mining using constraint solvers / knowledge compilation

B: Using machine learning to configure / speed-up constraint solving

C: Clustering with constraints

D: Learning Bayesian networks using constraint solvers / heuristic
search

E: Learning causal models using constraint solving

F: Model counting and probabilistic inference

G: miscellaneous — ask me for further ones if necessary

Järvisalo () Spring 2013 March 13 20 / 22

Background: Propositional logic

Propositional formulas

Syntax based on:
Boolean variables X = {x1, x2, . . .}
Boolean connectives ∨,∧,¬
The set of (propositional) formulas is the smallest set such that all
Boolean variables are formulas and if φ1 and φ2 are formulas, so are
¬φ1, (φ1 ∧ φ2), and (φ1 ∨ φ2).
For example, ((x1 ∨ x2) ∧ ¬x3) is a formula but ((x1 ∨ x2)¬x3) is not.

A formula of the form xi or ¬xi is called a literal where xi is a
Boolean variable.

Usual shorthands:
φ1 → φ2: ¬φ1 ∨ φ2
φ1 ↔ φ2: (¬φ1 ∨ φ2) ∧ (¬φ2 ∨ φ1)
φ1 ⊕ φ2: (¬φ1 ∧ φ2) ∨ (φ1 ∧ ¬φ2)

Järvisalo () Spring 2013 March 13 21 / 22

Semantics

Boolean variables are either true or false

A truth assignment T is mapping from a finite subset X ′ ⊂ X to the
set of truth values {1, 0}.
Consider a truth assignment T : X ′ −→ {1, 0} which is appropriate to
φ, i.e., X (φ) ⊆ X ′ where X (φ) be the set of Boolean variables
appearing in φ.

T |= φ (T satisfies φ) is defined inductively as follows:
If φ is a variable, then T |= φ iff T (φ) = 1.
If φ = ¬φ1, then T |= φ iff T 6|= φ1
If φ = φ1 ∧ φ2, then T |= φ iff T |= φ1 and T |= φ2
If φ = φ1 ∨ φ2, then T |= φ iff T |= φ1 or T |= φ2

Example. Let T (x1) = 1, T (x2) = 0.
Then T |= x1 ∨ x2, and T 6|= (x1 ∨ ¬x2) ∧ (¬x1 ∧ x2)

Järvisalo () Spring 2013 March 13 22 / 22

