
Advances in Exact Bayesian Structure Discovery
in Bayesian Networks

Mikko Koivisto
HIIT Basic Research Unit, Department of Computer Science

Gustaf Hällströminkatu 2b, FIN-00014 University of Helsinki, Finland
mikko.koivisto@cs.helsinki.fi

Abstract

We consider a Bayesian method for learning
the Bayesian network structure from com-
plete data. Recently, Koivisto and Sood
(2004) presented an algorithm that for any
single edge computes its marginal posterior
probability in O(n2n) time, where n is the
number of attributes; the number of parents
per attribute is bounded by a constant. In
this paper we show that the posterior proba-
bilities for all the n(n−1) potential edges can
be computed in O(n2n) total time. This re-
sult is achieved by a forward–backward tech-
nique and fast Möbius transform algorithms,
which are of independent interest. The re-
sulting speedup by a factor of about n2 al-
lows us to experimentally study the statis-
tical power of learning moderate-size net-
works. We report results from a simulation
study that covers data sets with 20 to 10,000
records over 5 to 25 discrete attributes.

1 INTRODUCTION

Learning the structure of a Bayesian network model is
a central goal in many applications of Bayesian net-
works. In causal discovery, for example, one aims at
the identification of (direct) causal relations among a
set of attributes, which are qualitatively represented
by edges of a Bayesian network (see, e.g., Cooper and
Herskovits, 1992, Heckerman et al., 1999, Pearl, 2000,
Spirtes et al., 2000).

Unfortunately, structure learning is generally hard,
because (a) a finite number of observations may not
reliably identify the true structure, and (b) evaluat-
ing the possible network structures—whose number
generally grows superexponentially in the number of
attributes—is computationally intractable. In prac-
tice, one often passes a relatively small data set to

a heuristic evaluation algorithm. It is then difficult
to quantify the uncertainty about the learning re-
sults: Although the uncertainty due to limited data
and vague background knowledge can be rigorously ex-
pressed using standard statistical concepts (especially
the Bayesian ones), the extra uncertainty induced by
an algorithm with no performance guarantees is more
complicated to gauge or control. Thus, it is desirable
to extent the scope of exact algorithms, which com-
pletely avoid the extra layer of uncertainty.

This paper puts forward the Bayesian approach to
structure learning (Buntine, 1991, Cooper and Her-
skovits, 1992, Friedman and Koller, 2003). We improve
a recently found exact algorithm of Koivisto and Sood
(2004), which computes the marginal posterior proba-
bility of any given subnetwork, e.g., a single edge, in
O(n2n) time; here we assume that the indegree, i.e.,
the number of parents per attribute, is bounded by
a constant. In Sections 2–4 we show how the prob-
abilities for all potential edges can be simultaneously
computed in O(n2n) total time. The resulting compu-
tational saving, by a factor of n2, is very significant in
practice (from two to three orders of magnitude); note
that these algorithms are practical for networks of up
to about n = 25 attributes. We achieve this improve-
ment by using a technique that is analogous to the
forward–backward method of hidden Markov models
(see, e.g., Rabiner, 1989). Another ingredient is a fast
Möbius transform algorithm, which we analyze care-
fully in Section 4, elaborating on some previous results
(Kennes and Smets, 1991, Koivisto and Sood, 2004).

The improved exact algorithm allows us to study the
statistical power of structure discovery in moderate-
size networks. Given a model specification that fixes
the number of attributes and the maximum number of
parents per attribute, how many observations should
one collect to reliably discover the network structure?
Or, given a fixed data size, should one expect that a
large proportion of the structure can be learned from
the data? While it is obvious that the number of ob-

servations plays a crucial role here, it is less clear how
the statistical power behaves as a function of the max-
imum indegree and the number of states per attribute.
In Section 5 we study the statistical power of edge dis-
covery under varying settings (number of attributes,
number of observations, maximum indegree, number
of states per attribute).1 Our study is complemen-
tary to a previous work by Husmeier (2003) that uses
a Markov chain Monte Carlo method and focuses on
very small data sets and large, yet very sparse, dy-
namic Bayesian networks.

We discuss some other potential applications of the
presented exact algorithm in Section 6.

2 PRELIMINARIES

A Bayesian network (BN) over a vector of variables
x = (x1, . . . , xn) specifies a probability distribution of
x. The network structure of a BN encodes conditional
independence assertions among the variables via a di-
rected acyclic graph. We represent this graph as a
vector G = (G1, . . . , Gn) where each Gi is a subset of
the index set V = {1, . . . , n} and specifies the parents
of i in the graph. We use indexing with subsets: for
example, if S = {i1, . . . , is} with i1 < · · · < is, then
xS denotes the vector (xi1 , . . . , xis

). Along the struc-
ture G, a BN factorizes the probability distribution
of x into a product of local conditional distributions.
Usually these conditional distributions belong to some
parametric family, and it is convenient to write the
probability distribution of x as

p(x|G, θ) =

n
∏

i=1

p(xi|xGi
, G, θ) , (1)

where θ contains the parameters of the local con-
ditional distributions. This notation used here and
henceforth supports the Bayesian approach that treats
the network structure G and the parameters θ as ran-
dom variables (whenever their values are unknown).

BNs can be used to model multiple vectors
x[1], . . . , x[m], called data and denoted by x. In the
Bayesian learning framework the vectors are judged to
be exchangeable so that the probability distribution of
the data, given the structure G, can be expressed as

p(x|G) =

∫

(

m
∏

t=1

p(x[t]|G, θ)
)

p(θ|G)dθ ,

1Thanks to the improved algorithm, we are able to an-
alyze several hundred random data sets with up to 25 at-
tributes. With the same computational resources we would
have had to restrict our experiments to networks of at
most 16 attributes if we had used the original algorithm
of Koivisto and Sood (2004).

where p(θ|G) is a prior of the parameters, and each
term p(x[t]|G, θ) factorizes as in (1).

To complete the Bayesian learning framework we intro-
duce a prior of the network structure. We follow Fried-
man and Koller (2003) and augment the model with a
new random variable, ≺, that specifies the linear or-
der of the attributes.2 Formally, ≺ is a linear order on
the index set V , represented as a vector (U1, . . . , Un),
where Ui defines the predecessors of i in the order, i.e.,
Ui = {j : j ≺ i}; we may also write more completely
U≺

i . If S is a subset V we let L(S) denote the set of lin-
ear orders on S. We say that a structure (G1, . . . , Gn)
is consistent with an order (U1, . . . , Un) if Gi ⊆ Ui for
all i; we may then denote G ⊆≺.

We will assume that the model p is modular over ≺,
G, θ, and x, or order-modular for short, in the sense
of Koivisto and Sood (2004). The first part of the
definition states that if G is consistent with ≺, then

p(≺, G) =

n
∏

i=1

qi(Ui)ρi(Gi)

where each qi and ρi is some function from the sub-
sets of V − {i} to the nonnegative reals.3 It should
be noted that this prior does not respect Markov
equivalence; for discussion, see Friedman and Koller
(2003) and Koivisto and Sood (2004). The second
part is a standard assumption (Cooper and Herskovits,
1992, Heckerman et al., 1995): given the structure
G, the parameters θ decompose into independent lo-
cal components θ1, . . . , θn, each θi depending only on
the local structure Gi; furthermore, p(xi|xGi

, G, θ) =
p(xi|xGi

, Gi, θi).

Koivisto and Sood (2004) show that under an order-
modular model and complete data it is possible to
compute the joint posterior probability of any sub-
network (i.e., set of edges) in O(n2n) time, allowing
exact Bayesian learning of networks with up to about
25 attributes. (A silent assumption is that one can ef-
ficiently evaluate the local marginal likelihood; closed-
form expressions exist, e.g., for the Multinomial and
the linear Gaussian model with conjugate priors.) We
next review the key ingredients of the algorithm by
Koivisto and Sood (2004) and fix some notation.

A structural feature, e.g., an edge, is conveniently
represented by a modular indicator function, f(G) =
∏n

i=1 fi(Gi), where each fi(Gi) is either 1 or 0. For ex-
ample, to represent an edge (u, v), we set fv(Gv) = 1

2The linear order can be viewed as a technical device to
construct a modular prior over DAGs.

3No normalization constant is needed, as any such fac-
tor can be absorbed into the functions qi and ρi. However,
it makes sense to carry out the computations up to a nor-
malization constant, as the constant is irrelevant for the
posterior summaries (Koivisto and Sood, 2004).

if and only if u ∈ Gv, while fi(Gi) is set to the con-
stant 1 for all i 6= v and all Gi. Then f(G) = 1 if
and only if G contains the edge (u, v). Our chief in-
terest is in evaluating the joint probability of the data
and the feature, p(x, f), where f is read as the event
“f(G) = 1.”

We assign each family (i, Gi), consisting of a node and
its parents, the score

βi(Gi) := ρi(Gi)p(xi|xGi
, Gi)fi(Gi) ,

which quantifies the local goodness of Gi as the par-
ents of i. Further, it turns out to be convenient to
transform the score of the actual parents Gi to a score
of the set of candidate parents Ui, defined as

αi(Ui) := qi(Ui)
∑

Gi⊆Ui

βi(Gi) .

We will discuss related Möbius transformation variants
in detail in Section 4.

We can now express the joint probability of the data
and the feature by a neat sum–product formula that
has a simple recursive evaluation scheme:

p(x, f) =
∑

≺

n
∏

i=1

αi(Ui) = L(V) , (2)

where the function L is defined over all subsets of V
by setting L(∅) := 1 and, recursively,

L(S) :=
∑

i∈S

αi(S − {i})L(S − {i}) .

The letter “L” anticipates the interpretation of this re-
cursive procedure as the left (or forward) computation,
as opposed to the right (or backward) computation to
be introduced in the next section.

Finally, we note that the posterior probability of a
feature f is obtained as p(f |x) = p(x, f)/p(x), where
the denominator p(x) can be computed like p(x, f) but
for the trivial feature f(G) ≡ 1. As a consequence,
the “priors” ρi and qi need to be specified only up to
constant factors. (To avoid using the proportionality
sign, we assume that ρi and qi absorb these constants.)

3 A FORWARD–BACKWARD

ALGORITHM

We now focus on the following problem: Given a com-
plete data set and an order-modular model p, compute
for every edge e the posterior probability that the net-
work structure contains e. We note that this problem
can be solved in O(n32n) total time by running the
algorithm of Koivisto and Sood (2004) separately for
each edge.

However, computations for different edges involve a
large proportion of overlapping elements. For example,
switching from an edge (u, v) to another edge (u′, v)
corresponds to changing just the function fv, hence
affecting the function βv and, thereby, the function αv

only. Intuitively, it should be possible to exploit the
overlap and reduce the total time requirement. We
next describe how the calculations can be arranged so
that the total running time reduces to O(n2n).

Consider the sum over orders, given in (2). Our key
idea is to compute and store not only the forward con-
tribution L(S), for all S ⊆ V , but also the backward
or right contribution R(T), for all T ⊆ V , defined by

R(T) :=
∑

≺′∈L(T)

∏

i∈T

αi((V − T) ∪ U≺′

i) .

In words, R(T) is the contribution of the nodes in T ,
given that the nodes in T are the |T | last elements in
the unknown linear order ≺ on V . Like L, the function
R can be evaluated recursively via the equations

R(T) =
∑

i∈T

αi(V − T − {i})R(T − {i})

and R(∅) = 1.

To compute the sum over orders, we combine the left
and right contributions. For any fixed node v ∈ V (the
endpoint of an edge), we break the sum over orders ≺=
(U1, . . . , Un) into two nested sums: in the outer sum,
we sum over Uv; in the inner sum we, conditionally on
Uv, sum over the remaining sets Ui for i 6= v (denoted
U−v for short). We observe that the inner sum further
factorizes into the product of the left and the right
term, L(Uv)R(V − {v} − Uv). That is,

p(x, f) =
∑

≺

n
∏

i=1

αi(Ui)

=
∑

Uv

αv(Uv)
∑

U−v

∏

i∈V −{v}

αi(Ui)

=
∑

Uv

αv(Uv)L(Uv)R(V − {v} − Uv) ,

where Uv runs through all subsets of V − {v}.

At this point, it is enlighting to note that the above
forward–backward expression already offers an n-fold
speedup over the naive algorithm. To see this, suppose
that we have precomputed the left and right contribu-
tions with respect to the trivial feature f ≡ 1. Then,
to evaluate the posterior probability of any edge (u, v)
we only need to (i) recompute the function αv, and
(ii) sum over all subsets Uv of V − {v}. Step (i) takes
O(2n) time; see Koivisto and Sood (2004) and the next
section. Step (ii) takes O(2n) time as well. Thus, the
total running time for all edges is O(n22n).

In order to achieve another n-fold speedup, we plug in
the definition of αv(Uv), obtaining

p(x, f) =
∑

Uv

[

qv(Uv)
∑

Gv⊆Uv

βv(Gv)
]

×L(Uv)R(V − {v} − Uv) .

Finally, reversing the order of summation yields

p(x, f) =
∑

Gv⊆V −{v}

βv(Gv)γv(Gv) ,

where for all Gv ⊆ V − {v} we define

γv(Gv) :=
∑

Gv⊆S⊆V −{i}

qv(S)L(S)R(V − {v} − S) .

It is useful to note that if k is a fixed maximum inde-
gree, then βv(Gv) vanishes whenever Gv contains more
than k elements. In this case, the function γv needs to
be computed only at sets Gv with at most k elements.

So we have arrived at the following algorithm for com-
puting the marginal posterior probabilities for all pos-
sible edges. Let the functions βi, αi, γi, L and R be
defined with respect to the trivial feature f ≡ 1, and
let us denote the maximum indegree by k.

1. For all nodes i ∈ V and subsets Gi ⊆ V −{i} with
|Gi| ≤ k: compute βi(Gi).

2. For all i ∈ V and Ui ⊆ V − {i}: compute αi(Ui).

3. For all S ⊆ V : compute L(S).

4. For all T ⊆ V : compute R(T).

5. For all v ∈ V :

(a) For all Gv ⊆ V −{i} with |Gv| ≤ k: compute
γv(Gv).

(b) For all u ∈ V −{v}: compute the probability
of the data x and the edge e = (u, v), by

p(x, e) =
∑

u∈Gv⊆V −{v}:|Gv|≤k

βv(Gv)γv(Gv) ,

and output the posterior probability p(e|x) =
p(x, e)/L(V).

We characterize the running time of this algorithm un-
der the assumption that the maximum indegree k is
a constant. Step 1 takes O(nk+1) time. Step 2 takes
O(2n) time as already mentioned; see the next section.
Steps 3 and 4 can be computed in O(2n) time using
the above given recursions. For each node v ∈ V , step
5(a) can be computed in O(2n) time, as we will show
in the next section. For each v, step 5(b) takes O(nk)
time. Thus, the total time requirement is O(n2n).

The following theorem summarizes the main result of
this paper.

Theorem 1 (Main) Let x be a complete data set
over n attributes, and let p be an order-modular model.
Then the marginal posterior probabilities for all the
n(n − 1) edges can be evaluated in O(n2n) total time.

4 THE FAST TRUNCATED

MÖBIUS TRANSFORM

We have postponed to this section the discussion of
certain summation formulas, namely those that de-
fine the functions αi and γi. These summations can
be viewed as Möbius transformations on a subset lat-
tice. Below we elaborate on some recent results on the
so called truncated Möbius transforms (Koivisto and
Sood, 2004). For clarity of presentation, we introduce
a generic notation—the connections to the notation
and terms used in the previous section are implicit.

Let N = {1, . . . , n}. Let s: 2N → R be a mapping
from the subsets of N onto the real numbers. We say
that a function t: 2N → R is the (downward) Möbius
transform of s if

t(T) =
∑

T⊆S⊆N

s(S) for all T ⊆ N .

A variant (the upward Möbius transform) is defined
by replacing the summation conditions by “S ⊆ T”.
While the straightforward way to compute the Möbius
transform takes O(3n) time, the fast Möbius transform
algorithm takes only O(n2n) time; see, e.g., Kennes
and Smets (1991).

We consider a scenario where we need to evaluate the
function t only at the sets T that contain at most k
elements, given the function s and a number k ≤ n.
We call the corresponding transform the k-truncated
downward Möbius transform. In the remainder of this
section we show that O(k2n) time suffices for eval-
uating such a transformation. Our result is dual to
a similar results by Koivisto and Sood (2004): The
upward Möbius transform can be computed in O(2n)
time when s(S) vanishes at all sets S that contain more
than a constant number (k) of elements.

The fast truncated downward Möbius transform algo-
rithm (FTDMT) works as follows. We encode every
subset S ⊆ N bijectively by a 0-1 vector (S1, . . . , Sn)
where Si = 1 if i ∈ S and Si = 0 otherwise; denote
Si:j for (Si, Si+1, . . . , Sj). Consider the following algo-
rithm. First, set s0(S1:n) := s(S) for all S ⊆ N . Then,
iteratively for i = 1, . . . , n transform the function si−1

to another function si as follows: for all T1, . . . , Ti and
Si+1, . . . , Sn in {0, 1} satisfying T1 + · · ·+Ti ≤ k, com-
pute

si(T1:i, Si+1:n) :=
1

∑

Si=Ti

si−1(T1:i−1, Si:n) .

We obtain by induction that sn(T1:n) = t(T).

The running time of the above algorithm is propor-
tional to the sum A1+. . .+An, where Ai is the number
of 0-1 vectors (T1:i, Si+1:n) satisfying T1 + · · ·+Ti ≤ k.
For i ≤ k we have Ai = 2n, and for i > k we have
Ai = 2n−iB(i, k), where B(i, k) =

∑k
j=0

(

i
j

)

.

To obtain sufficiently tight bounds for the terms
B(i, k), we use a well-known Chernoff bound (see, e.g.,
Hoeffding, 1963):

Theorem 2 (Chernoff bound) Let X1, . . . , Xn be
any independent Poisson trial with Pr{Xi = 1} = µi

for all i = 1, . . . , n. Let X =
∑n

i=1 Xi, µ =
∑n

i=1 µi,
and d > 0. Then

Pr{X ≤ µ − d} ≤ exp
[

−
d2

2µ

]

.

We substitute µi := 1/2 and d := n/2−k, which gives
us the following bound.

Corollary 3 If n > 2k, then

k
∑

j=0

(

n

j

)

≤ 2n exp
[

−
n

4
+ k −

k2

n

]

.

We use the above estimate to bound each Ai for i =
4k + l with l ≥ 0. We have

Ai = 2n−iB(i, k)

≤ 2n exp
[

−
i

4
+ k −

k2

i

]

= 2n exp
[

−
1

4

(

i − 4k +
4k2

i

)]

< 2n exp(−l/4) .

Finally, we sum up the bounds of Ai for i = 1, . . . , n.
On one hand, A1 + · · · + A4k−1 ≤ (4k − 1)2n, and
on the other hand, A4k + · · · + An < 2n(e0 + e−1/4 +
e−2/4+· · ·) = 2n/(1−e−1/4) < 5·2n. Combining these
bounds gives A1 + . . . + An < 4(k + 1)2n. Thus, the
problem of evaluating t(T) at every T of size at most
k can be solved in O(k2n) time.

We observe that the above analysis also applies to the
fast truncated Möbius transform algorithm of Koivisto
and Sood (2004), which—using the terminology in-
troduced in this section—computes the k-truncated
upward Möbius transform. Thus we have the follow-
ing result, which also proves the conjecture posed by
Koivisto and Sood (2004) regarding the precise role of
k in the time complexity.

Theorem 4 (Fast truncated Möbius transforms)
The k-truncated upward and downward Möbius trans-
forms on the subset lattice of n elements can be
computed in O(k2n) time.

5 EXPERIMENTAL RESULTS ON

EDGE DISCOVERY

This section summarizes an experiment concerning the
statistical power of discovering edges in Bayesian net-
works. Briefly, for various random BNs we (i) simu-
lated data sets of different sizes, (ii) then computed
the posterior probability of each possible edge, and
(iii) finally summarized the discrepancy between the
true network structure and the set of inferred edges.

The algorithms described in the previous sections have
been implemented in the C++ language into a pro-
gram named REBEL (Rapid Exact Bayesian Edge
Learning).4

5.1 EDGE LEARNING AND ROC CURVES

We consider a scenario where one tries to learn the
existence or nonexistence of as many edges as possi-
ble. For simplicity, we restrict our consideration to
undirected edges, that is, we do not care if the orien-
tation is incorrect.5 Once a decision has been made for
each possible edge, the outcome can be summarized by
the number of true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) edges.
For any loss (or utility) function of these numbers,
we could derive an optimal Bayesian decision. How-
ever, rather than fixing any such function, we follow
Husmeier (2003) and use the ROC (receiver operating
characteristic) curve to summarize the learning per-
formance against different possible loss functions. To
this end, we let τ be a threshold parameter taking val-
ues in [0, 1]. Each undirected edge {u, v} is claimed
to be present in the network if and only if the poste-
rior probability p((u, v)|x)+p((v, u)|x) exceeds τ . For
each value of τ we plot the sensitivity TP/(TP +FN)
(proportion of recovered true edges) against the com-
plementary specificity FP/(TN + FP) (proportion of
false edges). Note that the constructed edge set is of
course not intended to represent a valid BN structure.

5.2 SYNTHETIC DATA

We generated synthetic data from BN models with
n = 5, 10, 15, 20, 25 nodes, the maximum indegree
k = 2, 3, 4, 5, and r = 2, 4 states per variable. For

4The program REBEL will be made publicly available
at http://www.cs.helsinki.fi/u/mkhkoivi/.

5The data-generating model is not particularly infor-
mative about the direction of the edges. While entire net-
work estimates (not used here) could be checked for Markov
equivalence with the true network, checks for individual di-
rected edges are somewhat problematic. Note that when
the inferred undirected edges are compatible with the true
network, we may expect (up to rare exceptions) that the
correct Markov equivalence class is identified by the data.

each combination (n, k, r), we generated 10 indepen-
dent BN models by the following procedure.

1. Draw a linear order ≺ on the node set {1, . . . , n}
uniformly at random (u.a.r.).

2. For each node i (independently):

(a) draw the number of parents of i, denoted as
ni, from {0, 1, . . . , k} u.a.r.;

(b) draw the ni parents of i from the predecessors
of i, i.e., from {j : j ≺ i} u.a.r.;

(c) for each value configuration of the parents
(independently): draw a distribution on the
states {1, . . . , r} from the uniform distribu-
tion (Dirichlet with all parameters set to 1).

Note that this procedure specifies an order-modular
model pn,k,r for each configuration (n, k, r).

From each of the resulting 5×4×2×10 = 400 BNs we
generated 10,000 independent data points. Of these
data sets we used nested subsets containing the first
m = 20, 100, 500, 2000, and 10,000 data points.

5.3 MODELS FOR DATA ANALYSIS—ON
A BAYESIAN NOTION OF POWER

Each data set drawn from model pn,k,r was also ana-
lyzed under pn,k,r. This choice is motivated not only
by simplicity, but also by a Bayesian interpretation of
statistical power as an expectation over the prior. For
example, the Bayesian power of learning an edge is the
(prior) probability that the posterior guess about the
presence of the edge will be correct.6 Such probabil-
ities w.r.t. a model pn,k,r can be estimated by Monte
Carlo averages over a sample of realizations of net-
work structures and data sets drawn from the model
pn,k,r. However, since we use ROC curves to summa-
rize the learning ability, we do not explicitly estimate
the power of learning any individual edge. That said,
we will examine the distribution of ROC curves under
each pn,k,r, rather than computing any averages.

5.4 RESULTS

Figure 1 shows that networks of n = 20 attributes,
with fixed maximum indegree k and the number of
states r, the power of edge discovery grows relatively
smoothly with the number of data points, as expected.
More interestingly, we also notice that increasing the
maximum indegree has only a mild effect, whereas in-
creasing the number of states seems to have a some-
what surprising effect: when there are 500 or more

6For a deeper discussion of the notion of Bayesian power
and its connection to the notion of expected information
gain, see Koivisto (2004, Chap. 2).

r = 2 r = 4

k = 2

20
100
500

2000
10000

k = 3

k = 4

k = 5

Figure 1: Power of edge discovery in networks of 20
attributes. For different maximum indegree k and
number of states r, the sensitivity (y-axis) is plot-
ted against the complementary specificity (x-axis); the
ranges of the axes are both [0, 1]. Each plot shows the
ROC curve for five nested subsets of a single random
data set. The straight diagonal line is the expected
ROC curve of a random predictor.

data points, edges can be more reliably discovered on
4-state attributes than on binary attributes. This can
be explained by the smaller information content of bi-
nary attributes. The results for other number of at-
tributes and other data samples (not shown) are qual-
itatively very similar.

As suggested by the results shown in Figure 2, there
seems to be no clear increase nor decrease in power
when the number of attributes grows. It should be
noted, however, that Figure 2 (like Figure 1) shows
results for one out of the 10 data samples per con-
figuration. Yet, inspecting the results for all the 10
samples (not shown) does not change this view.

While Figures 1 and 2 display some “typical” results

r = 2 r = 4

n = 5

20
100
500

2000
10000

n = 10

n = 15

n = 20

n = 25

Figure 2: Power of edge discovery in networks with the
maximum indegree 4. For different number of nodes n
and number of states r, the sensitivity (y-axis) is plot-
ted against the complementary specificity (x-axis); the
ranges of the axes are both [0, 1]. Each plot shows the
ROC curve for five nested subsets of a single random
data set. The straight diagonal line is the expected
ROC curve of a random predictor.

on the power of edge discovery, we get a more com-
plete picture when we also explore the variation within
the 10 ROC curves for each configuration (n, k, r) and
number of data points m (Figures 3 and 4). We ob-
serve that the variance decreases as the number of data
points increases. We also notice that, as already sug-
gested, increasing the number of states r from 2 to
4 decreases the average power for 100 or fewer data

r = 2 r = 4

m = 20

m = 100

m = 500

m = 2000

Figure 3: Variance in the power of edge discovery in
networks of 10 attributes with the maximum indegree
4. For different number of data points m and number
of states r, the sensitivity (y-axis) is plotted against
the complementary specificity (x-axis); the ranges of
the axes are both [0, 1]. Each plot shows the ROC
curve for 10 random data set. The straight diagonal
line is the expected ROC curve of a random predictor.

points, but slightly increases it for larger data sets.

6 CONCLUDING REMARKS

We have presented a new exact algorithm for comput-
ing the marginal posterior probability of every edge in
a Bayesian network. The algorithm runs in O(n2n) to-
tal time, where n is the number of attributes, offering
a 100- to 1000-fold speedup on the recent algorithm
by Koivisto and Sood (2004).

We used this algorithm to study the statistical power
of edge discovery. The advantage of the exact algo-
rithm over inexact methods, e.g., MCMC, is that we

r = 2 r = 4

m = 20

m = 100

m = 500

m = 2000

Figure 4: Variance in the power of edge discovery in
networks of 20 attributes with the maximum indegree
4. For different number of data points m and number
of states r, the sensitivity (y-axis) is plotted against
the complementary specificity (x-axis); the ranges of
the axes are both [0, 1]. Each plot shows the ROC
curve for 10 random data set. The straight diagonal
line is the expected ROC curve of a random predictor.

do not have to speculate on the possible unreliability
of the algorithm; instead, we can examine the pure
combination of the model and the data.

There are also other potential applications. Prior sen-
sitivity analysis concerns the robustness of learning re-
sults to perturbations of the model (prior). Inexact
methods can be problematic, for one usually cannot
tell apart the variances due to the model and due to
the algorithm. Another application is the validation of
heuristic methods by comparing the results produced
by a heuristic algorithm to the exact results. Tests
on, say, 25 attributes may reveal shortcomings of a
heuristic and, vice versa, observing that a heuristic al-
gorithm performs well on networks of this size suggests

that it may do so on larger networks as well.

From the algorithmic point of view, the most impor-
tant open problem is perhaps the issue of space com-
plexity. Is it possible to reduce the O(n2n) space re-
quirement of the presented algorithm, without sacri-
ficing much in the running time?

Acknowledgments

I wish to thank Evimaria Terzi and Kismat Sood for
useful discussions.

References

W. Buntine. Theory refinement on Bayesian networks. In
Proceedings of the Seventh Conference on Uncertainty in
Artificial Intelligence (UAI), pages 52–60, Los Angeles,
CA, 1991. Morgan Kaufmann, San Mateo, CA.

G. F. Cooper and E. Herskovits. A Bayesian method for the
induction of probabilistic networks from data. Machine
Learning, 9:309–347, 1992.

N. Friedman and D. Koller. Being Bayesian about network
structure: A Bayesian approach to structure discovery in
Bayesian networks. Machine Learning, 50(1–2):95–125,
2003.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine Learning, 20:197–243, 1995.

D. Heckerman, C. Meek, and G. F. Cooper. A Bayesian
approach to causal discovery. In C. Glymour and G. F.
Cooper, editors, Computation, Causation, Discovery,
pages 141–165. MIT Press, Cambridge, 1999.

W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical
Association, 58(301):13–30, 1963.

D. Husmeier. Sensitivity and specificity of inferring ge-
netic regulatory interactions from microarray experi-
ments with dynamic Bayesian networks. Bioinformatics,
19:2271–2282, 2003.

R. Kennes and P. Smets. Computational aspects of the
Möbius transformation. In P. B. Bonissone, M. Henrion,
L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in
Artificial Intelligence 6, pages 401–416. North-Holland,
Amsterdam, 1991.

M. Koivisto. Sum-Product Algorithms for the Analysis of
Genetic Risks. PhD thesis, University of Helsinki, Jan-
uary 2004.

M. Koivisto and K. Sood. Exact Bayesian structure discov-
ery in Bayesian networks. Journal of Machine Learning
Research, 5:549–573, 2004.

J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, Cambridge, 2000.

L. R. Rabiner. A tutorial on Hidden Markov Models and
selected applications in speech recognition. Proceedings
of the IEEE, 77(2):257–286, 1989.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Pre-
diction, and Search. Springer Verlag, 2000.

