Data structures, exercise 5, 16.-20.2.

1. Insert to an empty binary search tree keys $2,0,3,7,9,1,5,6$ ja 8 . Show how the tree grows when the insertions are made.
After the insertions, show how the keys 3, 9, 2 and 5 are deleted from the resulting tree.
2. Define an algorithm that counts the number of nodes in a binary tree.

What is the time and space complexity of the algorithm?
3. Define an algorithm that counts how many times a given key is in a binary tree. Eg. in the below tree, if the key to count is 3 , the answer would be 2 .

What is the time and space complexity of the algorithm?
4. Define an algorithm that checks if two binary search trees are same.

A and B below are same. A and B are not since the structures differ. A and D are not same since the keys differ.

5. Define an algorithm that prints keys in level order. That is, the keys at level i are printed before the keys at level $i+1$ are printed.
What is the time and space complexity of the algorithm?
6. 2-3-tree is a type of balanced search tree.

A tee is 2 -3-tree if the following are true:

- Every non leaf node has 2 or 3 childeren
- All the leaf nodes have same depth
(a) Draw the greatest and smallest 2-3-tree with height 1,2 and 3
(b) Assume that 2-3-tree has height h. Show what is the smaller and upper limit of the number of the nodes.
(c) Assume that 2-3-tree has n nodes. Show what is the smaller and upper limit of the height of the tree.

The following formula might be useful: $\sum_{i=0}^{k} a^{k}=\frac{a^{k+1}-1}{k-1}$ where $a \neq 1$.

