
Partitioning into Sets of Bounded Cardinality

Mikko Koivisto?

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki,

P.O.Box 68, FI-00014 University of Helsinki, Finland
mikko.koivisto@cs.helsinki.fi

Abstract. We show that the partitions of an n-element set into k mem-
bers of a given set family can be counted in time O((2−ε)n), where ε > 0
depends only on the maximum size among the members of the family.
Specifically, we give a simple combinatorial algorithm that counts perfect
matchings in a given graph on n vertices in time O(poly(n)ϕn), where
ϕ = 1.618 . . . is the golden ratio; this improves a previous bound based
on fast matrix multiplication.

1 Introduction

The generic set partitioning problem is as follows. Given an n-element universe
N , a family F of subsets of N , and an integer k, decide whether there exists a
partition of N into k members of F, that is, pairwise disjoint sets S1, S2, . . . , Sk

such that the union S1 ∪ S2 ∪ · · · ∪ Sk equals N ; we call the set {S1, S2, . . . , Sk}
a k-partition, or simply a partition, and the tuple (S1, S2, . . . , Sk) an ordered
k-partition or just an ordered partition.

Oftentimes, the family F is given implicitly by a description of size only
polynomial in n. For example, in the graph coloring problem, F consists of the
independent sets of a graph with vertex set N , while in the domatic partitioning
problem, F consists of the dominating sets; these problems are NP-hard. In
general, however, the size of the input may already be of order 2n, and the
best one can hope for is an algorithm with complexity within a polynomial
factor of 2n. Fairly recently [2], such a bound was indeed achieved via solving a
somewhat harder-looking problem, namely that of counting all valid partitions.
An intriguing question is, whether the base of the exponent can be lowered to
2−ε for some ε > 0, given that the size of the set family F is within a polynomial
factor of cn for some c < 2.

In this paper, we answer the question affirmatively in the special case where
the given set family consists of sets whose cardinality is bounded by a constant.
Throughout the paper the O∗ notation suppresses a factor polynomial in n.

Theorem 1. Given an n-element universe N , a number k, and a family F of
subsets of N , each of cardinality at most r, the partitions of N into k members of
F can be counted in time O∗(|F| 2nλr

)
, where λr = (2r−2)

/√
(2r − 1)2 − 2 ln 2.

? This research was supported in part by the Academy of Finland, Grant 125637.

2

Previously, such an improved bound has been found in the special case where
F contains only 2-sets, that is, pairs {u, v} ⊆ N . Then a valid partitioning cor-
responds to a perfect matching in a graph with vertex set N and edge set
F. While the existence of a perfect matching can be decided in polynomial
time, the counting version is #P-complete [6]. The fastest known exact algo-
rithm is by Björklund and Husfeldt [1], inspired by Williams’s construction [7]
and running in time O∗(2nω/3

)
where ω is the exponent of matrix multiplica-

tion. The Coppersmith–Winograd algorithm [4] shows ω < 2.38 and, hence, the
bound O(1.732n) [1]. The bound in Theorem 1 turns out to be slightly better,
O(1.653n). In fact, the bound in Theorem 1 is somewhat crude for small r, and
a specialized analysis yields yet a better bound.

Theorem 2. The perfect matchings in a given graph on n vertices can be counted
in time O∗(ϕn

)
, where ϕ = (1 +

√
5)/2 = 1.618 . . . is the golden ratio.

Note, however, that if ω = 2, as conjectured by many, then the matrix multipli-
cation algorithm remains faster, running in time O(1.588n).

We remark that the coefficient λr in Theorem 1 is only slightly larger than
(2r − 2)/(2r − 1) = 1 − 1/(2r − 1) and amounts to a rather moderate growth
of the bound with r. For example, for r = 3, 4, 5, and 6, Theorem 1 gives the
bounds O∗(|F| cn) with c = 1.769, 1.827, 1.862, and 1.885, respectively.

We will prove Theorems 1 and 2 (in Section 2) by giving a simple variant
of the following folklore dynamic programming algorithm. For any S ⊆ N and
j = 1, 2, . . . , k, let fj(S) be the number of ordered partitions of S into j members
of F. Then we have the recurrence

f1(S) = [S ∈ F] , fj(S) =
∑
X⊆S

fj−1(S \X) [X ∈ F] for j > 1 , (1)

where [P] is 1 if P is true and 0 otherwise. We note that by dynamic program-
ming, the number of k-partitions of N , given as fk(N)/k!, can be computed in
time O∗(|F| 2n), or for large |F| better in time O∗(3n). The bound can be re-
duced to O∗(2n) by implementing the dynamic programming step (1) using fast
subset convolution [3].1

To lower the base of the exponent below 2, we will apply an innocent-
looking modification, stemming from the idea of counting an ordered partition
(S1, S2, . . . , Sk) only if its members are lexicographically ordered. It turns out
that this simple constraint yields a substantial exponential speedup when the
family F contains only sets whose cardinality is at most some constant r.

Finally, we note that our dynamic programming algorithm and the runtime
analysis readily generalize to arbitrary commutative semirings. Thus, the bounds
in Theorems 1 and 2 extend, for example, to the following variant in the min–
sum semiring. Given a family of subsets of N , each member S associated with a
real-valued cost f(S), find the minimum total cost f(S1) + f(S2) + · · ·+ f(Sk)
over the k-partitions (S1, S2, . . . , Sk), each Si from the given family.
1 If dynamic programming is replaced altogether by an inclusion–exclusion algorithm,

the running times O∗(|F| 2n) and O∗(3n) are achieved in polynomial space [2, 3].

3

2 Proof of Theorems 1 and 2

We modify the dynamic programming algorithm (1) to consider the members
of a partition in a specific order. To this end, let N be an n-element set and
F a family of subsets of N , each of size at most r. Fix a linear order < on N
and label the elements of N by a1 < a2 < · · · < an. For any nonempty subset
S ⊂ N the minimum in S, minS, is defined with respect to < in the obvious
way. Furthermore, define a lexicographic order, ≺, among the subsets of N , and
hence in F, with respect to the order < on N in the usual manner; for instance,
{a1, a2, a5} ≺ {a1, a3, a4} ≺ {a2, a4}.

While we are interested in counting the partitions ofN into k members of F, it
turns out to be useful to consider ordered k-partitions (S1, S2, . . . , Sk) of N with
the members from F and listed in the lexicographic order, that is, Si ≺ Sj when
i < j. We denote by Lk the set of such lexicographically ordered k-partitions,
treating N and F as fixed. Since for any k-partition of N , the ordering of its
members into the lexicographic order is unique, we have the following.

Lemma 1. The number of partitions of N into k members of F equals the car-
dinality of Lk.

The lexicographic order implies certain constraints on the tuples
(S1, S2, . . . , Sk) ∈ Lk, which amount to a reduction in the number of subsets
of N that need be considered by a dynamic programming algorithm similar to
(1). For example, the first set S1 obviously must contain the smallest element of
N . In general, the ith set Si must contain the smallest element of N not con-
tained by the preceding sets S1, S2, . . . , Si−1. Let Rj denote the family of sets
S that can be expressed as the union of j such sets S1, S2, . . . , Sj . Formally, we
define the family of relevant sets Rj , for j = 1, 2, . . . , n, by the recurrence

R1 = {X : X ∈ F,minN ∈ X} ;
Rj = {Y ∪X : Y ∈ Rj−1, X ∈ F, Y ∩X = ∅,minN \ Y ∈ X} .

We proceed by defining, for each j = 1, 2, . . . , n, a set function gj that asso-
ciates any set S ⊆ N with the number of ordered partitions (S1, S2, . . . , Sj) of
S into j members of F such that the following condition holds:

minN \ (S1 ∪ S2 ∪ · · · ∪ Si−1) ∈ Si for all i = 1, 2, . . . , j . (2)

We note that for S = N , this condition is satisfied if and only if (S1, S2, . . . , Sj)
is a lexicographically ordered partition of N . Thus, gk(N) equals the cardinality
of Lk. Our modified dynamic programming algorithm evaluates gk(N) using the
following recurrence.

Lemma 2. Let S ⊆ N . Then

g1(S) = [S ∈ R1] = [a1 ∈ S] (3)

and

gj(S) =
∑
Y⊆S

gj−1(Y) [S \ Y ∈ F] [minN \ Y ∈ S \ Y] . (4)

4

Proof. The first equality (3) holds by the definition of R1.
We then prove the recurrence (4). For any Y ⊆ S, define gj(S;Y) as the

number of ordered partitions (S1, S2, . . . , Sj) of S into j members of F satisfying
(2) and S1 ∪ S2 ∪ · · · ∪ Sj−1 = Y . We note that

gj(S;Y) = gj−1(Y) [S \ Y ∈ F] [minN \ Y ∈ S \ Y] .

Because every (S1, S2, . . . , Sj) determines a unique Y , we have gj(S) =∑
Y⊆S gj(S;Y). ut

It remains to analyze the time complexity of computing the values gj(S)
for all relevant sets S via the recurrence (3–4). Straightforward induction shows
that each gj vanishes outside Rj . Thus, the number of additions, multiplications
and basic set operations of a straightforward implementation that first computes
g1(S) for all S ∈ R1, then g2(S) for all S ∈ R2, and so on, is proportional to(

|R1|+ |R2|+ · · ·+ |Rk|
)
|F| . (5)

In the remainder of this section we derive upper bounds for this expression.
We begin with the special case where every member of the set family contains

exactly 2 elements. In this case we have |Rj | ≤
(
n−j

j

)
, because each set in Rj is

of size 2j and must contain the first j elements a1, a2, . . . , aj and exactly j other
elements from {aj+1, aj+2, . . . , an}. Now, we make use of the following well-
known relations2 of the diagonal sums of the binomial coefficients, the Fibonacci
sequence (Fn), and the golden ratio ϕ = (1 +

√
5)/2:

n∑
j=0

(
n− j

j

)
= Fn+1 =

(
ϕn+1 − (1− ϕ)n+1

)/√
5 < ϕn , (6)

This suffices for proving the bound O∗(ϕn) for (5), and hence Theorem 2.
It is easy to generalize the bound O∗(ϕn) to the case where every mem-

ber of the set family contains at most 2 elements. In this case we have |Rj | ≤∑2j
s=j

(
n−j
s−j

)
≤
∑j

t=0

(
n−t

t

)
, because each set in Rj is of size at most 2j and must

contain the first j elements a1, a2, . . . , aj and at most j other elements from
{aj+1, aj+2, . . . , an}. Thus, by (6), the sum |R1| + |R2| + · · · + |Rk| is at most
kϕn.

We finally turn to the case of an arbitary size bound r. In this case we
have |Rj | ≤

∑rj
s=j

(
n−j
s−j

)
, because each set in Rj is of size at most rj and must

contain the first j elements a1, a2, . . . , aj and 0 to rj − j other elements from
{aj+1, aj+2, . . . , an}. Now, the above analysis for r = 2 seems not to extend to
r > 2, as it relies heavily on the special property of the diagonal sums of binomial
coefficients. We therefore resort to a somewhat less accurate analysis, making
use of the following specialization of the Hoeffding bounds:

2 The author was pointed to these relations by two anonymous reviewers.

5

Theorem 3 (Hoeffding [5]). Let X1, X2, . . . , Xn be independent Bernoulli tri-
als with Pr{Xi = 1} = µi for i = 1, 2, . . . , n. Let X =

∑n
i=1Xi, µ =

∑n
i=1 µi,

and 0 < t < 1− µ/n. Then

Pr{X ≤ µ− tn} ≤ exp[−2nt2] .

Substituting µi ≡ 1/2 and t = 1/2− k/n gives us a useful bound:

Corollary 1. If n > 2k, then

k∑
j=0

(
n

j

)
≤ 2n exp

[
− 2n

(1
2
− k

n

)2]
.

We are now ready to prove the following lemma, which completes the proof
of Theorem 1.

Lemma 3. Let n and r be natural numbers. Then
jr∑

s=j

(
n− j

s− j

)
< 2nλr , with λr =

r − 1√
(r − 1/2)2 − ln

√
2
.

Proof. We consider two cases. First, suppose jr − j ≥ (n − j)/2. Then j ≥
n/(2r − 1), and we can bound the sum of the binomial coefficients above by
2n−j ≤ 2n(2r−2)/(2r−1); the claim follows.

In the remaining case, suppose jr − j < (n − j)/2. Now it is handy to use
` = r − 1. By Corollary 1,

j∑̀
i=0

(
n− j

i

)
≤ 2n−j exp

[
− 2(n− j)

(
1
2
− j`

n− j

)2]
.

Letting n− j = xn, with 2`/(2`+ 1) ≤ x ≤ 1, and

ψ(x) = x

[
ln 2− 2

(
1
2

+ `− `

x

)2]
the bound becomes simply exp

[
nψ(x)

]
.

We next bound ψ(x) in the relevant range. The derivative of ψ(x) is

ψ′(x) = ln 2− 2

(
1
2

+ `− `

x

)2

− x4

(
1
2

+ `− `

x

)
`

x2
.

In terms of a new variable y = `/x, write

ψ′(`/y) = ln 2− 2

(
1
2

+ `− y

)2

− 4

(
1
2

+ `− y

)
y

= ln 2− 2

(
1
2

+ `− y

)(
1
2

+ `+ y

)
.

6

Solving for ψ′(`/y) = 0 yields

(ln 2)/2−

(
1
2

+ `

)2

+ y2 = 0

y2 =

(
1
2

+ `

)2

− ln
√

2 .

Thus, ψ(x) is maximized at

x̃ =
`√

(1/2 + `)2 − ln
√

2
>

`

1/2 + `
=

2`
2`+ 1

.

Now we may bound ψ(x̃) as

ψ(x̃) < x̃ ln 2 =
` ln 2√

(1/2 + `)2 − ln
√

2
.

Recalling ` = r − 1 we arrive at the claimed bound. ut

Acknowledgements

The author is grateful to Andreas Björklund, Thore Husfeldt, and Petteri Kaski
for valuable discussions, and to four anonymous reviewers for suggestions that
helped to improve the presentation.

References

1. Björklund, A., Husfeldt, T.: Exact algorithms for Exact Satisfiability and Number
of Perfect Matchings. Algorithmica 52, 226-249 (2008)

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion.
SIAM J. Comput., Special Issue for FOCS 2006, to appear

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast sub-
set convolution. In: 39th ACM Symposium on Theory of Computing (STOC 2007),
pp. 67–74. ACM Press (2007)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9, 251–280 (1990)

5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
American Stat. Assoc. 58, 13–30 (1963)

6. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci.
8, 189–201 (1979)

7. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348, 357–365 (2005)

