
Recombination Systems

Mikko Koivisto, Pasi Rastas, and Esko Ukkonen�

Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland

{mikko.koivisto, pasi.rastas, esko.ukkonen}@cs.helsinki.fi

Abstract. We study biological recombination from language-theoretic
and machine learning point of view. Two generative systems to model
recombinations are introduced and polynomial-time algorithms for their
language membership, parsing and equivalence problems are described.
Another polynomial-time algorithm is given for finding a small model for
a given set of recombinants.

1 Introduction

Recombination is one of the main mechanisms producing genetic variation. Sim-
ply stated, recombination refers to the process in which the DNA molecules of
a father chromosome and a mother chromosome get entangled and then split
off to produce the DNA of the child chromosome, composed of segments taken
alternately from the father DNA and the mother DNA (Fig 1) [1].

Fig. 1. Recombination

Combinatorial structures created by iterated recombinations have attracted
lots of interest recently. The discovery of so-called haplotype blocks [3, 5] has also
inspired the development of new efficient algorithms for the analysis of structural
regularities of the DNA, from various perspectives; e.g. [9, 4]. Some methods for
genetic mapping such as the recent approach of [7] also model recombinations.

In this paper we study recombination from language-theoretic and machine
learning point of view. Two simple systems are introduced to generate recombi-
nants starting from certain founding strings. Membership, parsing and equiva-
lence problems for these systems turn out in general easy. More interesting and
also much harder is the problem of inverting recombinations: given a sample set
of recombinants we want to construct a smallest possible system generating a
language that contains the sample.

� Supported by the Academy of Finland under grant 201560.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 159–169, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

160 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

The paper is organized as follows. Section 2 introduces simple recombination
systems. Such a system is specified just by giving a set of strings, the “founders”
of a population. Section 3 introduces another system, called the fragmentation
model, in which the strings that can be used as segments of recombinants are
listed explicitly. Language membership, parsing and equivalence problems for
these two systems are polynomial-time solvable, by well-known techniques from
finite automata [6] and string matching [2]. In Section 4 we consider a ma-
chine learning type of problem of constructing a good fragmentation model for
a sample set of recombinants. We give a polynomial-time algorithm that finds
a smallest model in a special case. Also in the general case the algorithm seems
useful although the result is not necessarily minimal.

2 Simple Recombination Systems

A recombination is an operation that takes two strings u and v of equal length
n and produces a new string w, also of length n, called a recombinant of u and
w, such that

w = xy

where x is a prefix of u and y is a suffix of v or x is a prefix of v and y is a
suffix of u. The recombinant w is said to have a cross-over at location |x|. For
simplicity we assume that a recombinant may have only one cross-over. As x or
y may be the empty string, u and v themselves are recombinants of u and v.

Let A be a set of strings of length n. The set of strings generated from A in
one recombination step is denoted

R(A) = {w | w is a recombinant of some u, v ∈ A}.
Let Σ be a finite alphabet. A simple m × n recombination system in Σ is

defined by a set F ⊆ Σn consisting of m strings of length n in Σ. The strings
in F are called the founders of the system. System F generates new sequences
by iterating the recombination operation. The generative process has a natural
division into generations giving the corresponding languages G0(F), G1(F), . . .
as follows:

G0(F) = F

G1(F) = R(F)
...

Gi(F) = R
(
Gi−1(F)

)
.

As G0(F) ⊆ G1(F) ⊆ · · · ⊆ Gi(F) ⊆ · · · ⊆ Σn there must be j such that after
the jth generation nothing new can be produced, that is, Gj′ (F) = Gj(F) for
all j′ ≥ j. We call L(F) = Gj(F) the full recombinant language of system F .

Recombination Systems 161

Example 1. Let Σ = {0, 1}, n = 4, and consider 2×4 system F = {0000, 0111}.
Then G1(F) = {0000, 0111, 0100, 0110, 0011, 0001} and G2(F) =
{0000, 0111, 0100, 0110, 0011, 0001, 0101, 0010}. Language G2(F) consists of
all strings in Σ4 that start with 0. This is also the full language L(F).

It should be obvious that w is in L(F) if and only if w can be written as

w = α1α2 · · ·αp (1)

for some non-empty strings αi ∈ Σ+ such that each αi occurs in some founder
string fj ∈ F at the same location as in w. That is, we have fj = γαiδ for some
γ such that |γ| = |α1 · · ·αi−1|. Each decomposition (1) of w into fragments αi is
called a parse of w with respect to F .

String w may have several different parses. Two of them are of special interest.
First, if w has some parse (1) then it also has a parse such that |αi| = 1 for all
i = 1, 2, . . . , p and p = n. We then note that a string w1w2 · · ·wn, where wi ∈ Σ,
belongs to L(F) if and only if for each wi there is some fj ∈ F whose ith symbol
is wi. Let us denote by Σi the symbols in Σ that occur at the ith location of
some string in F . We call Σi the local alphabet of F at i. Summarized we get
the following simple result.

Theorem 1. L(F) = Σ1Σ2 · · ·Σn ��
This immediately gives a language equivalence test for recombination sys-

tems. Let E and F be two recombination systems of length n, and let Π1, Π2, . . . ,
Πn be the local alphabets of E and Σ1, Σ2, . . . , Σn the local alphabets of F . Then
L(E) = L(F) if and only if Πi = Σi for all i = 1, 2, . . . , n. So, for example sys-
tems {0000, 1111} and {0101, 1010} are equivalent as all local alphabets are
equal to {0, 1}.

The simplicity of the equivalence test also indicates that the sequential struc-
ture of the founders has totally disappeared in L(F). Therefore it is more in-
teresting to look at strings that have a parse consisting of a small number of
fragments αi. This leads us to define the canonical parses.

Let w ∈ L(F). Then a parse w = α1α2 · · ·αp of w with respect to F is
canonical, if

1. p is smallest possible; and
2. among parses of w with p fragments, each |α1α2 · · ·αi|, 1 ≤ i < p, is largest

possible.

A canonical parse of w is easily seen unique. It can be found by the following
greedy parsing algorithm. First find the longest prefix of w that is also a prefix of
some string in F . This prefix is fragment α1 of the canonical parse. Then remove
|α1| symbols long prefix from w and from all members of F . Repeat the same
steps to find longest prefix that becomes α2, and so on, until the entire w has
been processed or it turns out that parsing can not be continued to the end of
w, in which case w �∈ L(F).

We will use the number p − 1 of the cross-overs in the canonical parse as
a distance measure for strings: the recombination distance ρ(w, F) between w

162 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

and F is p− 1, the smallest possible number of cross-overs in a parse of w with
respect to F . Note that ρ(w, F) ≤ n − 1 for all w ∈ L(F). If w �∈ L(F), we let
ρ(w, F) =∞.

The greedy parsing algorithm finds ρ(w, F). The algorithm works without
any preprocessing of F and can be organized to run in time O(mn), i.e. linear
in the total length of the strings in F . We now describe a preprocessing of F
which constructs a collection of trie structures such that canonical parsing of
any string with respect of F can be done in optimal time O(n).

In the canonical parsing by the greedy method one has to find the longest
prefix of the current suffix of w that is common with the corresponding suffix of
some founder f ∈ F . Let wi = wiwi+1 · · ·wn and f i

j = fjifji+1 · · · fjn denote the
ith suffixes of w and the founders, and let T i denote the trie representing strings
f i
1, f

i
2, · · · , f i

m. The longest common prefix, that will become the first fragment
of the parse, can be found by traversing the path of T 1 for w1 until a symbol of
w1 is encountered, say wh, that is not present in T 1 (or w1 ends). The scanned
prefix is the fragment α1 of the canonical parse. We needed O(|α1|) time to find
it this way. The parsing continues by next traversing the path of T h for wh,
giving α2 in time O(|α2|), and so on.

To make this work we need the tries T 1, T 2, . . . , T n. A straightforward con-
struction of a trie for m = |F | strings of length n takes time O(mn) assuming
that |Σ| is constant. Hence the total time for all tries would be O(mn2). We
next describe a suffix-tree based technique for constructing these tries in time
O(mn).

The suffix-tree of a string x is a (compacted) trie representing all the suffixes
of x. The size of the tree is O(|x|), and it can be constructed in time O(|x|)
by several alternative algorithms [2]. To get the tries T h that form our parser
for F we first augment the founder strings with explicit location indices, such
that founder string fi = fi1fi2 · · · fin becomes f̂i = (fi1, 1)(fi2, 2) · · · (fin, n).
Now construct the suffix-tree T for string f̂ = f̂1f̂2 · · · f̂m. Then trie T h consists
of the subtrees of T representing suffixes that start with symbols (a, h), where
a ∈ Σ. Hence tries T h can be extracted from T in one scan through the edges
that are adjacent to the root.

This construction can be performed in O(mn) time, i.e., linear time in the
length of f̂ although we have formally used alphabet of non-constant size |Σ|n.
This is because the non-root nodes of T may only have |Σ| branches and hence
the branching degree at such nodes does not depend on n. While the root node
can have O(|Σ|n) branches, the dependency on n can be made constant by direct
indexing (or bucketing) on the second component of a symbol.

Finally note that the tries T h extracted from T are of compacted form, i.e.,
the non-branching nodes of the trie are represented only implicitly. The edges of
a compacted trie correspond to strings (instead of single symbols), represented
by pairs of pointers to the original strings in F . In our greedy parsing algorithm
such tries can be used as well, without significant overhead.

Recombination Systems 163

Theorem 2. Given an m × n recombination system F , a greedy parser for F
can be constructed in time O(mn). For any string w, the parser computes in time
O(n) the canonical parse of w with respect to F and the recombination distance
ρ(w, F). ��

Canonical parsing is not the only possible use of the parser of Theorem 2.
All possible parses of w can be generated if, instead of greedily traversing the
current trie as far as possible, the parsing jumps to the next trie at any point
on the way. It is also possible to check whether or not w has a parse with given
cross-over points: Then the parsing should jump to the next trie exactly on these
points. The parses can also be utilized to find a string w with largest possible
distance ρ(w, F).

3 Generalized Recombination Systems and Fragmentation
Models

Parsing a string as introduced in the previous section means decomposing the
string into fragments taken from the founders. The available fragments were
implicitly defined by the founders: any substring of a founder can be used in a
parse.

We now go one step further and introduce models in which the available
fragments are listed explicitly.

A fragmentation model of length n in alphabet Σ is a state-transition system
M = (S, Q, Σ, n) consisting of a finite set S of the states and a set Q of tran-
sitions. Each s ∈ S is a pair (i, v), where i is an integer 1 ≤ i ≤ n, and string
v ∈ Σ∗ is the fragment of the state such that |v| ≤ n− i+1. We call b(s) = i the
begin location and b(s) = i + |v| the end location of s. A state s is a start state
if b(s) = 1 and an end state if e(s) = n + 1. The transition set Q is any subset
of S × S such that if (r, s) ∈ Q then e(r) = b(s), that is, the location intervals
covered by r and s should be next to each other.

The language L(M) of M consists of all strings generated along the transition
paths from a start state to an end state. More formally, e ∈ L(M) if and only if
there are states s1, s2, . . . sp such that (si, si+1) ∈ Q for 1 ≤ i < p, s is a start
state and sp is an end state, and w = v1v2 · · · vp where vi is the fragment of
state si. Note that all w ∈ L(M) are of length n. Also note that fragmentation
models are a subclass of finite-state automata. Hence for example their language
equivalence is solvable by standard methods [6].

Example 2. A simple m × n recombination system F of the previous section
consisting of m founders fj = fj1fj2 · · · fjn can be represented as a fragmentation
model M = (S, Q, Σ, n) as follows: set S consists of all states (i, v) where 1 ≤
i ≤ n and v = fjifji+1 · · · fjh for some 1 ≤ j ≤ m and i ≤ h ≤ n. The transition
(r, s) is included into Q for all r, s such that e(r) = b(s). Note that M is much
larger than F . It has O(mn2) states and O(m2n3) transitions, and the fragments
of the states have total length O(mn3). ��

164 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

Each transition path gives for the generated string a parse into fragments.
Different parses for the same string can be efficiently enumerated and analyzed
for example by using dynamic programming combined with breadth-first traver-
sal of the transition graph of M . We describe next an algorithm for finding a
parse with smallest number of fragments, i.e., a shortest path through M that
generates the string to be parsed.

Let w be the string to be parsed. We say that state (i, v) of M matches w if
w = xvy where |x| = i− 1. We associate with each state s a counter c(s) whose
value will be the length of a shortest path to s that will generate the prefix of
length b(s) − 1 of w. Variable P will be used to store the length of a shortest
parse. The parsing algorithm is as follows:

1. Let s1, s2 . . . st be the states of M ordered according to increasing value of
e(sj)

2. Initialize the counters

P ←∞
c(sj)←

{
0 , if sj is a start state
∞ , otherwise

3. for j ← 1, 2, . . . , t do
if c(sj) <∞ and sj matches w then

if sj is an end state then
P ← min(P, c(sj) + 1)

else
for all sk such that (sj , sk) ∈ Q

c(sk)← min(c(sk), c(sj) + 1)

The algorithm can be implemented such that the running time is linear in
the size of M . We also observe that testing whether or not some states of M and
w match can be done very fast by first constructing Aho-Corasick multi-pattern
matching automaton [2] for the fragments of the states and then scanning w
with this automaton.

4 Model Reconstruction Problems

The language membership and equivalence well as parsing problems for recom-
bination systems turned out solvable by fast algorithms, not unexpectedly as
we are dealing with a limited subclass of the regular languages. We now discuss
much harder problems concerning inversion of recombinations.

Given a set D of strings of length n we want to find a model that could have
generated D. This question was addressed in [8] in the case of simple recombi-
nation systems. For example, an algorithm was given in [8] that constructs an
m × n recombination system F such that D ⊆ L(F) and the average recombi-
nation distance of the elements of D from F is minimized. Here we will consider

Recombination Systems 165

the problem of finding fragmentation models for D. The fragments of such a
model can be thought to represent the “conserved” substrings of D.

The goodness of a fragmentation model M for set D can be evaluated using
various criteria. A possibility is to consider probabilistic generalizations of frag-
mentation models and apply model selection criteria such as the Minimum De-
scription Length principle. We will resort to combinatorial approach and consider
the following parsimony criterion: find a fragmentation model M = (S, Q, Σ, n)
such that D ⊆ L(M) and the number of states in Q is smallest possible. We call
this the minimal fragmentation model reconstruction problem.

Example 3. Let D consist of strings

0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 1 0 0
1 1 1 0 1 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0

(2)

By taking the strings in D as such (and nothing else) as the fragments we get a
fragmentation model which generates exactly D and has 9 states. However, the
model depicted in Fig 2 has only 7 states. It generates a language that properly
contains D. ��

0 0

1 1

0 0

0 1

1 0

0 0

1 1

Fig. 2. A fragmentation model (begin locations of states not explicitly shown)

We rephrase now the minimal fragmentation model reconstruction in terms
of certain tilings of D. Let us refer to the m strings in D by 1, 2, . . . , m; the ith
string is di1di2 · · · din. Then any triple τ = (A, h, k), where A ⊆ {1, 2, . . . , m}
and h and k are integers such that 1 ≤ h ≤ k ≤ m, is a tile of D. Set A is the
row-set of τ . The tile τ covers all substrings dihdih+1 · · ·dik where i ∈ A. The
tile is uniform if all substrings it covers are equal, i.e., dih · · · dik = djh · · · djk

for all i, j ∈ A. A set T of tiles of D is a uniform tiling of D if the tiles in T are
uniform and disjoint and cover D, i.e., for each dij there is exactly one tile in T
that covers dij .

166 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

A fragmentation model M such that D ⊆ L(M) induces a uniform tiling
T (M) of D as follows. Fix for each string d ∈ D a path of M that spells out
d. For any state s = (i, v) of M , let A be the set of strings in D whose path
goes through s. Then add the tile (A, i, i + |v| − 1) to T (M). It should be clear
that T (M) is a uniform tiling of D. Note that there are several different tilings
T (M) if some d ∈ D is ambiguous with respect to M , i.e., if M has more than
one path for d.

On the other hand, given a uniform tiling T of D, one may construct a
fragmentation model M(T) as follows. For each tile (A, h, k) ∈ T , add to M(T)
a state s = (h, v) where v = dih · · · dik for some i ∈ A. Also add a transition
(s, s′) to M(T) if the tiles (A, h, k) and (A′, h′, k′) in T that correspond to s and
s′ are such that row-set intersection A ∩A′ is nonempty and k + 1 = h′.

As the number of states of M(T) equals the number of tiles in T , and the
number of tiles in T (M) is at most the number of states of M , we get the
following result.

Proposition 1. The number of states of the smallest fragmentation model M
such that D ⊆ L(M)equals the number of tiles in the smallest uniform tiling
of D.

To solve the minimal fragmentation model reconstruction we will construct
small uniform tilings for D. We will proceed in two main steps. First a rather
simple dynamic programming algorithm is given to find optimal tilings in a
subclass called the column-structured tilings. In the second step we apply certain
local transformations to further improve the solution.

A uniform tiling of D is column-structured if the tiles cover D in columns: for
each two tiles (A, h, k) and (A′, h′, k′), if h = h′ then k = k′. The corresponding
class of fragmentation models (models whose fragments with the same begin
location are of equal length) is also called column-structured models. If a column-
structured tiling is smallest possible, then the number of tiles in each column
should obviously be minimal. Such minimal tiling for a column is easy to find
as follows. Consider set D(h, k) consisting of strings dih · · · dik for 1 ≤ i ≤ m.
Let A1, A2, . . . Ap be the partition of {1, 2, . . . , m} such that i and j belong
to the same class Ar if and only if dih · · ·dik = djh · · · djk. Then the tiling(
(A1, h, k), . . . , (Ap, h, k)

)
of D(h, k) is uniform and has the smallest possible

number of tiles among tilings whose tiles are from h to k. We denote this tiling
by t(h, k) and its size p by σ(h, k).

Let S(j) be the size of smallest column-structured tiling of D(1, j). Then
S(j) can be evaluated for j = 0, 1, . . . , n from

{
S(0) = 0
S(j) = mini<j

(
S(i) + σ(i + 1, j)

) (3)

and S(n) gives the size of smallest column-structured uniform tiling of entire
D. The usual trace-back of dynamic programming can be used to find the end
locations j1, j2, . . . , jq = n of the corresponding columns. Then the smallest
tiling itself is t(1, j1) ∪ t(j1 + 1, j2) ∪ · · · ∪ t(jq−1 + 1, n).

Recombination Systems 167

Evaluation of (3) takes time O(n2) plus the time for evaluating tables σ and
t which can be accomplished in time O(n2m) using straightforward trie-based
techniques. We have obtained the following theorem.

Theorem 3. Minimal column-structured fragmentation model for D can be con-
structed in time O(n2m) where n is the length and m the number of strings in D.

Example 4. The fragmentation model in Fig 2 for the set (2) of Example 3 is
column-structured and minimal. If string 011010 is added to (3), then algorithm
(3) will give the column-structured model in Fig 3(a). However, the model in
Fig 3(b) is smaller. ��

0 0

1 1

0 1

0 0

0 1

1 0

0 0

1 1

1 0

0 0

1 1

0 0

0 1

1 0

0 0

1 1

0 1 1 0 1 0

Fig. 3. (a) A column-structured fragmentation model (b) A smaller model

The tilings given by the column-wise approach can further be improved by
applying local transformations. The transformations use the following basic step.
Assume that our current tiling has adjacent tiles (A, h, k − 1) and (B, k, r). We
may replace these tiles by the tiles

(A ∩B, h, r),
(A \B, h, k − 1),
(B \A, k, r),

and the tiling stays uniform and covers still the entire D. The replacement
operation has no effect if row-set A ∩ B is empty. Otherwise it changes the
structure of the tiling. If A = B, the number of tiles is reduced by one; if A ⊆ B
or B ⊆ A, the number stays the same; and if A ∩ B, A \ B and B \ A are all
non-empty, the number increases by one.

Given any tiling T we can improve it by the following iterative reduction
rule: apply the above local transformation on any pair of tiles (A, h, k − 1) and
(B, k, r) such that A ⊆ B or B ⊆ A (i.e., transformation does not increase
the number of tiles). Repeat this until the local transformation is not any more
applicable. It is easy to see that the process stops in O(mn) iterations. Note
that the seemingly useless transformation steps that do not make the number
of tiles smaller are indirectly helpful: they make the tiles narrower (and longer)
and hence may create possibility for true size reduction in the next step.

There are two possible ways to include the reduction step into algorithm
(3). On can apply it only on the final result of (3). This would, for example,

168 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

improve the tiling in Fig 3(a) into that in Fig 3(b). Other possibility is to ap-
ply the reduction rule also on the intermediate tiling obtained for each D(1, j)
during algorithm (3) and to use the reduced tiling in subsequent computation.
Sometimes this strategy will give better results than the previous one.

There is also another local transformation that makes the tiles longer and
narrower without reducing the number of tiles. This transformation eliminates
certain loop-like structures from the tiling, defined as follows. The inclusion
graph of a tiling T at j is a bipartite graph which has as its nodes all tiles (A, h, k)
and (A′, h′, k′) such that k = j − 1 and h′ = j and as its (undirected) arcs all(
(A, h, j − 1), (A′, j, k′)

)
such that row-set intersection A ∩A′ is not empty. A

connected component of this graph is a simple loop if it contains as many nodes
as arcs. In a simple loop every node has degree 2 (i.e., two arcs are adjacent to
a node). The number of tiles in a simple loop equals the number of their non-
empty pairwise row-set intersections. But this means that applying our local
transformation on all such pairs will keep the number of tiles unchanged. Hence
the loop-removal transformation can safely be added to the local transformations
one should apply to make the tiling smaller.

Summarized, we get an optimization algorithm that combines dynamic pro-
gramming and local transformations. It finds a local optimum with respect to
the local transformations. Running-time is polynomial in the size of D.

5 Conclusion

We introduced two simple language–generating systems inspired by the recom-
bination mechanism of the nature. For the model reconstruction problem we de-
lineated some initial results while many questions remained open, most notably
the complexity status and approximability of the minimal model reconstruction.
Probabilistic generalizations of our models are another interesting direction for
further study.

References

1. Creighton H. and McClintock B.: A correlation of cytological and genetical crossing-
over in Zea mays. PNAS 17 (1931), 492-497

2. Crochemore, M. and Rytter, W.: Jewels of Stringology. World Scientific 2002
3. Daly, M., Rioux, J., Schaffner, et al.: High-resolution haplotype structure in the

human genome. Nature Genetics 29 (2001), 229–232
4. Koivisto, M., Perola, M., Varilo, et al.: An MDL method for finding haplotype

blocks and for estimating the strength of haplotype block boundaries. In: Pacific
Symposium on Biocomputing (PSB2003), pp. 502–513. World Scientific 2003

5. Patil, N., Berno, A. and Hinds, D.A. et al.: Blocks of limited haplotype diversity
revealed by high-resolution scanning of human chromosome 21. Science 294 (2001),
1719–1723

6. Salomaa, A.: Jewels of Formal Language Theory. Computer Science Press 1981
7. Sevon, P., Ollikainen, V. and Toivonen, H.T.T.: Tree pattern mining for gene map-

ping. Information Sciences (to appear)

Recombination Systems 169

8. Ukkonen, E.: Finding founder sequences from a set of recombinants. In: Algorithms
in Bioinformatics (WABI 2002), LNCS 2452, pp. 277–286. Springer 2002

9. Zhang, K., Deng, M., Chen, T., et al.:A dynamic programming algorithm for hap-
lotype block partitioning. PNAS 99 (2002), 7335–7339

	1 Introduction
	2 Simple Recombination Systems
	3 Generalized Recombination Systems and Fragmentation Models
	4 Model Reconstruction Problems
	5 Conclusion
	References

