
B+-trees

Kerttu Pollari-Malmi

This text is based partly on the course text book by Cormen and partly on theold lecture
slides written by Matti Luukkainen and Matti Nykänen.

1 Introduction

At first, read the beginning of the chapter 18 from the text book. It explains why B-trees are
used when the search structure is on disk.

In this course, we consider B+-trees instead of classical B-trees introduced in the text book.
The difference is that in B+-trees only leaf nodes contain the actual key values. The non-
leaf nodes of the B+-trees containrouter values. Routers are entities of the same type as the
key values, but they are not the keys stored in the search structure. They are only used to
guide the search in the tree. In classical B-trees, the key values are stored in both leaf and
non-leaf nodes of the tree.

2 The structure of a B+-tree

A B+-treeT consists of nodes. One of the nodes is a special nodeT.root.

If a nodex is a non-leaf node, it has the following fields:

• x.n the number of router values currently stored in nodex

• The router values stored in nodex in increasing order
x.router1 < x.router2 < .. . < x.routerx.n

• x.leaf , a boolean field whose value isFALSE meaning thatx is a non-leaf node

• x.n+1 pointersx.c1,x.c2,x.c3, . . . ,x.cx.n+1 to the children ofx.

If the nodex is a leaf node, it has the following fields

• x.n number of key values currently stored inx.

1

• The key values stored in nodex in increasing order
x.key1 < x.key2 < .. . < x.keyx.n

• x.leaf , a boolean field whose value isTRUE meaning thatx is a leaf node.

If we consider a non-leaf nodex and pointers in itx.c1,x.c2,x.c3, . . . ,x.cx.n+1

the following condition is true:
k1 ≤ x.router1 < k2 ≤ x.router2 < k3 . . . < kx.n ≤ x.routerx.n < kx.n+1

whereki is any key or router value in the subtree pointed by the pointerx.ci.

An example of the non-leaf node containing 5 router values:

10 18 45 66 98false
nleaf
5

Usually, we do not draw the values of the fieldsx.n andx.leaf :

10 18 45 66 98

The leaf nodes contain only the fieldsn and leaf and key values (and maybe some data
connected to the key values, but for the case of simplicity we do not draw that data)

leaf
true 19 21 23 24 27 29 44 458

n

Usually, we draw the leaf node without the fieldsn andleaf :

19 21 23 24 27 29 44 45

Usually, each non-leaf node has dozens or hundreds of children.

An example of a B+-tree:

888784838050 53 61 6331 41 4714 19 20 2312117652

13 29 79

47 67 71

68 71 73 75 76

85195

3 Properties of the B+-tree nodes

The B+-tree has to satisfy the following balance conditions:

• Every path from the root node to a leaf node has an equal length, i.e. every leaf node
has the same depth which is the height of the tree.

• Every node of the B+-tree except the root node is at least half-filled.

The latter condition can be formulated more exactly: denote bys(x) the number of children
of nodex if x is a non-leaf node and the number of keys stored inx if x is a leaf node. Let
t ≥ 2 be a fixed integer constant. For each nodex of the B+-tree, the following is true:

• 1≤ s(x) ≤ 2t, if x is the only node in the tree.

• 2≤ s(x) ≤ 2t, if x is the root node and the tree contains also other nodes in addition
to the root node.

• t ≤ s(x) ≤ 2t, otherwise.

Because the B+-tree satisfies the given balance conditions, we can prove that the highth of
the B+-tree

h ≤ logt n

wheren is the number of the keys stored in the tree.

4 Search in B+-tree

The search operation is started in the root node and it proceeds in everynodex as follows:

• If x is a non-leaf node, we seek for the first router valuex.routeri which is greater than
or equal to the keyk searched for. After that the search continues in the node pointed
by x.ci

• If all router values in nodex are smaller than the keyk searched for, we continue in
the node pointed by the last pointer inx.

• If x is a leaf node, we inspect whetherx is stored in this node.

An example of a search operation:

2 5 6 7 11 12 14 19 20 23 31 41 47 50 61 6353 68 71 73 75 76 80 83 84 87 88

5 19

13 29 79

47 67 71 85

Search(23): x

2 5 6 7 11 12 14 19 20 23 31 41 47 50 61 6353 68 71 73 75 76 80 83 84 87 88

5 19

13 29 79

47 67 71 85

Search(23):

x

2 5 6 7 11 12 14 19 20 23 31 41 47 50 61 6353 68 71 73 75 76 80 83 84 87 88

5 19

13 29 79

47 67 71 85

Search(23):

x

4.1 Code of the search operation

BTreeSearch(T,k)
1 x = T.root
2 while not x.leaf
3 i = 1
4 while i ≤ x.n and k > x.routeri
5 i = i+1
6 x = x.ci

7 DiskRead(x)
8 i = 1 // ollaan lehtisolmussa
9 while i ≤ x.n and k > x.keyi

10 i = i+1
11 if i ≤ x.n and k = x.keyi

12 return (x, i)
13 else return NIL

4.2 Time complexity of the search operation

During the search operation,h nodes are read from the disk to the main memory whereh
is the height of the B+-tree. As previously stated, the height of the B+-tree ish = O(logn)
wheren is the number of the keys stored in the tree. In addition of the disk reads, the
algorithm performs a linear search in every node read from the disk. Thetime complexity
of each linear search isO(t). Thus, the total time complexity of the B+-tree search operation
is O(t logt n).

If the linear search inside each node is changed to a binary search, the total time complexity
of the B+-tree search operation becomesO(log2 t logt n). However, in practise the disk read
operations dominate the time demand of the operation.

5 B+-tree insertion

The insertion of the keyk to a B+-tree is started by searching for the leaf nodey which
should containk. This is performed in the same way as when performing the B+-tree-search
operation. If there is enough space iny to insert the keyk, k is inserted and no other actions
are needed.

If the nodey is full before the insertion, it must be split as follows:

• We allocate memory for a new nodez.

• The firstt keys of nodey are left iny

• The lastt keys of nodey are transferred to the new nodez.

• The keyk is inserted to either nodey or z according to the value ofk.

• A pointer to the new nodez and a new router value are inserted to nodex which is the
parent of bothy andz. A good choice for the new router value is the last key value in
y.

• If there is not enough space for a new pointer and router value inx, x must be split. In
the worst case, all nodes in the path from the leaf to the root must be split.

An example of splitting a leaf node:

31 41 47 50 61 6353

47 47

31 41 47 50 53 61 63

47

31 41 47 50 53 61 63

47

31 41 47 50 53 61 63

x

y z

x

y z

59

x

y z

59

Insert 59:

x

y

59

In non-leaf nodes, the number of router values is one smaller than the number of pointers.
Thus, if we split a non-leaf node, we have an “extra” router value. Thisrouter value is

added to the parent of the split node between the pointers to the original node and to its new
sibling.

An example of the situation where a new pointer and a new router value 59 areinserted into
nodey is presented below.

59
y

47

29

71

67 79

47 67 71

29 79

y y
47

29

71

67 79

If the parent of the split non-leaf node is full, we must split the parent to beable to add a
new pointer and router value to the parent. In the worst case, all nodes inthe path from the
split node to the root node have to be split.

An example of the situation where inserting the value 59 into the leaf node leads tosplitting
of three nodes. (Only part of the B+-tree is presented in the picture below):

47 67 71

792913

Insert 59

50 53 61 63

47 71

29

59

67 7913

50 53 61 6359

The time complexity of the insertion algorithm isO(t · logtn), where the cofficientt is due
to the operations performed for each node in the main memory. In practice, thetime demand
is dominated by the number of disk reads and writes needed, which isO(logtn).

We have presented the algorithm which performs the insertion to a leaf node at first and
then goes back to the root node and does node splits when necessary. It is also possible to
do the insertion in a single pass down the tree: if we encounter a full node, we split it on the

way from the root down to the leaf. This means that we maybe do some unnecessary split
operations, but on the other hand, we guarantee that it is always possible to insert a key into
a leaf node without going back to the root after insertion.

6 B+-tree deletion

We start the deletion by searching for the leaf node containing the key to be deleted. Notice
that we do not delete the same value from the non-leaf nodes although a non-leaf node
would contain this value as a router value.

Because every leaf node contains more than one key values, we do not delete the node itself.
We just remove the key value from the node.

If a leaf node contains at leastt keys after the deletion, we are ready and no other actions are
needed. If the number of keys in the leaf node ist −1 after deletion, rebalancing operation
are needed.

When rebalancing nodey which containst −1 keys, we use the siblingz of y. The action
performed depends on the number of nodes inz. If the nodez contains at mostt +1 keys,
the keys inz are transferred to nodey. After that, the pointer to nodez and one router value
are removed from the parent ofy andz. This action is calledfusing.

47 67

50 53 68 69 71

71 47 67

50 68 69 71

71

50 68 69 71

47 71

Delete 53:

y z

x

y z

x

y

x

If the parentx has less thant children after fusing, we must continue the rebalancing process
in x, which is a non-leaf node. If fusing is applied to two non-leaf nodes, the router value
between the pointers to these nodes in the parent is removed from the parent and added to
the fused node. In the worst case, all nodes in the path from the fused leaf to the root must
be fused. The figure below shows the situation where fusing is started after one key has been
removed from the leaf in the left. (The figure contains only part of the B+-tree.)

50 68 69 71

74 80

90 99

50 68 69 71

67 80

74

90

99

T.root

T.root

If the nodey containst−1 keys after the deletion and its siblingz contains at leastt +2 keys,
fusing cannot be applied. In this case, we usesharing: Some of the keys inz are transferred
to the nodey so that the number of keys in both nodes is about the same:

47 6747 67

50 68 69

71

50 68 69

47

Delete 53:

50 53 68 69

71

7170 7170 70 71

7169

Because the parent ofy andz does not loose any children in this process, we do not need any
rebalancing in the parent. However, we must update the router value between the pointers
to the nodesy andz.

It is also possible that we must apply sharing to non-leaf nodes, if fusing nodes lower in
the tree has led to the situation where a non-leaf node containst −1 children and its sibling
containst + 2 children. Notice how the router values are changed between the nodes to
which sharing is applied and their parent in the example below:

60 75 80

4713 85

47 60 80

7513 85

The time complexity of the delete operation is the same as the time complexity of the inser-
tion:

• The total time complexity isO(t · logt n)

• The number of disk operations needed isO(logt n). This is the dominating factor of
the time demand in practice.

It is also possible to perform the delete operation and rebalancing in a singlepass down the
tree: Each time we encounter a node having exactlyt children (non-leaf node) or keys (leaf
node) on the way from the root to the leaf in the search phase, we apply sharing or fusing
to this node and its sibling. When we reach the leaf, we can always remove atleast one key
from it without any further rebalancing operations.

