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Abstract

We use the principle of inclusion and exclusion, com-
bined with polynomial time segmentation and fast Möbius
transform, to solve the generic problem of summing or
optimizing over the partitions of n elements into a given
number of weighted subsets. This problem subsumes var-
ious classical graph partitioning problems, such as graph
coloring, domatic partitioning, and MAX k-CUT, as well
as machine learning problems like decision graph learn-
ing and model-based data clustering. Our algorithm runs
in O∗(2n) time, thus substantially improving on the usual
O∗(3n)-time dynamic programming algorithm; the nota-
tion O∗ suppresses factors polynomial in n. This result im-
proves, e.g., Byskov’s recent record for graph coloring from
O∗(2.4023n) toO∗(2n). We note that twenty five years ago,
R. M. Karp used inclusion–exclusion in a similar fashion
to reduce the space requirement of the usual dynamic pro-
gramming algorithms from exponential to polynomial.

1. Introduction

Many important computational problems can be formu-
lated as partitioning problems: Given k functions f1, . . . , fk

from the subsets of an n-element set N to the real numbers,
with k ≤ n, compute the partition sum of f = (f1, . . . , fk),
defined as

par(f) :=
∑
A

k∏
c=1

fc(Ac) , (1)

where A = (A1, . . . , Ak) runs through all ordered par-
titions of N into k disjoint subsets of N . With specific
choices of the functions fc, and possibly replacing sum–
product by min–sum or max–sum, this class of partitioning
problems subsumes various graph partitioning problems, in-
cluding the chromatic number problem (k-colorability), the

domatic number problem, and MAX k-CUT, to name a few;
for other graph partitioning problems see Garey and John-
son [14]. For instance, to compute the chromatic number
of a given graph we let fc(S) = 1 if the vertex subset S
is an independent set, and 0 otherwise: then the chromatic
number is the smallest k for which par(f) > 0. Moreover,
there are machine-learning problems, such as model-based
data clustering and decision graph learning, which are par-
titioning tasks where the input, however, is not a graph.

With the above problem specification, it is clear that
computing par(f) requires at least Ω(k2n) time, for this is
the size of the input. But can we construct an algorithm that
achieves this lower bound, say, up to factors polynomial in
n?

In this paper we show that the answer is in the affir-
mative. Thereby, we improve the known time complex-
ity upper bounds down to O∗(2n) for several well-known
problems, including the aforementioned graph partition-
ing problems (throughout this paper, the notation O∗ sup-
presses factors polynomial in n and k). We present an
algorithm that is based on a novel combination of known
techniques. The basic idea is to formulate the partitioning
problem as a permutation–segmentation problem: Given a
sequence of n elements, we can efficiently sum over its par-
titions into disjoint blocks of consecutive elements. Then,
to sum over all permutations we use the principle of inclu-
sion and exclusion. The key observation is that the terms
in the inclusion–exclusion expression can be evaluated in
O∗(2n) total time by using the fast Möbius transform al-
gorithm (e.g., [17, 20]). Finally, the optimization variant,
finding a partitionA that maximizes (or minimizes) the sum∑

c fc(Ac), can be reduced to the problem of computing a
partition sum of the form (1) via an integer-coding tech-
nique and self-reducibility (for similar techniques see, e.g.,
[29, 19]).

Our algorithms do not rely on any intrinsic properties of
the functions fc. Thus, for specific problems, such as the
chromatic number problem, even faster algorithms may ex-
ist. On the other hand, the presented algorithms are suitable



for practical use, as their running times do not involve large
hidden constants (or high-degree polynomial factors).

1.1. Previous research

Karp [16] pioneered the use of inclusion–exclusion for
hard problems. Karp’s paper is very compact and has prob-
ably gone slightly unnoticed, as it focuses on cases where
the technique offers reduction in space requirement, com-
pared to a dynamic programming algorithm—typically with
a slight increase in run time. Later, Bax and Franklin
[2, 3, 4] used similar methods to count paths and cycles
in general graphs. These techniques provide an O∗(2n)-
time and polynomial space algorithm for counting Hamilto-
nian paths [16, 4, 30] and solving the traveling-salesperson
problem (TSP). (Karp [16] mentions TSP but does not pro-
vide details. Bax and Franklin have an unpublished paper
(1997), where an O∗(2n)-time and polynomial space algo-
rithm is given for TSP (assuming integer weights). Woeg-
inger [31] treats this as an open problem.)

Previous research on graph partitioning is well character-
ized by efforts put into the graph coloring problem. Lawler
[22] applied a straightforward dynamic programming algo-
rithm, which makes use of the following simple observa-
tion. A graph G on node set N is k-colorable if and only
if there is a node subset S such that S is an independent set
and the restriction of G to the remaining nodes N − S is
(k − 1)-colorable. By dynamic programming the subprob-
lems for different subsets S and numbers k can be solved in
O∗(3n) total time for n-vertex graphs. Lawler noticed that
it is sufficient to consider maximal independent sets, and by
a careful analysis of the number of maximal independent
sets, he was able to reduce the run time to O∗(2.4422n)
for arbitrary graphs and to O∗(1.4422n) for graphs that
are 3-colorable. Since then, Lawler’s 3-coloring algorithm
has been improved in a sequence of papers, with the cur-
rent record of O∗(1.3289n) due to Beigel and Eppstein [5].
There has been less progress in the general case. Woeg-
inger [30, Open Problem 3.5, page 7] posed the question
whether the general graph coloring problem can be solved
in time around O∗(2n). Eppstein [11] was the first to im-
prove Lawler’s result, to O∗(2.4151n); the current record,
based on Lawler’s approach, isO∗(2.4023n) by Byskov [9].
The algorithms behind these results all require exponential
memory. Recently, Bodlaender and Kratsch [8] provided a
polynomial space algorithm that runs in O∗(5.283n) time.

Lawler’s [22] dynamic programming algorithm has been
the starting point also for other partitioning problems. Riege
and Rothe [25] give anO∗(2.9216n)-time algorithm for de-
termining whether a given undirected graph can be parti-
tioned into three dominating sets (the three domatic number
problem). Koivisto and Sood [21] study an O∗(3n)-time
dynamic programming algorithm for partitioning small fea-

ture spaces in a machine learning context.
After submitting a preliminary version of this paper, I

became aware of some very recent progress on partitioning
problems. Fomin et al. [13] give anO∗(2.8805n) algorithm
for finding the domatic number; Riege et al. [26] give an
O∗(2.695n) algorithm for the three domatic number prob-
lem. For graph coloring Björklund and Husfeldt [6] give an
O∗(2.3236n) algorithm; remarkably, this algorithm is based
on the inclusion–exclusion principle.

Finally, Björklund and Husfeldt [7] (in these proceed-
ings, independently of my work) develop their algorithm
further and achieve an O∗(2n) time bound for graph color-
ing, domatic partitioning, and some other graph partitioning
problems; they also consider polynomial space algorithms
and approximation algorithms. The present paper differs
from that of Björklund and Husfeldt in three major respects:
we allow the subsets in a partition to have arbitrary weights
(not restricted to {0, 1}); we allow the weights to depend
on the component label (i.e., color); we consider optimiza-
tion tasks, in addition summation (counting) problems. A
minor, technical difference is also that Björklund and Hus-
feldt use perhaps a more direct inclusion–exclusion formu-
lation, considering constrained set covers rather than seg-
mentations of sequences.

1.2. Organization

The rest of this paper is organized as follows. In Sec-
tion 2 we describe some basic techniques: an inclusion–
exclusion formula for sums over permutations, a polyno-
mial time segmentation algorithm, and the fast Möbius
transform algorithm. In Section 3 we define the SUM

WEIGHTED PARTITIONS problem and present an O∗(2n)-
time algorithm for it. In Section 4 we show how the op-
timization variant, the MAX WEIGHTED PARTITION prob-
lem, can be solved in O∗(2n) time by a reduction to SUM

WEIGHTED PARTITIONS. In Section 5 we demonstrate the
generality of the method by applying it to several well-
known partitioning problems, including graph coloring, do-
matic partitioning, and MAX k-CUT. Moreover, in Sec-
tion 6 we briefly describe how computation of the partition
sum arises naturally in two machine learning applications:
Bayesian model-based data clustering and decision graph
learning. In Section 7 we conclude by pointing directions
for future research.

2. Preliminaries

We begin by introducing the model of computation and
some basic notation and definitions used throughout this pa-
per. We also describe some key techniques that constitute
the building blocks of the main algorithm presented in Sec-
tion 3.



2.1. Model of computation

The model of computation used in this work is the ran-
dom access machine with the restriction that arithmetic
operations are considered unit-time only for integers of
bounded size. The algorithms described in this paper rely
heavily on basic arithmetic operations, and it will be obvi-
ous that the time complexity is determined by the required
number of operations. To avoid ugly expressions in the
running time bounds, we often find it convenient to spell
out the number of arithmetic operations and the size of the
operands. Accordingly, we may say that an algorithm uses
O(α) arithmetic operations with integers of length O(β).
The corresponding time complexity is then O(α · µ(β)),
where µ(β) = β log β log log β, since multiplication of two
β-bit integers takes O(µ(β)) time, while addition and sub-
traction take O(β) time [28].

2.2. Summing over permutations via
inclusion–exclusion

Throughout this paper, we let N denote an n-element
ground set; without loss of generality we let N :=
{1, . . . , n} for convenience. We will mainly consider sub-
sets of N , functions from N to N , and functions from
2N = {S : S ⊆ N} to R (the real line). If S is a sub-
set of N we let F(S) denote the set of all mappings from
N to S. A function σ in F(N) is a permutation on N if σ
is a bijection; we denote the set of all permutations onN by
Sn. Note that F(S) ⊂ F(T ) whenever S ⊂ T .

We can represent the set of permutations on N by re-
moving functions that are not permutations from the set of
all functions:

Sn = F(N) −
⋃
i∈N

F(N − {i}) . (2)

Thus, the principle of inclusion and exclusion gives us the
following important result, generalizing, e.g., Ryser’s [27]
formula for the permanent of a matrix.

Theorem 1. Let g be a mapping from F(N) to the real
numbers. Then

∑
σ∈Sn

g(σ) =
∑
S⊆N

(−1)|N−S| ∑
σ∈F(S)

g(σ) .

Proof. Use (2) and the principle of inclusion and exclusion.
Note that

⋂
i∈T F(N − {i}) = F(N − T ).

This result is useful when direct summing over the per-
mutations on N is hard but one can efficiently sum over all
functions from N to S, for any S ⊆ N .

2.3. Summing over segmentations in poly-
nomial time

Segmentations are partitions of ordered sets into disjoint
blocks. Formally, we find it convenient to operate with in-
dex sets: A k-segmentation of a sequence 1, 2, . . . , n is a
vector B = (b0, b1, . . . , bk) with 0 = b0 ≤ b1 ≤ · · · ≤
bk = n. We will denote the block of consecutive ele-
ments a + 1, a + 2, . . . , b by ab. Alternatively, we may
represent the segmentation B by the vector (B1, . . . , Bk)
where Bi = bi−1bi. We let Bk denote the set of all k-
segmentations of 1, 2, . . . , n.

Let hc, for c = 1, . . . , k, be a function from the blocks
{ab : 0 ≤ a ≤ b ≤ n} to R. We define the segmentation
sum of h = (h1, . . . , hk) as

seg(h) :=
∑
B

k∏
c=1

hc(Bc) ,

whereB = (B1, . . . , Bk) runs through all segmentations in
Bk

We can efficiently sum over segmentations by dynamic
programming (for related algorithms see, e.g., [24]):

Theorem 2. Let n and k be integers with 1 ≤ k ≤ n.
Let h1, . . . , hk be functions from {ab : 0 ≤ a ≤ b ≤ n}
to the integer range [−M,M ]. Then the segmentation sum
seg(h) can be computed inO(kn2) operations with integers
of length O(k log(nM)).

Furthermore, if for each c the value hc(ab) only depends
on the length b − a and hc is represented as a vector of
length n + 1, then seg(h) can be computed in O(kn logn)
operations with integers of length O(k log(nM)).

Proof (sketch). Consider the functions g1, . . . , gk defined at
b = 0, 1, . . . , n by

g1(b) := h1(0b) and

gc(b) :=
b∑

a=0

gc−1(a)hc(ab) for c = 2, 3, . . . , k .

Observe that gk(n) = seg(h). By using the recursion,
gk(n) can be computed in O(kn2) additions and multipli-
cations with numbers from the range [−nkMk, nkMk].

For the second part, notice that each gc (for c ≥ 2) is
obtained as the convolution of the functions gc−1 and hc.
Using the fast Fourier transform the number of arithmetic
operations reduces to O(kn log n).

2.4. The fast Möbius transform on subset
lattices

The Möbius transform on the subset lattice (2N ,⊆) of a
set N is an operator that maps any function f : 2N → R to



another function f̂ : 2N → R, defined by

f̂(S) :=
∑
T⊆S

f(T ) for all S ⊆ N .

We say that f̂ is the Möbius transform of f .
The straightforward way to compute the Möbius trans-

form (i.e., f̂(S) at every S) uses O(3n) additions. How-
ever, the fast Möbius transform algorithm (FMT) uses only
O(n2n) additions ([17, 20], [18, Chap. 3]).

Theorem 3. LetN be a set of n elements. Then the Möbius
transform on the subset lattice of N , restricted to functions
to the range [−M,M ], can be computed in O(n2n) addi-
tions with integers of length O(n logM).

Proof (sketch). Consider the functions g0, g1, . . . , gn de-
fined at each S ⊆ N by

g0(S) := f(S) and

gi(S) :=
∑

T :T∪{i}=S

gi−1(T ) for i = 1, 2, . . . , n .

One can show by induction on i that gi(S) =
∑

T f(T ),
where T runs through all subsets of S such that {j ∈ T :
j > i} = {j ∈ S : j > i}. By using the recursion, each gi

can be computed in O(2n) additions. Thus, f̂ = gn can be
computed in O(n2n) additions with integers from the range
[−2nM, 2nM ].

3. Summing over partitions

We now combine the three techniques described in the
previous section to solve the following “counting” problem.

SUM WEIGHTED PARTITIONS

Input: An n-element set N and k ≤ n func-
tions f1, . . . , fk from 2N to the integer range
[−M,M ].

Output: The value of the sum par(f) :=∑
A

∏k
c=1 fc(Ac), where A = (A1, . . . , Ak)

runs through all ordered k-partitions of N .

We will show that SUM WEIGHTED PARTITIONS can
be solved in O∗(2n) time, up to factors logarithmic in M .
The basic idea is to sum over all ordered partitions by sum-
ming over all segmentations of all permutations (Lemma 4
below). Using inclusion–exclusion (Theorem 1), we show
that the sum over all permutations can be expressed in terms
of a sum over all functions from N to a subset S ⊆ N (one
sum for each S). We show that this sum can, in turn, be
expressed as a segmentation sum, where the weight of a
segment is obtained via Möbius transformation.

First we define a suitable function from F(N) to R (cor-
responds to the function g in Theorem 1). For any function
σ in F(N) define

seg(f, σ) :=
∑
B

k∏
c=1

fc(σ(Bc))/(|σ(Bc)|!) ,

where B runs through the k-segmentations of 1, . . . , n.

Lemma 4. We have

par(f) =
∑

σ∈Sn

seg(f, σ) .

Proof. Consider the function ψ that maps each (σ,B) from
Sn × Bk to the ordered k-partition ψ(σ,B) = A =
(A1, . . . , Ak) by Ac = σ(Bc). We observe that the preim-
age ψ−1(A) ⊆ Sn × Bk has exactly

∏
c |Ac|! members.

Thus, for any function g, we have

∑
A

g(A) =
∑

σ∈Sn

∑
B

g(ψ(σ,B))
/ k∏

c=1

|σ(Bc)|! .

Substituting g(A) =
∏

c fc(Ac) yields the claimed expres-
sion.

Next we show that the sum of terms seg(f, σ) over all
functions σ in F(S), for any S ⊆ N , can represented as a
segmentation sum. To this end, for each c = 1, . . . , k and
� = 0, 1, . . . , n define the function f �

c by

f �
c (T ) := fc(T ) ·

{
�

|T |
}

for T ⊆ N ,

where

{p
q

}
:=

1
q!

q∑
j=0

(−1)j

(
q

j

)
(q − j)p

denotes the number of partitions of a p-element set into q
nonempty subsets, the Stirling number of the second kind.
We let f̂ �

c denote the Möbius transform of f �
c (on the subset

lattice of N ).

Lemma 5. Let S be a subset of N . Then

∑
σ∈F(S)

seg(f, σ) =
∑
B

k∏
c=1

f̂ |Bi|
c (S) = seg(hS) ,

where hS := (hS
1 , . . . , h

S
k ) with hS

c (ab) := f̂ b−a
c (S) for

1 ≤ a ≤ b ≤ n.

Proof. Write the first summation of the claim as

∑
B

∑
σ∈F(S)

k∏
c=1

fc(σ(Bc))/(|σ(Bc)|!) =
∑
B

k∏
c=1

Fc(Bc) ,



with the shorthand

Fc(Bc) :=
∑

σc : Bc→S

fc(σc(Bc))/(|σ(Bc)|!) ,

where σc runs through all functions from Bc to S. We ob-
serve that the summand depends only on the image of σc,
say T ⊆ S. Thus,

Fc(Bc) =
∑
T⊆S

fc(T ) ·
{|Bc|
|T |

}
=

∑
T⊆S

f |Bc|
c (T ) = f̂ |Bc|

c (S) ,

as
{

�
q

}
· q! is the number of surjections from an �-element

set to a q-element set. This completes the proof of the first
equality in the claim.

The second equality in the claim follows directly from
the definitions.

It remains to combine the above lemmas.

Theorem 6. We have

par(f) =
∑
S⊆N

(−1)|N−S| seg(hS) ,

where hS is as defined in Lemma 5.

Proof. Use first Lemma 4, then Theorem 1, and finally
Lemma 5.

Having this representation it is easy to prove the main
result.

Theorem 7. The problem SUM WEIGHTED PARTITIONS

can be solved in O(kn22n) operations with integers of
length O(n log(nM)), thus, in O∗(2nµ(logM)) time,
where µ(β) = β log β log log β.

Proof. Consider the following algorithm.

1. For all c = 1, . . . , k and � = 0, 1, . . . , n: compute f̂ �
c .

2. For all S ⊆ N and c = 1, . . . , k: compute hS
c .

3. For all S ⊆ N : compute seg(hS).

4. Evaluate par(f) via the inclusion–exclusion formula
given in Theorem 6.

By Theorem 6 this algorithm correctly computes par(f).
Let us analyze the running time of the four steps. Step 1

can be computed using the fast Möbius transform (The-
orem 3 in O(kn22n) operations with integers of length
O(log(nnM)) = O(n log(nM)). Step 2 is obviously no
harder than Step 1, given the functions f̂ �

c . Step 3 can be
computed by using the polynomial time segmentation algo-
rithm (Theorem 2) in O(2nkn logn) arithmetic operations
with integers of lengthO(log(nknnM)) = O(n log(nM)).
Step 4 is obviously no harder than Step 3, given the val-
ues seg(hS) Thus, SUM WEIGHTED PARTITIONS can be
solved in O(kn22n) operations with integers of length
O(n log(nM)).

4. Finding an optimal partition

Next we show how an optimal partition can be found by
solving a sequence of related counting problems. We use
rather standard techniques of coding with large integers and
self-reducibility (see, e.g., [29, 19]).

Formally we consider the following problem.

MAX WEIGHTED PARTITION

Input: An n-element set N and k ≤ n func-
tions f1, . . . , fk from 2N to the integer range
[−M,M ].

Output: An ordered partition A = (A1, . . . , Ak)
of N such that the sum

∑k
c=1 fc(Ac) is max-

imized.

First we show that the maximum total weight,

W∗(f,N) := max
A

k∑
c=1

fc(Ac) ,

can be computed by a reduction to SUM WEIGHTED PAR-
TITIONS. We use a straightforward coding technique, which
has the drawback that the time complexity will depend
about linearly on the maximum weightM . A fairly detailed
proof is included to support our claims concerning the poly-
nomial factors in the time complexity.

Lemma 8. Let N and f1, . . . , fk be as above. The maxi-
mum W∗(f,N) can be computed in O(kn22n) operations
with integers of length O(Mn2 logn).

Proof. Suppose first that each fc gets only nonnegative val-
ues. Denote W∗ := W∗(f,N) for short. Consider the fol-
lowing construction. Choose the smallest integer β = 2d

such that β is greater than the number of all ordered k-
partitions of N ; clearly, d ≤ n log2 n suffices. For c =
1, . . . , k, define gc : 2N → {0, 1, . . . , } by gc(S) := βfc(S),
for S ⊆ N . We observe that

par(g) = α0 + α1β + · · · + αkMβkM ,

where αr is the number of k-partitions of N for which the
sum

∑k
c=1 fc(Ac) equals r. Consequently W∗ equals the

largest r for which αr > 0. Given par(g) the coefficients
αr can be computed in time O(dkM). So, the time com-
plexity of computing W∗ is determined by the complex-
ity of computing par(g). By Theorem 7, par(g) can be
computed in O(kn22n) operations with integers of length
O(n log(nM ′)), where M ′ = O(βM ) = O(nnM ), imply-
ing the claimed bound.

In the case that some fc(S) is negative, shift the values of
f1, . . . , fk by adding the constant M , operate on the range
[0, 2M ], and finally subtract the total shift, kM .



We can then use self-reducibility to find an optimal parti-
tion by choosing a “color” c ∈ {1, . . . , k} for each element
in N , one by one, such that a suitably defined smaller sub-
problem still has the same maximum. This leads to only a
k-fold increase in the total run time, as the smaller subprob-
lems are exponentially easier. We omit the details.

Theorem 9. The problem MAX WEIGHTED PARTITION

can be solved in O(k2n22n) operations with integers of
length O(Mn2 logn), thus, in O∗(2nµ(M)) time, where
µ(β) = β log β log log β.

5. Application to graph partitioning

Many classical graph partitioning problems take an undi-
rected graph G with n vertices as the input. In MINIMUM

GRAPH COLORING the task is to find a partition of the ver-
tices into a minimum number k of disjoint sets A1, . . . , Ak

such that eachAc is an independent set ofG. The minimum
k is the chromatic number ofG. The MAXIMUM DOMATIC

PARTITION problem is to find a partition of the vertex set
into a maximum number k of disjoint sets A1, . . . , Ak such
that each Ac is a dominating set of G. The maximum
k is the domatic number of G. MINIMUM COLOR SUM

is yet another problem where the task is find a partition
A1, . . . , Ak such that each Ac is an independent set of G
and the weighted sum |A1| + 2|A2| + · · · + k|Ak| is min-
imized. Clearly, these problems can be efficiently reduced
to MAX WEIGHTED PARTITION.

Theorem 10. The problems MINIMUM GRAPH COLOR-
ING, MAXIMUM DOMATIC PARTITION, and MINIMUM

COLOR SUM can be solved in O∗(2n) time.

Some graph partitioning problems are defined on edge-
weighted graphs. The MIN k-PARTITION problem is to find
a partition A1, . . . , Ak such that the total weight of edges
within the sets Ac is minimized. Its dual, the MAX k-CUT

problem, is to find a partitionA1, . . . , Ak such that the total
weight of cutting edges (edges between two sets Ac and
Ac′) is maximized. Again, these problems can be reduced
to MAX WEIGHTED PARTITION.

Theorem 11. The problems MAX k-PARTITION and
MAX k-CUT, restricted to integer weights from the range
[−M,M ], can be solved in O∗(2nµ(M)) time, where
µ(β) = β log β log log β.

These problems, of course, do not form an exhaustive list
of problems that reduce to MAX WEIGHTED PARTITION or
SUM WEIGHTED PARTITIONS. The reader can easily come
up with other examples (e.g., from [14]; see also [7]).

6. Application to data clustering and decision
graph learning

Let us consider Bayesian model-based clustering (see,
e.g., [1, 12, 15, 23]). Let y1, . . . , ym be data points. We
let A be a partition of the index set {1, . . . ,m} into clusters
A1, . . . , Ak. Each cluster Ac is associated with a compo-
nent model parameterized by θc, such that the distribution
of yj given that j belongs to Ac is p(yj| θc). Then the total
probability of the data y is given by

p(y) =
∑
A

k∏
c=1

fc(Ac) = par(f) ,

where

fc(Ac) := ρc(Ac)
∫ ∏

j∈Ac

p(yj | θc)qc(θc)dθc , (3)

with some prior distributions ρc and qc. Computing p(y) for
different numbers k is useful, e.g., for selecting a plausible
number of clusters. For finding an optimal clustering, one
usually considers the corresponding max–sum expression.

In classification and related tasks, one often seeks clus-
ters in a feature space. Decision graphs generalize the pop-
ular decision tree models in that they can represent arbitrary
(not only tree-structured) partitions of a feature space (e.g.,
[10]). A probabilistic decision graph defines a conditional
distribution of a class variable y given a feature vector x. A
decision graph specifies a partitioning of the feature space
X into disjoint subsets A1, . . . , Ak. Each partition Ac is
assigned a simple model parametrized by θc, such that the
distribution of y given that x belongs to Ac is p(y|x, θc).

As many different decision graphs can specify the same
partitionA, we consider the problem of evaluating the over-
all goodness of a class of decision graph models in the
light ofm data points (x1, y1), . . . , (xm, ym). Suppose that
X is a finite set of n elements. In a Bayesian approach
[21], the partition and the parameters θ = (θ1, . . . , θk)
are assigned prior distributions, p(A) =

∏
c ρc(Ac) and

p(θ) =
∏

c qc(θc). Then the conditional probability of
y = (y1, . . . , ym) given x = (x1, . . . , xm) can be written
as

p(y|x) =
∑
A

k∏
c=1

fc(Ac) = par(f) ,

where

fc(Ac) := ρc(Ac)
∫ m∏

j=1:xj∈Ac

p(yj |xj , θc)qc(θc)dθc . (4)

The quantity p(y|x) is useful, for instance, in feature selec-
tion: one computes p(y|x) for different feature variables x



and selects the one that gives the largest value. If one is also
interested in the best partition, the sum–product expression
is replaced by the obvious max–sum version.

For both data clustering and decision graph learning the
parametric models and the priors ρc and qc are usually cho-
sen such that the terms (3) and (4) can be efficiently com-
puted [10, 21]. Then p(y) and p(y|x) can be computed in
O∗(2m) andO∗(2n) arithmetic operations, respectively, us-
ing the algorithm for SUM WEIGHTED PARTITIONS. How-
ever, it should be noted that then the weights are typically
rational numbers rather than small integers; it is not clear
whether fixed precision computation produces numerically
stable results, or whether it is better to operate with large
integers to get accurate results. Likewise, it seems that our
algorithm for MAX WEIGHTED PARTITION is not suitable
for solving the optimization versions of these problems.

7. Concluding remarks

While the presented algorithms for SUM WEIGHTED

PARTITIONS and MAX WEIGHTED PARTITION are near
optimal in a certain sense, there remain some interesting
open questions. Can we reduce the time complexity of
MINIMUM GRAPH COLORING to o(2n) by exploiting the
very special properties of independent sets? For MAX

WEIGHTED PARTITION, can we reduce the dependence of
the maximum weight M from about linear to about loga-
rithmic?

The memory requirement of the presented algorithms is
exponential in n even when the input functions have a poly-
nomial representation, e.g., as a weighted graph; this is be-
cause we use the fast Möbius transform algorithm. How-
ever, by replacing FMT by a straightforward algorithm,
which for every set S simply goes through all its subsets
in a brute-force manner, we obtain the result below. Can
we find faster polynomial space algorithms? (For positive
examples see Björklund and Husfeldt [7] in these proceed-
ings.)

Theorem 12. MINIMUM GRAPH COLORING, MAXIMUM

DOMATIC PARTITION, MINIMUM COLOR SUM, MIN k-
PARTITION, and MAX k-CUT can be solved in polyno-
mial space in O∗(3nµ(M)) time, provided that the input
weights are from the integer range [−M,M ]; here µ(β) =
β log β log log β.
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