
Experiences in Using SDL to Support
the Design and Implementation of a Logical

Link Layer Protocol

Laila Daniel, Matti Luukkainen, and Markku Kojo

Department of Computer Science, University of Helsinki, Finland
{ldaniel, mluukkai, kojo}@cs.helsinki.fi

Abstract. We have used SDL to support the design and implementation
of SLACP, a novel logical link layer protocol to enhance the performance
of TCP over wireless WAN links. The protocol was modeled in SDL and
successive refinements of its design were carried out based on feedback
obtained from using the validation facilities of Telelogic Tau 4.4 SDT.

1 Introduction

Transmission Control Protocol (TCP) [1] is the dominant transport protocol in
the Internet. TCP performs well in wired networks where packet losses occur
mainly due to congestion. Unfortunately TCP performance suffers in wireless
networks where packet losses due to link errors and handoff are predominant [2].
We have designed a link-aware protocol called Satellite Link Aware Communi-
cation Protocol (SLACP) to improve TCP performance over wireless WAN links
such as satellite links1.

We use SDL [3] to support the design and implementation of SLACP based
on a validation-oriented design approach. In this approach an initial abstract
executable model that covers the basic functionality of the protocol is devel-
oped. In the abstract model the number of data elements (both in signals and
in processes) is kept to a minimum. We then validate the internal consistency
and functionality of the abstract model. Subsequently we add details to the basic
model in an incremental manner by specifying additional elements such as signal
parameters, error handling and validate the enhanced model. This step is iter-
ated until all the elements of the protocol have been added to the model. This
incremental design approach helps in controlling the complexity of the protocol
and in evolving a design that could be validated. This approach is facilitated by
modeling SLACP in SDL and using the feedback obtained from the validation
facilities provided by Telelogic Tau 4.4 SDT [4]. The SDL model of SLACP is
the basis of the implementation of the protocol in Linux [5, 6].

1 This work was done as a part of Transat project sponsored by European Space
Agency.

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 187–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 L. Daniel, M. Luukkainen, and M. Kojo

The rest of the paper is organized as follows. Section 2 gives an overview of
SLACP. Sections 3 and 4 are devoted to the modeling of SLACP using SDL.
Section 5 deals with SLACP validation and section 6 compares the SDL model
with the actual implementation of the protocol. In section 7 we discuss the
conclusions of the paper.

2 Satellite Link Aware Communication Protocol
(SLACP)

SLACP is a full-fledged logical link layer protocol which provides data transfer,
error recovery and a Quality of Service (QoS) mechanism for enhancing TCP and
other Internet protocol performance on wireless WANs. A detailed description
of the protocol with performance results is given in [5, 6]. We briefly describe the
salient features of SLACP needed to understand the design of the protocol.

The main goal of SLACP is to reduce the errors perceived by TCP. SLACP
uses selective repeat sliding window mechanism [7] for data transfer. Error re-
covery is done using a combination of Automatic Repeat reQuest (ARQ) and
Forward Error Correction (FEC). SLACP provides flow control mechanisms be-
tween the Internet Protocol (IP) layer and the satellite Medium Access Control
(MAC) layer. SLACP performs a QoS mapping in which all packets belonging
to an IP QoS class are directed to a SLACP channel with appropriate QoS pa-
rameters. SLACP supports several logical channels with independent choice of
QoS parameters and error control schemes.

SLACP frames are of two types, control frames and data frames. Control
frames carry the signals to setup, disconnect and reset a channel besides provid-
ing information regarding acknowledgments, packet loss and flow control. Data
frames carry the IP packets. Frames transmitted over each logical channel are de-
livered independently of the frames sent over the other channels. A single high
priority channel, called control channel, allows timely delivery of time-critical
frames such as retransmitted data frames, acknowledgments and control frames.
The frames sent through the control channel are FEC encoded to make them
robust against errors. By default all original data frames are sent without FEC
encoding as the satellite and other wireless channels are relatively error free most
of the time and FEC encoding consumes additional bandwidth.

A problem with the link layer recovery is that it may interfere with the TCP
recovery if the link level recovery takes a long time. We designed SLACP to
minimize the link recovery delay by providing a high priority channel for the
time-critical frames, by using acknowledgments with selective repeat informa-
tion (SACK blocks), by setting the ARQ persistence level to one, together with
employing FEC-encoding to protect retransmissions, and by introducing special
frames such as nothing to send frame and rxmtpkt loss frame. SLACP can re-
cover lost frames readily if the loss occurs at the beginning or in the middle of
a burst of frames, because the loss can be detected immediately with the first
successfully arriving frame. If the tail of a burst is lost, depending on the idle
time until the next burst begins, SLACP might need to rely on a timer gener-

Experiences in Using SDL to Support the Design and Implementation 189

ated nothing to send frames getting through to trigger selective acknowledgment
telling which frames were lost. Once this selective acknowledgment arrives, re-
transmissions take place as usual. When the SLACP receiver gets the signal
rxmtpkt loss from the sender indicating the permanent loss of a frame, it knows
that the sender is not going to retransmit the frame again and that it can send
all frames up to the lost frame in its buffer to the IP layer.

SLACP implements FEC encoding using Reed-Solomon codes. FEC encod-
ing and recovery is done in a novel way to protect the frames from error bursts
that tend to completely corrupt several consecutive frames. Therefore, the FEC-
encoded redundancy is not added separately to each frame as usual. Instead, the
frames to be FEC protected are organized as FEC blocks. Each FEC block con-
sists of actual frames and redundancy frames. The FEC-encoded redundancy is
added to the redundancy frames by computing the Reed-Solomon codeword ver-
tically so that the ith octet of each frame in a FEC block comprises a codeword.
As soon as a predetermined amount of actual frames deserving FEC protection
has been sent or a threshold timer expires, a proper amount of FEC-encoded re-
dundancy frames are computed to complete the FEC block and are transmitted.
If no actual frames in a FEC block are lost, the redundancy frames are not used
at all at the receiver. If some actual frames are lost, the SLACP receiver waits
till the last redundancy frame of that FEC block or a frame belonging to any of
the later FEC blocks is received. If at least a minimum number of redundancy
frames are present in an FEC block the lost actual frames can be recovered.
This minimum number depends on the parameters of the error correcting code
in use. Under the minimum number, lost frames cannot be recovered by error
correcting.

3 Modeling SLACP Using SDL

The link layer model also includes its interface to the layers above and below it.
So in modeling SLACP we model the interface between SLACP and IP layer as
well as the interface between SLACP and the Media Access Control (MAC) layer.
The modeling of the IP and MAC layers allows us to see the flow control mecha-
nisms between IP and SLACP and between SLACP and MAC. The MAC layer is
also needed to model the delay and link losses in the satellite and wireless links.

The SLACP protocol engine consists of both the SLACP sender and receiver.
The first question is whether to model the SLACP protocol engine (the combi-
nation of the SLACP sender and receiver) as a single entity and have two such
engines as the communicating peer entities. This approach is the usual way of
implementing a protocol and it helps to test the full duplex operation of the
protocol. Since we are designing the protocol from scratch we model the proto-
col in a simple way by separating the sender and the receiver and testing the
functionalities of the sender and the receiver separately. This results in a model
where the SLACP sender receives packets from the IP layer and sends them to
the SLACP receiver via the MAC layer. As SLACP is not concerned with the
processing of the received data by the higher layer, it is not necessary to model

190 L. Daniel, M. Luukkainen, and M. Kojo

slacp_sender

sendercontrol(1,1) slacpsender(1,1)

IP_Layer

[open_chan_conf, open_chan_fail,
 close_chan_notif, close_chan_fail,
 send_packet_conf, send_packet_fail, ...]

[open_chan_req,
 close_chan_req,
 send_packet_req, ...]

Mac_Layer

[open_req, data_frame,
 nothing_to_send, FEC_data, ...]

[open_conf, ack,
 FEC_ack, ...]

slacp_receiver

slacpreceiver(1,1)receivercontrol(1,1)

[open_req, data_frame,
 nothing_to_send, FEC_data, ...]

[open_conf, ack,
 FEC_ack, ...]

[packet_receive,
 chan_closed, ...]

system slacp_protocol

Fig. 1. SDL model of SLACP protocol

the IP layer at the receiver side, so in the SDL model the SLACP receiver sends
the received packets to the system environment.

Thus the SDL system model of SLACP consists of the blocks IP Layer,
SLACP Sender, MAC layer and SLACP Receiver (see fig. 1).

SDL allows us to define the system model in a top down manner. This helps
to define processes for special functionalities inside each of the blocks above.

The data structures provided in SDL are convenient to model the various queues
and frame types used in the protocol. Since the MAC buffer has different kinds of
frames, the MAC frame is modeled using SDL choice construct. We use the SDL
timer facility to implement the different timers associated with the protocol.

In the following sections we describe briefly the different blocks of the SDL
model of SLACP. We only describe in words the implementation ideas behind

Experiences in Using SDL to Support the Design and Implementation 191

the various blocks. As the entire protocol model consists of roughly 100 pages of
SDL code, no concrete SDL code is shown here.

3.1 IP Layer

The main functionalities at the IP layer are to generate the signals for SLACP
channel establishment, channel reset and channel disconnect. The IP layer also
generates data packets to be sent to the SLACP layer. The IP layer handles the
flow control signals coming from the SLACP sender and the notifications from
the SLACP sender to be given to higher layer protocol entities. The layers above
IP are modeled as system environment. When the IP layer gives a packet to
the SLACP sender it is assumed that the packet is given to the correct queue
according to the QoS requirement.

The IP layer block consists of a packet generator process and a signaling
process. The packet generator process handles the functionality associated with
packet generation and the signaling process deals with opening, resetting and
closing of the channel. The signaling process also gives signals to the packet
generator process; for example, when it sends a signal to the SLACP sender
to close the channel, it also signals the packet generator to stop generating
packets.

Initially both the SLACP sender and receiver are in the idle state. When
the sender gets a request from the IP layer to open a channel, it sends a corre-
sponding SLACP frame open req to the receiver, and both the sender and the
receiver negotiate the parameters of the connection. If they agree, they go to the
connected state and the SLACP sender sends an open chan conf packet to the
IP layer. The SLACP sender and receiver remain in the connected state until a
channel reset or a channel close request comes from the IP layer. If the opening
of the channel between the sender and the receiver has failed, the SLACP sender
sends a open channel fail to the IP layer. Closing of the channel is modeled us-
ing a timer called channel close timer at the IP layer and when it expires the
signaling process issues a close chan req to the SLACP sender.

After the connection establishment, the IP layer issues a send packet req to
the SLACP sender for each outbound packet to which SLACP sender replies
with the status of the buffer. If the buffer is available at the SLACP sender, the
IP layer sends packets to the SLACP sender. The SLACP sender also informs the
IP layer whether a packet was successfully delivered to the receiver. The packet
generator process controls the generation of packets using the information it
receives from the SLACP sender regarding the buffer status. Thus flow control
is modeled between the IP layer and the SLACP sender.

3.2 SLACP Sender

In principle there are n senders for the n different logical channels but as senders
are independent it is adequate to model one sender. The SLACP sender con-
sists of two processes, sender and sendercontrol. The sender process represents
the entity carrying out the processing of signals for ordinary data channel and
sendercontrol represents the entity carrying out the processing of signals in the

192 L. Daniel, M. Luukkainen, and M. Kojo

control channel. We model SLACP sender for a particular choice of QoS and
ARQ-FEC parameters.

After connection setup, when the SLACP sender receives a packet from the
IP layer it adds a header and a trailer to it to form a frame and enqueues the
frame in the buffer. As SLACP is a sliding window protocol the sender always
ensures that only a limited number of unacknowledged frames can exist at a time.
The maximum number of unacknowledged or outstanding frames is called the
the window size at the sender. If the window is not full, the sender process sends
the SLACP frame to the MAC layer if the MAC buffer is free and updates the
scoreboard data structure. The scoreboard records the information regarding
the frame such as its sequence number, its address in the SLACP buffer and
whether it has been retransmitted or not. The scoreboard data structure is used
to implement the selective repeat mechanism. If the MAC buffer is not free the
sender process keeps the data frame in its buffer. This way the SLACP sender
controls the flow between the MAC and IP layers.

The sendercontrol gets the FEC encoded acknowledgment (ACK) frames
from the SLACP receiver and it forwards the ACK frames to the sender process.
If the data frame has been received correctly, the frame is dequeued from the
sender buffer, otherwise it is retransmitted. When the sender receives a selec-
tive acknowledgment (SACK) from the SLACP receiver, it retransmits the lost
frame to the sendercontrol. The details of the lost frame are obtained from the
scoreboard. The sendercontrol forwards the FEC encoded retransmitted frames
in an FEC block. SLACP is not meant to be a fully reliable link protocol and
in the normal operation the ARQ persistence is set to one. If a retransmitted
frame is lost, the SLACP sender sends a packet loss notification to the IP layer
and also a rxmtpkt loss to the SLACP receiver. When the SLACP sender has
no data to send it sends a nothing to send frame to the receiver.

When the SLACP sender gets a request from the IP layer to close the channel
it sends a data frame with no data to the SLACP receiver to indicate the closing
of the channel. After receiving the ACKs for all the data sent to the receiver, the
SLACP sender sends a close channel notif to the IP layer and goes to the idle state.

3.3 MAC Layer

The MAC Layer pictured here is the part of the MAC layer as seen by SLACP.
So we abstract from the segmentation and reassembly at the MAC layer. The
MAC layer has to perform the function of delivery of frames between SLACP
sender and receiver. It also gives flow control information to both the SLACP
sender and receiver. The MAC layer queues all the frames it receives from the
SLACP layer and sends a frame to the SLACP layer when a link timer expires.
The timeout of the link timer represents the delay in the wireless link. The MAC
layer is also modeled to drop frames to simulate the behavior of frame losses due
to bit corruption on the link. This is an important feature in order to validate the
error recovery functionality in the SLACP protocol. We used a simple modulo
based counter to determine which packet is to be dropped, though one can use
random number generation to drop frames in an arbitrary manner.

Experiences in Using SDL to Support the Design and Implementation 193

3.4 SLACP Receiver

The SLACP receiver consists of two processes, namely receiver and receivercon-
trol. The receiver process represents the entity carrying out the processing of
signals for ordinary data channel and the receivercontrol process represents the
entity carrying out the processing of signals in the control channel.

SLACP receiver checks whether the frame received is a frame within the
receiver window. The lower edge of the window represents the sequence number
of the next frame to be received or the frame expected. When the frame received
is the frame expected, the receiver process sends the received packet to the
system environment. If the frames are received out of order within the window,
the frames are kept in a reassembly queue. When the receiver process receives a
number of data frames equal to an acknowledgment threshold value or when it
receives an out of order frame, it sends an ACK frame. The ACK frame carries
both a cumulative ACK sequence number and the SACK block. The SACK block
indicates any out of order frames received after the cumulative ACK sequence
number. The SLACP sender constructs an FEC block to retransmit all frames
indicated as lost in the SACK block.

When the receivercontrol process receives an FEC block it sends an FEC ACK
to the sendercontrol process. Similar to the ACK frame, the FEC ACK frame
also has a cumulative ACK and an FEC-SACK block. The receivercontrol de-
codes the FEC block when it arrives and forwards the correctly received frames
to the receiver process. Instead of using FEC coding to compute redundancy
frames, each actual frame in the FEC block is duplicated as a redundancy frame.
If a duplicate for a lost actual frame is present among the redundancy frames,
it simulates the recovery of the frame.

4 The SDL Model as an Aid to the Design of SLACP

We develop the SDL model of SLACP in an incremental manner by succes-
sively refining the protocol design at each stage. Initially the protocol skele-
ton is built by including all the blocks and processes with minimal function-
ality in the blocks and processes. This helps to establish the basic interac-
tion patterns between the processes and the blocks. Initially the functionali-
ties for opening and closing a channel are included to build the basic model.
We select these functionalities first since they are basic for communicating pro-
cesses and in our model they involve all the protocol blocks in fig. 1. With
this choice we could model the basic signaling mechanisms and see the pat-
terns of interaction between the various design elements. The interactive mode
of use of SDT helps to exercise the preliminary design by suitable choice of
the parameters such as those for opening and closing a channel. For exam-
ple, closing of a channel can be simulated by setting the duration of the chan-
nel close timer to a small value. After opening the channel, the IP layer will send
a close chan req to the SLACP sender and this in turn closes the channel. From
the Message Sequence Charts (MSC) generated we can see that the basic model is
working.

194 L. Daniel, M. Luukkainen, and M. Kojo

In the second level of modeling the objective is to ensure that the data transfer
can take place in the simplest possible setting. So we build enough additional
functionality into the model to enable a single packet to be transferred from the
sender to the receiver when there are no losses due to errors and there is no
flow control. At this stage we extend the model with functionalities necessary
for generating a packet at the IP layer, and delivering it to the SLACP receiver.
This scenario is simulated by the IP layer opening the channel and sending a
single packet to the SLACP sender and then closing the channel.

The third level of modeling is to include the flow control between IP and
SLACP layers as well as between SLACP and MAC layers. We enhance the
model from the previous stage by adding functionalities for queuing the frame
at the SLACP sender and MAC buffers and for flow control mechanisms based
on the buffer availability. The composite model is tested by setting the size of
the SLACP sender buffer and MAC buffer to small values.

At the fourth level of modeling we incorporate ARQ-FEC error control
schemes. We add the SACK mechanism, buffering and timer features to han-
dle FEC coding. As it is not necessary to choose the actual FEC encoding in
the model, we use a simple frame replication instead. The FEC recovery scheme
follows the description in section 2.

In order to examine the working of the error recovery scheme we send several
data frames to the receiver of which only the first data frame is lost. This helps
to isolate the errors if they are present. Once we find that the model is able to
recover from a single frame loss, we can simulate the loss of several frames at
the MAC layer and check that the model works for different error scenarios.

At this point we have essentially built the SLACP model with all the features
of the protocol included in it. As we build the model cumulatively, and at each
stage make use of the functionalities at the earlier levels as well in extending the
model, we have confidence in the basic correctness of the design.

The next phase deals with testing and simulation. We exercise the protocol
model using the test scenarios and observe its working. Having gained confidence
about its working, we begin the validation phase. The SDL model of SLACP is
about 100 pages long and it took about 3 man months to develop and validate
the protocol.

5 Validation of SLACP Using SDL

Telelogic Tau 4.4 SDT tool is used for validating SLACP. We formulate the
following validation scenarios which represent the protocol operations. The sce-
narios correspond to the different levels of modeling described earlier.

– Opening / Closing a channel
– Sending and Receiving a frame without frame loss
– Sending and Receiving a frame without frame loss and flow control
– Sending and Receiving frames with frame loss (using ARQ and FEC)
– Sending and Receiving frames with frame loss and flow control
– Resetting the channel

Experiences in Using SDL to Support the Design and Implementation 195

Each of the above test scenarios is validated using the automatic validation
methods available in SDT. In automatic state space exploration SDT builds a
reachability graph for the system model. The state space is the set of all the
states of the system that can be reached from its initial state by systematically
exploring all the transitions. A number of general properties of a protocol such
as deadlock freedom, absence of unspecified signal reception and unreachable
code can be verified by exploring the state graph. As exhaustive state space ver-
ification becomes infeasible with a large state space, alternatives such as bitstate
exploration and random walk methods that explore a large fraction of the state
space are used [8]. By choosing as small a value as possible for the sizes of data
frame, SACK block and buffers, we can reduce the complexity of the state space
to some extent.

The validation reports point to the errors encountered in the state explo-
ration. This is especially valuable as it examines scenarios that are unlikely to
be considered in the test suite. For example, consider the following scenario:
the SLACP sender sends a frame and the frame is lost; the receiver asks for
a retransmission and the sender retransmits it; this FEC encoded retransmit-
ted frame gets delayed and arrives at the receiver at a later time; by that time
the receiver might have sent the frames in the reassembly queue to the higher
layer assuming that this frame is lost. Such a delayed frame may create prob-
lems if we do not have the sanity check at the receiver to see whether the frame
received is within the receiver window. It is difficult to create the above sit-
uation manually but the exhaustive state space exploration can readily set it
up. Automatic validation also helps to exercise the scoreboard and the various
queues.

The SDT option to display the execution trace that leads to an error state is
useful to detect errors and fix them. The flexibility of the tool to show the path
of error both in the SDL graphs and in the MSC supports debugging.

Automatic validation helps to ensure that the special frames such as noth-
ing to send and rxmtpkt loss perform as intended in the protocol design.

6 SLACP-SDL Model Versus SLACP Implementation

After validating the SDL model, we implemented the SLACP protocol in C for
the Linux operating system. The C implementation closely followed the SDL
model. However, there are some differences between the SDL model and its
implementation in addition to those differences discussed earlier (FEC encod-
ing/decoding not modeled, only a single SLACP channel modeled). In the fol-
lowing we highlight some of these more or less subtle differences.

In the SDL graphs, explicit flow control signals exist between the SLACP
and IP layer. In the Linux implementation these signals are implicit as the
SLACP protocol engine accepts a packet from the IP underbelly interface only
when buffer space is available at the SLACP layer, effectively implementing the
flow control between the layers. In addition, the flow control details between
the SLACP and MAC layer in the Linux implementation depend on the link

196 L. Daniel, M. Luukkainen, and M. Kojo

technology and device in use. Therefore, an abstract model of the SLACP-to-
MAC flow control can be used in the SDL graphs.

In the SLACP implementation the SACK block in the ACK frame is imple-
mented as a bit map. Each bit in the SACK block together with the cumulative
acknowledgment sequence number of the ACK frame represents whether a frame
has been successfully received (bit set to 1) or not (hole, bit set to 0). Since
bitmaps and their operations are not easy to represent in SDL, each bit in the
SACK block is actually a structure with a field for the corresponding sequence
number and a boolean value indicating whether the frame was successfully re-
ceived or not. The code for iterating through such a structure to check whether
the SACK block is empty is clearly not as trivial as the simple check for zero
bit map in C. Therefore, an additional field indicating whether a SACK block is
empty was added in the SDL model.

In the automatic validation of SLACP, the symbol coverage was 94.99 %. If
the symbol coverage is not 100%, the validation cannot be considered finished
without a clear understanding of the missing coverage. We analyzed the uncov-
ered symbols in the SDL graphs. Most of them were either invalid end states or
conditions that do not occur. In the Linux implementation there are even more
invalid states as a real protocol implementation has to test for many error con-
ditions that do not occur except in some very exceptional conditions such as in
case of broken or otherwise misbehaving implementation of the peer. Achieving
100 % symbol coverage with such sanity checks included into the SDL model
would require that any such misbehavior is implemented and enforced in the
peer protocol engine. Therefore, we decided to exclude most of these checks in
the SDL model.

7 Concluding Remarks and Future Work

In this paper we have described the design and development of SLACP protocol
using SDL modeling. A validation oriented approach to protocol design was
employed to develop the protocol in a hierarchical stepwise refinement manner.
This helped to control the complexity of the design and to better understand
the interaction of the protocol components. The SDL model was used as a basis
for the implementation of the protocol in Linux.

We found that the SDL model developed in this approach was convenient
to adapt by incorporating implementation specific details such as FEC encoding
scheme using Reed-Solomon codes. With hindsight we observe that this ability to
adapt the SDL model to actual implementation is quite valuable as the design
is not encumbered with implementation specific aspects. We believe that the
approach to SLACP design can be used for general protocol design.

The SLACP protocol validation has no doubt increased the quality of the
produced protocol implementation. However, we still cannot say that the proto-
col model has been formally verified: a 100% guarantee that the protocol works
as intended in all possible cases has not been yet achieved. Partly this is because
the SDT validator tool does not really support all possible kinds of behavioral

Experiences in Using SDL to Support the Design and Implementation 197

properties that we would like to verify from the system. For example a property
such as “a channel open in IP-layer will in all cases either lead to channel es-
tablishment or to channel open failure signal” is simply not expressible within
SDT validator. Another thing that limits the reliability factor of our validation
is the fact that our protocol model is huge in terms of size of reachability graph
and since the SDT validator does not really have any sophisticated state space
reduction algorithms, we have to rely on approximate methods such as bit state
hashing. For these reasons we consider starting a follow-up project where we
are planning to do a full fledged formal verification of SLACP with Spin model
checker [8]. Partly this will be a challenge to the Spin tool itself: it will be in-
teresting to see how a state of the art verification tool can treat a complex real
world protocol.

References

1. Transmission Control Protocol. rfc 793, Internet Society, Sep 1981.
2. A comparison of mechanisms for improving TCP performance over wireless links.

IEEE/ACM Transactions on Networking, 5(6):756–769, 1997.
3. Recommendation Z.100 - CCITT Specification and Description Language. ITU,

1993.
4. Telelogic Tau 4.4 Manual . Telelogic, 2002.
5. Enhancing TCP Performance Over Satellite Networks - A Link Aware Approach.

Technical Report C-2004-50, University of Helsinki, Department of Computer Sci-
ence, August 2004.

6. Improving TCP Performance Over Wireless WANs using TCP/IP-Friendly Link.
In 1st International Conference on E-Business and Telecommunication Networks
(ICETE), August 2004.

7. Data Networks: 2nd edition. Prentice Hall, 1992.
8. The Spin Model Checker. Addison Wesley, 2003.

	Introduction
	Satellite Link Aware Communication Protocol (SLACP)
	Modeling SLACP Using SDL
	IP Layer
	SLACP Sender
	MAC Layer
	SLACP Receiver

	The SDL Model as an Aid to the Design of SLACP
	Validation of SLACP Using SDL
	SLACP-SDL Model Versus SLACP Implementation
	Concluding Remarks and Future Work

