Bt-trees

Kerttu Pollari-Malmi

This text is based partly on the course text book by Cormen and partly aridHecture
slides written by Matti Luukkainen and Matti Nykanen.

1 Introduction

At first, read the beginning of the chapter 18 from the text book. It éxplahy B-trees are
used when the search structure is on disk.

In this course, we considerBtrees instead of classical B-trees introduced in the text book.
The difference is that in B-trees only leaf nodes contain the actual key values. The non-
leaf nodes of the B-trees contaimouter values. Routers are entities of the same type as the
key values, but they are not the keys stored in the search structuee.afé only used to
guide the search in the tree. In classical B-trees, the key values aed gtdvoth leaf and
non-leaf nodes of the tree.

2 Thestructureof aB'-tree

A BT-treeT consists of nodes. One of the nodes is a special fiadet.

If a nodex is a non-leaf node, it has the following fields:

e Xx.nthe number of router values currently stored in nade

e The router values stored in nogén increasing order
X.routery < x.router, < ... < X.routeryn

e X.leaf, a boolean field whose valuefraLSE meaning thak is a non-leaf node

e X.n+ 1 pointersx.cy,X.C, X.Cs, . ..,X.Cxnt1 to the children ok.
If the nodex is a leaf node, it has the following fields

e x.n number of key values currently storedxn

e The key values stored in noden increasing order
x.key; < x.key, < ... < x.keyy,

e X.leaf, a boolean field whose valueTRUE meaning thak is a leaf node.

If we consider a non-leaf nodeand pointers in ik.c1,X.Cp,X.C3, ..., X.Cxni1
the following condition is true:

ki < x.routery < kp < x.routers < Ks... < kyp < X.routeryn < Kynia
wherek; is any key or router value in the subtree pointed by the potgr

An example of the non-leaf node containing 5 router values:

leaf n
false 5 / 10| 18| 45| 66| 93\

ARERE

Usually, we do not draw the values of the fields andx.leaf :

10[,[1d,[45,] 66,[98

FTTTT

The leaf nodes contain only the fieldsandleaf and key values (and maybe some data
connected to the key values, but for the case of simplicity we do not drawldite)

leaf n
true 8|19 2123 24 27 2944 45

Usually, we draw the leaf node without the fieldandleaf:

19| 2123 24 2y 2944 45

(@8]

Usually, each non-leaf node has dozens or hundreds of children.

An example of a B-tree:

[2[5] T J[6]71122 1419 [|[2028 [|[374147 |[s0536163(6q71 | |[73757b | (808384] [878g [|

3 Propertiesof the B™-tree nodes

The Bt -tree has to satisfy the following balance conditions:

e Every path from the root node to a leaf node has an equal length, irg.leaénode
has the same depth which is the height of the tree.
e Every node of the B-tree except the root node is at least half-filled.
The latter condition can be formulated more exactly: denots{Xjythe number of children
of nodex if x is a non-leaf node and the number of keys storexlifnx is a leaf node. Let
t > 2 be a fixed integer constant. For each nedé the B'-tree, the following is true:

e 1<g(x) <2t if xis the only node in the tree.

e 2<g(x) < 2t,if xis the root node and the tree contains also other nodes in addition
to the root node.

o t <s(x) < 2t, otherwise.
Because the B-tree satisfies the given balance conditions, we can prove that thehhoght

the Bt-tree
h <log;n

wheren is the number of the keys stored in the tree.

4 Searchin Bt-tree

The search operation is started in the root node and it proceeds inrexaey as follows:

¢ If xis a non-leaf node, we seek for the first router vadweuter; which is greater than
or equal to the kek searched for. After that the search continues in the node pointed
by x.ci

¢ If all router values in node are smaller than the kdysearched for, we continue in
the node pointed by the last pointenin

e If Xis a leaf node, we inspect whetheis stored in this node.

An example of a search operation:

Search(23):

[2[s] [J[e[7[1112[1h1p [J[2o23[|[31pp7][Is0| [e1/¢sg71 | |[737576 |[dog3ga]| B7s[|

Search(23):

[2[s] [J[e[7[1412[1h1p [J[2p23] |[31p1k7][[s0 [61¢sg71 | |[737576 |[d083g4][B7s[|

Search(23):

\
(2[s] [J[e[7[1412[1k1p [J[2p23[|[31p1k7][[s0| [61¢g71 | |[737576 |[d083g4][B7s[|

4.1 Code of the search operation

BTreeSearch(T,k)
1 x=T.root

2 whilenot x.leaf
3 i=1

4 whilei < x.nand k > x.router

5 i=i+l

6 X =X.G

7 DiskRead(x)

8 i=1 /Il ollaan lehtisolmussa
9 whilei < x.nand k > x.key

10 =i+l

11if i < x.nand k = x.key

12 return(x,i)

13 elsereturn NIL

4.2 Time complexity of the search operation

During the search operatioh,nodes are read from the disk to the main memory wiere

is the height of the B-tree. As previously stated, the height of the-Bee ish = O(logn)
wheren is the number of the keys stored in the tree. In addition of the disk reads, the
algorithm performs a linear search in every node read from the disktifiieecomplexity

of each linear search @&(t). Thus, the total time complexity of the'Btree search operation

is O(tlog, n).

If the linear search inside each node is changed to a binary searchtathtéte complexity
of the B -tree search operation becont@gog,t log, n). However, in practise the disk read
operations dominate the time demand of the operation.

5 BT-treeinsertion

The insertion of the kek to a Bf-tree is started by searching for the leaf ngdehich
should contairk. This is performed in the same way as when performing therBe-search
operation. If there is enough spaceyito insert the ke, k is inserted and no other actions
are needed.

If the nodey is full before the insertion, it must be split as follows:

e We allocate memory for a new node

e The firstt keys of nodey are left iny

e The lastt keys of nodey are transferred to the new node

e The keyk is inserted to either nodeor zaccording to the value d.

e A pointer to the new nodeand a new router value are inserted to neeich is the
parent of botty andz. A good choice for the new router value is the last key value in

y.

¢ If there is not enough space for a new pointer and router valgedimust be split. In
the worst case, all nodes in the path from the leaf to the root must be split.

An example of splitting a leaf node:

z

y y
314147 | [5063 6163 (3114147 | (5053 | || 6163 | |

y z y
3y4147 |[s05B9 |[e6163| | (314147 |[50589 || 6163 | |

In non-leaf nodes, the number of router values is one smaller than the nofri@nters.
Thus, if we split a non-leaf node, we have an “extra” router value. Tdiger value is

added to the parent of the split node between the pointers to the origir@bnddo its new
sibling.

An example of the situation where a new pointer and a new router value §%areed into
nodey is presented below.

29[79] 1 |29]]67]] 79]
y Y,

J47//67] 74 12 2 N
/o /o

29]]67]] 79]
Y,

47lfsel []fl7a] 0L

If the parent of the split non-leaf node is full, we must split the parent talide to add a
new pointer and router value to the parent. In the worst case, all notles path from the
split node to the root node have to be split.

An example of the situation where inserting the value 59 into the leaf node leaglitting
of three nodes. (Only part of the'Btree is presented in the picture below):

Insert 59

1132979

505359] [6165 | |

The time complexity of the insertion algorithm@t - 1og:n), where the cofficient is due
to the operations performed for each node in the main memory. In practid¢enghdemand
is dominated by the number of disk reads and writes needed, whiafhag;n).

We have presented the algorithm which performs the insertion to a leaf nduist and
then goes back to the root node and does node splits when necessagysd possible to
do the insertion in a single pass down the tree: if we encounter a full nadsphit it on the

way from the root down to the leaf. This means that we maybe do some wsaegeplit
operations, but on the other hand, we guarantee that it is always ledssibsert a key into
a leaf node without going back to the root after insertion.

6 BT-treeddetion

We start the deletion by searching for the leaf node containing the key teléied. Notice
that we do not delete the same value from the non-leaf nodes although leaforede
would contain this value as a router value.

Because every leaf node contains more than one key values, we daletetttie node itself.
We just remove the key value from the node.

If a leaf node contains at ledsteys after the deletion, we are ready and no other actions are
needed. If the number of keys in the leaf node-isl after deletion, rebalancing operation
are needed.

When rebalancing nodgwhich containg — 1 keys, we use the siblingof y. The action
performed depends on the number of nodez ifithe nodez contains at modt+ 1 keys,
the keys inz are transferred to node After that, the pointer to nodeand one router value
are removed from the parentphindz This action is calledusing.

Delete 53:

z y
5053 | |[e86970 | [s0 | | |[ege97i | [s0/6d 69 71

If the parenix has less thanchildren after fusing, we must continue the rebalancing process
in X, which is a non-leaf node. If fusing is applied to two non-leaf nodes,dhter value
between the pointers to these nodes in the parent is removed from thé quadeadded to

the fused node. In the worst case, all nodes in the path from the fuseto e root must

be fused. The figure below shows the situation where fusing is startedaédey has been
removed from the leaf in the left. (The figure contains only part of thetige.)

T.root

T) RO
S

67 [[] 18l [[] [74[80 ||
o

59 | | [[686971 | 506869 7]

If the nodey containg — 1 keys after the deletion and its siblingontains at leastt 2 keys,
fusing cannot be applied. In this case, we sis@ing: Some of the keys i are transferred
to the nodey so that the number of keys in both nodes is about the same:

Delete 53:
4767 7] —— 476774 ——= [l47][69|71]]
5053 | ||e869707y |50 | | |[e8697071 [506869 ||7071 | |

Because the parent gfandz does not loose any children in this process, we do not need any
rebalancing in the parent. However, we must update the router valuedrethe pointers
to the nodey andz

It is also possible that we must apply sharing to non-leaf nodes, if fusidgslower in
the tree has led to the situation where a non-leaf node cortaifischildren and its sibling
containst 4 2 children. Notice how the router values are changed between the nodes to

which sharing is applied and their parent in the example below:
13 13 85
SN TN
60|| 75| 80 47/160 80

/ Py e

The time complexity of the delete operation is the same as the time complexity of the inser-
tion:

75

47185 —

e The total time complexity i©(t - log; n)

e The number of disk operations needed®idog; n). This is the dominating factor of
the time demand in practice.

It is also possible to perform the delete operation and rebalancing in a peggedown the
tree: Each time we encounter a node having exaathjildren (non-leaf node) or keys (leaf
node) on the way from the root to the leaf in the search phase, we ampinglor fusing
to this node and its sibling. When we reach the leaf, we can always remtaastone key
from it without any further rebalancing operations.

