
The Travelling Salesman Problem in Bounded
Degree Graphs?

Andreas Björklund1, Thore Husfeldt1, Petteri Kaski2, and Mikko Koivisto2

1 Lund University, Department of Computer Science, P.O.Box 118, SE-22100 Lund,
Sweden, e-mail: andreas.bjorklund@logipard.com, thore.husfeldt@cs.lu.se
2 Helsinki Institute for Information Technology HIIT, Department of Computer

Science, University of Helsinki, P.O.Box 68, FI-00014 University of Helsinki, Finland,
e-mail: firstname.lastname@cs.helsinki.fi,

Abstract. We show that the travelling salesman problem in bounded-
degree graphs can be solved in time O((2 − ε)n), where ε > 0 depends
only on the degree bound but not on the number of cities, n. The algo-
rithm is a variant of the classical dynamic programming solution due to
Bellman, and, independently, Held and Karp. In the case of bounded in-
teger weights on the edges, we also present a polynomial-space algorithm
with running time O((2 − ε)n) on bounded-degree graphs.

1 Introduction

There is no faster algorithm known for the travelling salesman problem than
the classical dynamic programming solution from the early 1960s, discovered by
Bellman [2, 3], and, independently, Held and Karp [9]. It runs in time within a
polynomial factor of 2n, where n is the number of cities. Despite the half a cen-
tury of algorithmic development that has followed, it remains an open problem
whether the travelling salesman problem can be solved in time O(1.999n) [15].

In this paper we provide such an upper bound for graphs with bounded
maximum vertex degree. For this restricted graph class, previous attemps have
succeeded to prove such bounds when the degree bound, ∆, is three or four.
Indeed, Eppstein [6] presents a sophisticated branching algorithm that solves
the problem in time 2n/3nO(1) = O(1.260n) on cubic graphs (∆ = 3) and in
time O(1.890n) for ∆ = 4. Recently, Iwama and Nakashima [10] improved the
former bound to O(1.251n). These algorithms run in space polynomial in n.
Very recently, Gebauer [7] gave an exponential-space algorithm that runs in
time (∆ − 1)n/2nO(1) and can also list the Hamiltonian cycles, improving the
time bound for ∆ = 4 to O(1.733n). However, for ∆ > 4 none of these techniques
seems to improve upon O(2n).

We show that, perhaps somewhat surprisingly, with minor modifications the
classical Bellman–Held–Karp algorithm can be made to run in time O((2− ε)n),
where ε > 0 depends only on the degree bound:
? This research was supported in part by the Academy of Finland, Grants 117499

(P.K.) and 109101 (M.K.).

Theorem 1 The travelling salesman problem for an n-vertex graph with maxi-
mum degree ∆ = O(1) can be solved in time ξn

∆nO(1) with

ξ∆ = (2(∆+1) − 2∆− 2)1/(∆+1) .

Our main contribution is indeed more analytical than algorithmic, and largely
relies on exploiting variants of a beautiful lemma due to Shearer [5] (“Shearer’s
Entropy Lemma”) that in a combinatorial context enables one to derive upper
bounds for the size of a set family based on the sizes of its projections.

We used this lemma recently in connection with analysing expedited versions
of the FFT-like algorithm of Yates to solve covering problems for bounded-degree
graphs via Moebius inversion [4], realising only later that classical algorithms for
the travelling salesman problem yield to the same analytical tools. In general, this
approach seems to be new and quite versatile for bounding the running time of
dynamic programming algorithms on restricted graph classes; to illustrate this,
we prove a stronger bound for regular triangle-free graphs:

Theorem 2 The travelling salesman problem for a triangle-free n-vertex graph
where every vertex has degree ∆ = O(1) can be solved in time ηn

∆nO(1) with

η∆ = (22∆ − (∆ + 1)2∆+1 + 2(∆2 + 1))1/(2∆) .

To motivate a yet further illustration, we observe that the algorithms in
Theorems 1 and 2 both require exponential space, which immediately prompts
the question whether there exists a polynomial-space algorithm with running
time (2 − ε)n on bounded-degree graphs. This turns out to be the case if the
edge weights are bounded integers.

Indeed, a classical polynomial-space algorithm due to Karp [11] and, inde-
pendently, Kohn, Gottlieb, and Kohn [12], can be made to run in time (2− ε)n

on bounded-degree graphs, again with only minor tailoring.
Somewhat perplexingly, we characterise the running time of the polynomial-

space algorithm in terms of the connected dominating sets of the input graph. To
properly state the result, we recall the definitions here. For a graph G and a set
W ⊆ V of vertices, the set W is a connected set if the induced subgraph G[W]
is connected; and, a dominating set if every vertex v ∈ V is in W or adjacent
to a vertex in W . Denote by C the family of connected sets of G, and by D the
family of dominating sets of G.

Theorem 3 The travelling salesman problem for an n-vertex graph with bounded
integer weights can be solved in time |C∩D|nO(1) and in space nO(1). In partic-
ular, for maximum degree ∆ it holds that |C ∩D| ≤ γn

∆ + n, where

γ∆ = (2∆+1 − 2)1/(∆+1) .

Remark. Table 1 displays the constants in Theorems 1, 2, and 3 for small
values of ∆. We expect there to be room for improvement in each of the derived
bounds. In particular, in this regard we would like to highlight the question of

∆ 3 4 5 6 7 8 · · ·

β∆ 1.9680 1.9874 1.9948 1.9978 1.9991 1.9999 · · ·
γ∆ 1.9343 1.9744 1.9894 1.9955 1.9980 1.9991 · · ·
ξ∆ 1.6818 1.8557 1.9320 1.9672 1.9840 1.9921 · · ·
η∆ 1.6475 1.8376 1.9231 1.9630 1.9820 1.9912 · · ·

Fig. 1. The constants in Theorems 1, 2, and 3 for small values of ∆.

asymptotically tight upper bounds for |C|, |D|, and |C ∩D| on bounded-degree
graphs (cf. Lemma 6). Such bounds should be of independent combinatorial
interest, and we fully expect better bounds to occur in the literature, even if we
were unable to find these.

Organisation. The combinatorial analysis tools are established in Sect. 2. We
establish a precursor to Theorem 1 in Sect. 3 using a simple argument that
illustrates the main ideas of our approach, but leads to a weaker running time
bound βn

∆nO(1) with β∆ = (2∆+1 − 1)1/(∆+1). Theorems 1, 2, and 3 are proved
in Sect. 4, 5, and 6, respectively.

1.1 Conventions

We consider the directed, asymmetric variant of the travelling salesman problem.
A problem instance consists of an n-element ground set V and a weight d(u, v) ∈
{0, 1, . . .}∪{∞} for all distinct u, v ∈ V . A tour is a permutation (v1, v2, . . . , vn)
of V . The weight of a tour is d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn) + d(vn, v1).
Given a problem instance, the task is to find the minimum weight of a tour. For
further background on the travelling salesman problem, we refer to [1, 8, 13].

We associate with each problem instance an undirected graph G with vertex
set V and edge set E such that any two distinct u, v ∈ V are joined by an edge
{u, v} if and only if d(u, v) < ∞ or d(v, u) < ∞. Unless explicitly indicated
otherwise, all graph-theoretic terminology refers to the graph G. For standard
graph-theoretic terminology we refer to [14].

2 Combinatorial preliminaries

We are interested in upper bounds for the sizes of certain set families associated
with a graph with maximum degree ∆. Our starting point is the following lemma
due to Shearer (see [5]).

Lemma 4 (Chung, Frankl, Graham, and Shearer [5]) Let V be a finite
set with subsets A1, A2, . . . , Ar such that every v ∈ V is contained in at least
δ subsets. Let F be a family of subsets of V . For each 1 ≤ i ≤ r define the
projections Fi = {F ∩Ai : F ∈ F}. Then,

|F|δ ≤
r∏

i=1

|Fi| .

First, we bring the lemma into a format that is more useful for our present
purposes. For instance, we will find it handy to leave out a constant number s of
special subsets. The following lemma abstracts and to a certain extent generalises
an analysis we have presented earlier [4, Theorem 3.2].

Lemma 5 Let V be a finite set with r elements and with subsets A1, A2, . . . , Ar

such that every v ∈ V is contained in exactly δ subsets. Let F be a family of
subsets of V and assume that there is a log-concave function f ≥ 1 and an
0 ≤ s ≤ r such that the projections Fi = {F ∩Ai : F ∈ F} satisfy |Fi| ≤ f(|Ai|)
for each s + 1 ≤ i ≤ r. Then,

|F| ≤ f(δ)r/δ
s∏

i=1

2|Ai|/δ .

Proof. Let ai = |Ai| and note that a1 +a2 + · · ·+ar = δr. By Lemma 4, we have

|F|δ ≤
s∏

i=1

2ai

r∏
i=s+1

f(ai) ≤
s∏

i=1

2ai

r∏
i=1

f(ai) . (1)

Since f is log-concave, Jensen’s inequality gives

1
r

r∑
i=1

log f(ai) ≤ log f((a1 + a2 + · · ·+ ar)/r) = log f(δ) .

Taking exponentials and combining with (1) gives

|F|δ ≤ f(δ)r
s∏

i=1

2ai ,

which yields the claimed bound.

For Theorem 1 it suffices to consider the special case where the Ai are defined
in terms of neighbourhoods of the vertices of G. For each v ∈ V , define the closed
neighbourhood N(v) by

N(v) = {v} ∪ {u ∈ V : u and v are adjacent in G} .

Begin by defining the subsets Av for v ∈ V as Av = N(v). Then, for each u ∈ V
with degree d(u) < ∆, add u to ∆− d(u) of the sets Av not already containing
it (it does not matter which). This ensures that every vertex u ∈ V is contained
in exactly ∆ + 1 sets Av. Figure 2(a) shows an example. For each v ∈ V , call
the set Av so obtained the region of v.

Lemma 6 An n-vertex graph with maximum vertex degree ∆ has at most βn
∆+n

connected sets and at most γn
∆ + n connected dominating sets, where

β∆ = (2∆+1 − 1)1/(∆+1), γ∆ = (2∆+1 − 2)1/(∆+1) .

v

(a) (b)

Fig. 2. (a) The region Av of a vertex v in a graph with ∆ = 5. (b) Impossible projection
for a connected set C ∈ C, |C| ≥ 2; if only the black vertex belongs to C then C cannot
be connected, because all of v’s neighbours belong to Av.

Proof. Recall that by C we denote the family of connected sets and by D the
family of dominating sets. Let C′ = C \ {{v} : v ∈ V }. Then for every C ′ ∈ C′

and every region Av, C ′ ∩ Av 6= {v}; see Fig. 2(b). Thus the number of sets in
the projection C′v = {F ∩Av : F ∈ C} is at most 2|Av| − 1. To obtain the bound
on connected sets, apply Lemma 5 with the log-concave function f(a) = 2a − 1
and s = 0. To obtain the upper bound for |C ∩D|, observe that, in addition to
the singleton projection excluded for a connected set, also the empty projection
is excluded for each region in the case of a connected dominating set.

3 Connected sets

This section establishes Theorem 1, but with a weaker bound; the purpose is to
show a very straightforward argument for an O

(
(2− ε)n

)
upper bound.

Our starting point is the dynamic programming solution, which we proceed to
recall. Select an arbitrary reference vertex s ∈ V . For T ⊆ V and v ∈ T , denote
by D(T, v) the minimum weight of a directed path (in the complete directed
graph with vertex set V and edge weights given by d) from s to v that consists
of the vertices in T . The minimum weight of a tour is then solved by computing

min
v∈V

D(V, v) + d(v, s) .

To construct D(T, v) for all s ∈ T ⊆ V and all v ∈ T , the algorithm starts with
D({s}, s) = 0, and evaluates the recurrence

D(T, v) = min
u∈T\{v}

D(T \ {v}, u) + d(u, v) . (2)

The values D(T, v) are stored a table when they are computed to avoid redun-
dant recomputation, an idea sometimes called memoisation. The space and time
requirements are within a polynomial factor of 2n, the number of subsets T ⊆ V .

Our idea to expedite this will restrict the family of subsets for which (2)
is ever evaluated. To this end, consider any prefix (v1, v2, . . . , vk) of a finite-
weight tour with v1 = s. The set of vertices T = {v1, v2, . . . , vk} satisfies certain
connectivity properties that we want to exploit. In the present section, we use
merely the trivial observation that T must be a connected set. Put otherwise,
D(T, v) = ∞ unless T is a connected set. Thus, it suffices to evaluate (2) not

over all subsets of V , but only over the family of connected sets C. A bottom-up
evaluation of (2) with memoisation gives an algorithm for solving the travelling
salesman problem within time |C| up to polynomial factors. (Indeed, whether
T ∈ C can be tested in polynomial time by e.g. depth-first search; furthermore,
for every T ∈ C with |T | > 1 there exists at least one v ∈ T with T \ {v} ∈ C—
consider the leaves of a spanning tree of G[T]—which enables T to be discovered
from T \ {v}.) With Lemma 6 this gives O

(
(2− ε)n

)
running time when G has

maximum degree O(1).

4 Transient sets

This section establishes Theorem 1, which amounts to a more careful analysis of
sets of vertices T occurring in prefixes of a tour with finite weight. For example,
such a set T cannot contain all vertices adjacent to a vertex v /∈ T∪N(s), because
then the tour necessarily either avoids v or gets stuck at v without returning to
s.

In precise terms, a vertex set T ⊆ V is transient with endpoint u ∈ T if it is
connected, s ∈ T , and the following holds for every vertex v /∈ N(s) ∪N(u):

1. if v belongs to T , then so do at least two of its adjacent vertices;
2. if v does not belong to T , then neither do at least two of its adjacent vertices.

Note that testing if a vertex set is transient is a polynomial time task, we merely
need to run a depth-first-search and checking each vertex neighbourhood for the
two properties above.

We let Tu denote the family of vertex sets that are transient with endpoint
u.

Observe that any prefix (v1, v2, . . . , vk) of a finite-weight tour with v1 = s and
vk = u has the property that {v1, v2, . . . , vk} ∈ Tu. It thus suffices to consider
the recurrence

D(T, v) = min
u∈T\{v}

T\{v}∈Tu

D(T \ {v}, u) + d(u, v) , (3)

where we tacitly assume that the minimum of an empty set is ∞.
A top-down evaluation of (3) with memoisation leads to running time bounded

by, up to polynomial factors,∑
u∈V

|Tu| ≤ n max
u∈V

|Tu| . (4)

To derive an upper bound for the size of Tu, consider an arbitrary u ∈ V
and set δ = ∆ + 1. Call a vertex v ∈ V special if N(v)∩ (N(s)∪N(u)) 6= ∅, and
observe that there are at most 2(1 + ∆2) < 2δ2 special vertices.

Now consider a non-special v ∈ V and an arbitrary T ∈ Tu. Let av = |Av|.
We can rule out the following projections Av ∩ T ; see Fig. 3 for an example.

v

Fig. 3. A non-special region Av (left) and the impossible intersections of Av with a
(black) transient set.

1. v ∈ T and |Av ∩ T | = 1, so v has no neighbours in T . The tour never enters
or leaves v. This can happen only if v is special.

2. v ∈ T but |Av ∩T | = 2, so v has at most one neighbour in T . The tour never
leaves v. This can happen only if v is special. There are at least av − 1 such
cases (more if Av contains vertices not connected to v).

3. v /∈ T but Av \ {v} ⊆ T , so all of v’s neighbours are in T . When the tour
arrives in v it cannot leave. This can happen only if v is special.

4. v /∈ T but |Av ∩ T | = av − 2, so v has at most one neighbour also not
in T . When the tour arrives in v it cannot leave. This can happen only if
v is special. There are av − 1 such cases (more if Av contains vertices not
connected to v).

In total, we can rule out 2av of the 2av potential projections. We now want to
apply Lemma 5. To this end, we have to be slightly more careful as regards the
arbitrary construction of the regions Av (recall Sect. 2). In particular, whenever
v is special, we want |Av| ≤ δ. For all large enough n and δ = O(1) this is easily
arranged by not inserting additional vertices into a special Av when |Av| = δ.
Thus, we can apply Lemma 5 with f(a) = 2a − 2a and at most 2δ2 special
projectors Av, each of size at most δ. We conclude that

|Tu| ≤ (2δ − 2δ
)n/δ22δ2

. (5)

Theorem 1 follows, with the asymptotic notation absorbing a factor n from (4)
and a constant factor from (5).

5 Triangle-free graphs

We now analyse the vertex sets of tour prefixes using a family of subsets Be

centered around every edge. The argument is somewhat more involved, but the
bound becomes slightly better. We assume that G is regular with degree ∆ =
O(1) and contains no triangles.

Consider again the vertices T = {v1, v2, . . . , vk} on a prefix of a finite-weight
tour, v1 = s, vk = u. Suppose that e is an edge joining two vertices, x and y.
Then, provided that e is again non-special, that is, sufficiently far from both s
and u, we can again rule out certain projections of T to Be:

x y

1. 2. 3. 4.

5. 6. 7. 8. 9.

Fig. 4. Some impossible projections for regular triangle-free graphs. Be is the vertex
subset at the top. The black vertices are in T , the grey vertices can be in T or not.

1. if both x and y belong to T then either the tour travels along e, in which
case x and y each must have another neighbour in T , or the edge e is not on
the tour, in which case x and y each must have two other neighbours in T .

2. if only one of the vertices, say x, belongs to T then it must have two other
neighbours in T . Moreover, the other vertex y cannot be completely sur-
rounded by neighbours in T .

There are a number of symmetrical cases to these, all of which are checked in con-
stant time around every edge. See Fig. 4 for an example; a detailed enumeration
of the cases appears as part of the analysis below.

For each edge e in G, define Be as the union of the closed neighbourhoods of
its endpoints,

Be = N(x) ∪N(y), e joins x and y .

Because G is triangle-free and ∆-regular, each vertex v ∈ V belongs to exactly
δ = ∆2 sets Be.

We now turn to a detailed analysis of the projections Be ∩ T . To this end,
partition Be into Be = {x}∪{y}∪M(x)∪M(y), where M(x) = N(x)\{x, y} and
M(y) = N(y) \ {x, y}. We have |M(x)| = |M(y)| = ∆− 1 because G is triangle-
free. Call an edge e special if Be ∩ (N(s) ∪N(u)) 6= ∅. Because ∆ = O(1), there
are O(1) special edges.

For a non-special e, we can rule out the following (non-disjoint) types of
intersections Be ∩ T , exemplified in Fig. 4.

1. x ∈ T , y /∈ T , |M(x) ∩ T | ≤ 1. The tour would never leave x. There are
∆2∆−1 such cases.

2. Symmetrically, y ∈ T , x /∈ T , |M(y) ∩ T | ≤ 1. There are ∆2∆−1 such cases.
3. x ∈ T , y /∈ T , |M(y) ∩ T | ≥ ∆− 2. The tour would never reach and leave y.

There are ∆2∆−1 such cases.

4. Symmetrically, y ∈ T , x /∈ T , |M(x) ∩ T | ≥ ∆ − 2. There are ∆2∆−1 such
cases.

5. x ∈ T, y ∈ T , M(x) ∩ T = ∅, and M(y) ∩ T 6= ∅. The tour never leaves x.
There are 2∆−1 − 1 such cases.

6. Symmetrically, x ∈ T, y ∈ T , M(y) ∩ T = ∅, and M(x) ∩ T 6= ∅. There are
2∆−1 − 1 such cases.

7. x ∈ T , y ∈ T , M(x) ∩ T = M(y) ∩ T = ∅. The tour cannot leave {x, y}.
There is 1 such case.

8. x /∈ T , y /∈ T , M(x) ⊆ T . The tour cannot leave x. There are 2∆−1 such
cases.

9. Symmetrically, x /∈ T , y /∈ T , M(y) ⊆ T . There are 2∆−1 such cases.

In calculating the total number of forbidden intersections, observe that Types
1 and 3 are not disjoint (symmetrically, Types 2 and 4 are not disjoint). Both
pairs of types have ∆2 cases in common. Also, Types 8 and 9 are not disjoint;
there is 1 case in common. Thus, in total we can rule out

4∆2∆−1 + 2(2∆−1 − 1) + 1 + 2 · 2∆−1 − 2∆2 − 1 = (∆ + 1)2∆+1 − 2(∆2 + 1)

projections, so the number of projections is bounded by

22∆ − (∆ + 1)2∆+1 + 2(∆2 + 1) .

We can apply Lemma 5 with δ = ∆2, r = |E| = ∆n/2, the resulting bound is

(22∆ − (∆ + 1)2∆+1 + 2(∆2 + 1))r/δ ·O(1) ,

which establishes Theorem 2 with (4) and (5).

6 Polynomial space

Our starting point is an algorithm of Karp [11], and, independently, Kohn, Got-
tlieb, and Kohn [12]. We assume that the weights d(u, v) are bounded, that is,
d(u, v) ∈ {0, 1, . . . , B} ∪ {∞}, B = O(1).

The algorithm is most conveniently described in terms of generating polyno-
mials. Select an arbitrary reference vertex, s ∈ V , and let U = V \ {s}. For each
X ⊆ U , denote by q(X) the polynomial over the indeterminate z for which the
coefficient of each monomial zw counts the directed closed walks (in the complete
directed graph with vertex set V and edge weights given by d) through s that
(i) avoid the vertices in X; (ii) have length n; and (iii) have finite weight w.

We can compute q(X) for a given X ⊆ U in time polynomial in n by solving
the following recurrence and setting q(X) = p(n, s). Initialise the recurrence for
each vertex u ∈ V \X with

p(0, u) =

{
1 if u = s;
0 otherwise.

For convenience, define z∞ = 0. For each length ` = 1, 2, . . . , n and each vertex
u ∈ V \X, let

p(`, u) =
∑

v∈V \X

p(`− 1, v)zd(v,u) .

Note that due to our assumption on bounded weights, each p(`, u) has at most
a polynomial number of monomials with nonzero coefficients.

By the principle of inclusion–exclusion, the monomials of the polynomial

Q =
∑

X⊆U

(−1)|X|q(X) (6)

count, by weight, the number of directed closed walks through s that (i) visit
each vertex in U at least once; and (ii) have length n. Put otherwise, what is
counted by weight are the directed Hamilton cycles. It follows immediately that
the travelling salesman problem can be solved in space polynomial in n and in
time 2nnO(1). This completes the description of the algorithm.

Let us now analyse (6) in more detail, with the objective of obtaining an algo-
rithm with better running time on bounded-degree graphs. It will be convenient
to work with a complemented form of (6), that is, for each S ⊆ U , let

r(S) = q(U \ S) ,

and rewrite (6) in the form

Q = (−1)n
∑
S⊆U

(−1)|S|r(S) . (7)

We want to reduce the number of S ⊆ U that need to be considered in (7). To
this end, observe that the induced subgraph G[{s} ∪ S] need not be connected.
Associate with each S ⊆ U the unique f(S) ⊆ U such that G[{s} ∪ f(S)] is the
connected component of G[{s}∪S] that contains s. Observe that r(S) = r(f(S))
for all S ⊆ U . This observation enables the following partition of the subsets of
U into f -preimages of constant r-value. For each T ⊆ U , let

f−1(T) = {S ⊆ U : f(S) = T} ,

and rewrite (7) in the partitioned form

Q = (−1)n
∑
T⊆U

r(T)
∑

S∈f−1(T)

(−1)|S| . (8)

The inner sum in (8) turns out to be determined by the connected dominating
sets of G.

Lemma 7 For every T ⊆ U it holds that

∑
S∈f−1(T)

(−1)|S| =

{
(−1)|T | if {s} ∪ T is a connected dominating set of G;
0 otherwise.

Proof. Consider an arbitrary T ⊆ U . The preimage f−1(T) is clearly empty if
G[{s}∪T] is not connected. Thus in what follows we can assume that G[{s}∪T]
is connected. For a set W ⊆ V , denote by N̄(W) the set of vertices in W or
adjacent to at least one vertex in W . Observe that f(S) = T holds for an S ⊆ U
if and only if S ⊇ T and S ∩ N̄({s} ∪ T) = T . In particular, if V \ N̄({s} ∪ T)
is nonempty, then f−1(T) contains equally many even- and odd-sized subsets.
Conversely, if V \ N̄({s} ∪ T) is empty (that is, {s} ∪ T is a dominating set of
G), then f−1(T) = {T}.

Using Lemma 7 to simplify (8), we have

Q = (−1)n
∑
T⊆U

{s}∪T∈C∩D

(−1)|T |r(T) . (9)

To arrive at an algorithm with running time |C∩D|nO(1) and space usage nO(1),
it now suffices to list the elements of C∩D in space nO(1) and with delay bounded
by nO(1).

The following listing strategy can be considered folklore and is here sketched
for interests of self-containment only. Observe that C∩D is an up-closed family
of subsets of V , that is, if a set is in the family, then so are all of its supersets.
Furthermore, whether a given W ⊆ V is in C ∩D can be decided in time nO(1).
These observations enable the following top-down, depth-first listing algorithm
for the sets in C ∩D. Initially, we visit the set V if and only if G is connected;
otherwise C ∩ D is empty. Whenever we visit a set Y ⊆ V , we first list it, and
then consider each of its maximal proper subsets Y \ {y}, y ∈ Y , in turn. We
recursively visit Y \{y} if both (i) Y \{y} ∈ C∩D; and (ii) Y is the maximum (say,
w.r.t. lexicographic order of subsets of V) minimal proper superset of Y \ {y} in
C ∩D.

Theorem 3 now follows from Lemma 6.

References

1. Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J.: The Traveling Salesman
Problem: A Computational Study, Princeton University Press, 2006.

2. Bellman, R.: Combinatorial processes and dynamic programming, Combinatorial
Analysis (Bellman, R., Hall, M., Jr., Eds.), Proceedings of Symposia in Applied
Mathematics 10, American Mathematical Society, 1960, pp. 217–249.

3. Bellman, R.: Dynamic programming treatment of the travelling salesman problem,
J. Assoc. Comput. Mach. 9 (1962), 61–63.

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius inversion
and graphs of bounded degree, Proceedings of the 25th International Symposium
on Theoretical Aspects of Computer Science STACS 2008, Bordeaux, February
21–23, 2008, to appear.

5. Chung, F. R. K., Frankl, P., Graham, R. L., Shearer, J. B.: Some intersection
theorems for ordered sets and graphs, J. Combinatorial Theory Ser. A 43 (1986),
23–37.

6. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algo-
rithms Appl. 11 (2007), 61–81.

7. Gebauer, H.: On the number of Hamilton cycles in bounded degree graphs, Pro-
ceedings of the Fourth Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2008, San Francisco, California, USA, January 19, SIAM, 2008, to ap-
pear.

8. Gutin, G., Punnen, A. P., Eds.: The Traveling Salesman Problem and its Varia-
tions, Kluwer, 2002.

9. Held, M., Karp, R. M.: A dynamic programming approach to sequencing problems,
J. Soc. Indust. Appl. Math. 10 (1962), 196–210.

10. Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP,
Computing and Combinatorics, 13th Annual International Conference, COCOON
2007, Banff, Canada, July 16–19, 2007, Lecture Notes in Computer Science 4598,
Springer, 2007, pp. 108–117.

11. Karp, R. M.: Dynamic programming meets the principle of inclusion and exclusion,
Oper. Res. Lett. 1 (1982) no. 2, 49–51.

12. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the trav-
eling salesman problem, Proceedings of the 1977 Annual Conference (ACM’77),
Association for Computing Machinery, 1977, pp. 294–300.

13. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B., Eds.: The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wi-
ley, 1985.

14. West, D. B.: Introduction to Graph Theory, 2nd ed., Prentice–Hall, 2001.
15. Woeginger, G. J.: Exact algorithms for NP-hard problems: a survey, Combinatorial

Optimization – Eureka, You Shrink! (Jünger, M., Reinelt, G., Rinaldi, G., Eds.),
Lecture Notes in Computer Science 2570, Springer, 2003, pp. 185–207.

