Seminar on Constraint Solving Meets Data Mining and Machine Learning Spring 2013

Matti Järvisalo

Practical Arrangements, introduction.

Järvisalo ()

March 13 1 / 22

Course Information

Instructor: Dr. Matti Järvisalo matti.jarvisalo@cs.helsinki.fi Reception: Contact instructor by email for an appointment Credit units: 3 ECTS Language: English (by default) WWW:

http://www.cs.helsinki.fi/u/mjarvisa/teaching/seminar13/

Course Requirements

- Choose a topic (scientific article) to study
- Write a 10-15 page (plus references) report n the topic
- Give a 30-min presentation on the topic
- Give constructive feedback on another student's report (and draft)
- Act as the opponent of another student's presentation
- Attend the seminar 1-2 workshop day(s) in May

Choosing a Topic

- List of topics available on the seminar webpage
- If you have not reserved a topic, do this by this Friday March 15
- Each topic consists of one scientific article
- Can suggest a topic outside the list!
- The article provides a starting-point for your work
- You may need to read additional articles for necessary background
- Synthesis of multiple related articles is a major plus

Deadlines

- All deadlines are strict you will fail the course if you do not meet a deadline
- March 15: vote on the workshop dates, choose topic
- April 13: at least 5-page draft report (send to teacher)
- April 20: feedback on another student's report draft (send to teacher and your opponent)
- One week before the workshop: Full-length report and preliminary presentation slides (send to teacher and your opponent)
- At the workshop: act as an opponent
- One week after the workshop: Final report

Report and Presentation

- A seminar report is a short review paper: you explain some interesting results in your own words.
- A typical seminar report will consist of the following parts:
 - an informal introduction,
 - ▶ a formally precise definition of the problem that is studied,
 - ➤ a brief overview of very closely related work— here you might cite approx. 3–10 papers and explain their main contributions,
 - a more detailed explanation of one or two interesting results, with examples
 - conclusions.
- Superficially, your report should look like a typical scientific article.
 - However, it will not contain any new scientific results, just a survey of previously published work.
- The presentation is an overview of the report
 - You should understand what you are saying
 - Everyone should understand you
 - The abstraction level should be right
 - Examples are always good to communicate ideas

Järvisalo ()

Agreeing on the workshop day(s)

- We need to agree on two full workshop days during May 6-14
- All presentations take place during the workshop days
- Go to http://www.doodle.com/xwbnvtvabiftmr7c
- Attendance mandatory at least on the day you are scheduled for

What This Course is about

- Interplay between onstraint solving and data analysis
- How to use constraint satisfaction and optimization techniques to solve data analysis task
 - Providing optimal solutions?
 - Addressing more general problems that classical approaches?
 - Example: Clustering: from k-means style local search to guaranteed optimal clustering?
- How to use machine learning to speed-up constraint solving in practice?
 - Learning to select the best algorithm for solving a given problem instance as input

Declarative Programming and Constraint Solving

• Two-step approach to solving hard combinatorial problems:

- **Encoding**: *Domain-specific* declarative formulation of problem using chosen (constraint) modelling language
 - ★ Given any problem instance,

formulate the instance in terms of mathematical constraints

- Solving: A generic solver—a search algorithm—for the chosen modelling language, which can find a solution (or determine that none exist) to any formulation in the modelling language
 - Found solution mapped back to a solution of the original problem instance

Various approaches based on *different modelling languages*: integer programming, linear programming, constraint programming, Boolean satistiability, Boolean optimization (MaxSAT), ...

Constraints: A general view

- A set of variables $X = \{x_1, \ldots, x_n\}$
- Each variable x_i has domain D_i
- A constraint C over X is a subset of $D_1 \times \cdots \times D_n$

Example. Let $D_1 = D_2 = \{1, 2, 3\}$. The constraint \neq over x_1, x_2 is $\{(d_1, d_2) \mid d_1 \in D_1, d_2 \in D_2, d_1 \neq d_2\}$

 $=\{(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)\}\subset D_1\times D_2.$

- The above is an example of a *finite-domain* constraint, where the domain of each variable is a finite set of values
 - A special case are *Boolean constraints* that are defined over *Boolean variables*, i.e., variables with domain 𝔅 = {0,1}.
 - ▶ 1 is the value *true*, 0 is the value *false*
- Depending on the constraint language, the variables may also have infinite domains.
 - Examples: \mathbb{R} (real domains), \mathbb{Z} (integer domains)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Constraint Satisfaction Problems (CSPs)

- Given: a set of variables $X = \{x_1, \ldots, x_n\}$ with domains D_1, \ldots, D_n
- a constraint satisfaction problem (CSP) is a set of constraints $\mathbf{C} = \{C_1, \dots, C_m\}$
 - each constraint *C* is defined over some subset of *X*.
- Value assignment for x_1, \ldots, x_n is a function T that assigns for each x_i a value from the domain D_i .
- *T* satisfies a constraint *C* over variables $x_{i_1}, \ldots, x_{i_k} \subseteq X$ iff $(T(x_{i_1}), \ldots, T(x_{i_m})) \in C$.
- T is a solution to C iff T satisfies every constraint in C.
- If C has a solution, then C is satisfiable, and otherwise unsatisfiable

• • = • • = •

CSPs: Example

Quasigroup Completion problem:

- $n \times n$ matrix
- Some cells have been pre-filled
- Fill each of the cells with integers 1,..., *n* so that: each 1..*n* appears *exactly once in each column and row*

A CSP encoding:

- Let AllDiff $(x_1, ..., x_k) = \{(v_1, ..., v_k) \mid v_1 \in D_1, ..., v_k \in D_k, v_i \neq v_j \ \forall i \neq j, i, j \in \{1, ..., k\}\}$
- Introduce variable x_{ij} for each cell in the $n \times n$ matrix: x_{ij} represents the value in cell on row i, column j
- Domains:
 - $D_{ij} = \{1, \ldots, n\}$ for each ij such that the cell ij is empty
 - $D_{ij} = \{v_{ij}\}$ for each ij with a pre-filled value v_{ij}
- Constraints:
 - For each row *i*: AllDiff (x_{i1}, \ldots, x_{in})
 - For each column *j*: AllDiff (x_{1j}, \ldots, x_{nj})

A D > A D > A D > A D >

Boolean Satisfiability

- An important special case of CSPs is the *Boolean satisfiability* problem SAT
- In general, SAT the question of whether a given *propositional logic formula is satisfiable*
- \bullet Typically SAT refers to $\mathrm{CNF}\ \mathrm{SAT}$
 - The satisfiability problem of propositional (Boolean) formulas in conjunctive normal form, CNF formulas
- Despite its simplicity, SAT is an often used constraint language that provides a highly efficient approach to solving various hard computational problems

• 3 > < 3</p>

CNF SAT

- A *literal* is a Boolean variable x, or the *negation* $\neg x$ of x
 - $\neg x$ is the *negative literal* of x, x the positive literal
- A *clause* is the constraint ∨ⁿ_{i=1} I_k (i.e., I₁ ∨ · · · ∨ I_k) over distinct literals I_i
 - ▶ ∨ is called *disjunction*, i.e., logical OR
- A CNF formula is a set of clauses
 - In other words:

a CNF formula is a constraint of the form $\bigwedge_{C \in \mathbf{C}} C$, where each $C \in \mathbf{C}$ is a clause

- A value assignment T over Boolean variables is a truth assignment
- T satisfies a literal / iff
 - I is a positive literal x and T(x) = 1, or
 - *I* is a negative literal $\neg x$ and T(x) = 0
- T satisfies a clause C = l₁ ∨ · · · ∨ l_k iff there is a literal l ∈ {l₁,..., l_k} such that T(l) = 1.

CNF: Example

A CNF encoding of the Quasigroup Completion problem:

- Boolean variables x_{ijk}, where i, j, k = 1, ..., n: x_{ijk} means "cell at row i, column j has value k"
- Use clauses to enforce that for each cell *ij*, *exactly one* of x_{ij1}, \ldots, x_{ijn} is assigned to 1:
 - At least one: $(x_{ij1} \lor \cdots \lor x_{ijn})$
 - At most one: $(\neg x_{ijk} \lor \neg x_{ijk'}) \forall i, j \in \{1, \ldots, n\}$, where $i \neq j$
- Similarly, enforce that
 - ▶ for each row *i*, exactly one of x_{i1k},..., x_{ink} is assigned to 1 for each k (all cells in row *i* have different values)
 - for each column *i*, exactly one of x_{1jk}, ..., x_{njk} is assigned to 1 for each k (all cells in column *i* have different values)
 - SAT encodings of AllDiff!

イロト イポト イヨト イヨト 二日

Constraint Optimization Problems (COPs)

- A CSP has some set S of solutions (possible *infinite*).
- An *objective* (or *cost*) *function f* is a mapping from *S* to some set of values (can be reals, integers, etc).
- A constraint optimization problem (COP) consists of a set of constraints and a cost function
- Each element in S is a *feasible* solution
- An optimal solution:
 - ▶ as a minimization problem: any $s \in S$ such that $f(s') \ge f(s)$ for each $s' \in S$.
 - as a maximization problem: any s ∈ S such that f(s') ≤ f(s) for each s' ∈ S.
- Search task: find an optimal solution
- Different paradigms:
 - Maximum Boolean satisfiability (MaxSAT): maximize the number of satisfied CNF clauses
 - Integer/Linear programming (ILP, MIP)
 - Some CP solvers can also cope with optimization

Järvisalo ()

Linear and Integer Programs

- A *linear function* is of the form $c_1x_1 + \cdots + c_nx_n$
- *Linear constraints* over variables x_1, \ldots, x_n are of the form

 $a_1x_1+\cdots+a_nx_n \Box b$,

where a_1, \ldots, a_n and b are constants, and \Box is

- = (linear equality/equation), or
- \blacktriangleright \geq or \leq (linear inequality)
- A linear program (LP) is a COP such that
 - each constraint in the problem is linear,
 - the objective function in the problem is linear, and
 - ▶ the variable domains are real-valued ranges $[I_i, u_i]$, i.e., $I_i \le x_i \le u_i$.
 - Solvable in polynomial-time.
- Integer programs (IPs) are like linear programs, except that the variables can only take integer values. Capture NP.
- Mixed integer programs (MIPs) have both integer and real-valued variables.

Integer Programming: Example

Knapsack problem:

- Given: A knapsack of size S (an integer), items 1,..., n, and the size s_i (integers) and value v_i (integers) of each item *i*.
- Find a subset of the *n* items that fits into the knapsack and maximizes the total value of the objects in the knapsack.

IP formulation:

• Take a binary variable x_i for each item *i*.

• $x_i = 1$ ($x_i = 0$) means that item *i* is (not) included in the knapsack.

$$\max \sum_{i=1}^{n} v_i x_i$$

$$\sum_{i=1}^{n} s_i x_i \leq S$$
$$x_i \in \{0, 1\} \ \forall i \in \{1, \dots, n\}$$

• The above formulation is a *0-1 integer program*: all variables have binary domains

Järvisalo ()

Different paradigms

- Different constraint solving paradigms have different strengths and weaknesses
 - Deciding whether a given finite-domain CSPs, Boolean formula (SAT), or (M)IP has a solution is NP-hard
 - LPs can be solved in polynomial time
 - Tradeoffs between expressiveness (high-level constraints, CP) and fast solver techniques (low-level, SAT)
 - Satisfaction vs optimization: SAT vs MaxSAT, CP, MIP
 - Variable domains (binary, integer, real, ...)

• CP / SAT / MIP solvers are algorithmically different

Topics

- A: Data Mining using constraint solvers / knowledge compilation
- B: Using machine learning to configure / speed-up constraint solving
- C: Clustering with constraints
- D: Learning Bayesian networks using constraint solvers / heuristic search
- E: Learning causal models using constraint solving
- F: Model counting and probabilistic inference
- G: miscellaneous ask me for further ones if necessary

Background: Propositional logic

Propositional formulas

- Syntax based on: Boolean variables X = {x₁, x₂, ...} Boolean connectives ∨, ∧, ¬
- The set of (propositional) formulas is the smallest set such that all Boolean variables are formulas and if φ₁ and φ₂ are formulas, so are ¬φ₁, (φ₁ ∧ φ₂), and (φ₁ ∨ φ₂).
 For example, ((x₁ ∨ x₂) ∧ ¬x₃) is a formula but ((x₁ ∨ x₂)¬x₃) is not.
- A formula of the form x_i or ¬x_i is called a *literal* where x_i is a Boolean variable.
- Usual shorthands:

$$\begin{aligned} \phi_1 &\to \phi_2: \ \neg \phi_1 \lor \phi_2 \\ \phi_1 &\leftrightarrow \phi_2: \ (\neg \phi_1 \lor \phi_2) \land (\neg \phi_2 \lor \phi_1) \\ \phi_1 &\oplus \phi_2: \ (\neg \phi_1 \land \phi_2) \lor (\phi_1 \land \neg \phi_2) \end{aligned}$$

Semantics

- Boolean variables are either true or false
- A truth assignment T is mapping from a finite subset X' ⊂ X to the set of truth values {1,0}.
- Consider a truth assignment $T : X' \longrightarrow \{1, 0\}$ which is appropriate to ϕ , i.e., $X(\phi) \subseteq X'$ where $X(\phi)$ be the set of Boolean variables appearing in ϕ .

•
$$T \models \phi$$
 (*T* satisfies ϕ) is defined inductively as follows:
If ϕ is a variable, then $T \models \phi$ iff $T(\phi) = 1$.
If $\phi = \neg \phi_1$, then $T \models \phi$ iff $T \not\models \phi_1$
If $\phi = \phi_1 \land \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ and $T \models \phi_2$
If $\phi = \phi_1 \lor \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ or $T \models \phi_2$

Example. Let $T(x_1) = 1$, $T(x_2) = 0$. Then $T \models x_1 \lor x_2$, and $T \not\models (x_1 \lor \neg x_2) \land (\neg x_1 \land x_2)$