
Data Structures, exercise 6, 23.-26.2.

Note: when programming do not use the following machines: melkki, melkinkari, melkin-

paasi

1. (a) Draw smallest and largest AVL-trees, which have height of 3 and 4. You may

choose the values of the nodes freely as long as they meet the binary search tree

property.

(b) Show that the tree below meets the AVL-tree property.

21

/ \

10 30

\ / \

13 24 41

\ \

27 55

2. (a) Show how AVL insert works, when the following keys are added to an empty

tree, in the following order: 41, 38, 31, 12, 19, 8, 27 and 49. Show how rotations

are done in each insert.

(b) Do as above, but the keys are inserted to an empty tree in reverse order, 49, 27,

8, 19, 12, 31, 38 and 41.

3. AVL-delete works as follows: First a node is deleted with normal binary search

tree delete operation. This may cause an unbalance to the tree. If there is un-

balance, the problems are in path from the deleted node to the root of the

tree. So, to correct the problems, each node in that path (starting form the

parent of the deleted node) are checked and if an unbalance is found, the neces-

sary rotations are made. In AVL-insert, a single rotate or a double rotate is

enough to return the balance. With AVL-delete this is not the case. The algo-

rithm must check each node form the path to the root node of the tree. See eg.

www.cs.uga.edu/∼eileen/2720/Notes/AVLTrees-II.ppt

Show how AVL-delete works when it removes keys 12, 49, 31 and 8 from the

tree that results in 2 (a).

(a)(b) Remove the keys 12, 8, 49 and 41 (in this order) from the tree that results in 2

(b).

4. Implement a binary search tree with operations insert and search using Java. The

keys saved to the tree are of type long. You don’t necessarily need to implement the

parents links in this exercise.

For testing it is useful to implement an algorithm, that prints the content of the whole

tree. Most simple way is to print the nodes using in-order. Question 5 of exercise 5

shows another way how a tree can be visualized.

Bonus: implement an algorithm, that tests the height of the tree. Testing the height

is done the simillarly as the counting the sum of nodes in exercise 5, question 2.

1



You can mark this question as done also without implementing the height testing

algorithm. You’ll need the algorithm anyway in the next question.

5. Testing the efficiency of a tree

(a) The weakness of an ordinary binary tree is the fact, that in worst case tree can

be high. If the keys are to be inserted many at the same time, then one solution

to the problem is first to shuffle the keys to a random order.

Let’s use the binary tree of the previous question and examine the height of the

tree with different amounts of keys, when the keys are shuffled before insertion.

In practice you can insert random keys to he tree instead of shuffling. It is easy

to generate random numbers using Java class called Random.

Measure using several amounts of keys, how close the height of the tree is to

the optimal height.

(b) Learn how to use Java class TreeSet, which is an implementation of a balanced

binary search tree.

Compare empirically the efficiency of the TreeSet-tree and your own tree. Do

three sets of measurements:

• Add to both trees n random keys. Measure the time that went to insertion

operations.

• Add to both trees m random nodes and run n random search operations.

Measure only the time that went to the search operations.

• Add to both trees keys 1, 2, 3, . . . , m in increasing order and run n random

search operations. Measure only the time that went to the search operations.

In all the cases test several values for m and n and have emphasis on large

amount of input. Execution time of the algorithm can be measured the same

way as week’s 4 questions.

What do we learn from the measure results? How do the results confront with

O-analysis?

Note: if you dislike Java you can use any other language for this and the previous

question. When doing so, you’ll need to find a library implementation that resembles

Java’s TreeSet in the language of your choice. In the STL of C++ there is (set), but

for example in Python most likely a ready implementation is not found.

6. (a) The time requirement of the binary search tree operations min and max (finding

the smallest and the largest node) is O(h), where h is the height of the tree.

Change the tree implementation so, that the time requirement of operations

min and max is only O(1) and the time requirement of other operations stays

the same.

(b) The time requirement of the binary search tree operations succ and pred is

O(h), where h is the height of the tree. Change the tree implementation so,

that the time requirement of operations succ and pred is only O(1) and the

time requirement of other operations stays the same.

(c) What are the benefits and the disadvantages of the previous changes?

2


