

Henry Tirri
Complex Systems Computation Group
UH & HIIT & Stanford University

http://www.hiit.fi/henry.tirri

http://www.cs.helsinki.fi/u/hakli/intelligent (address will change!)

http://cosco.hiit.fi/

Complex Systems Computation Group

Intelligence?

- Computer science is considering ways to make things automated
- Artificial Intelligence, Adaptive and Intelligent Systems, Computational Intelligence ... all try to figure out how could intelligence be automated?
- Intelligent behavior can be characterized by learning/adaptation
- In order to learn one needs to remember and generalize (world is never repeating itself!)
- · In order to generalize one needs models

Research in general

- Artificial Intelligence (AI) (knowledge reresentation, reasoning logic, expert systems, Machine learning...)
- Computational Intelligence/Soft Computing (neural networks, fuzzy systems, evolutionary computing)
- Adaptive and Intelligent Systems (AI)
- · Artificial Life, Complex Systems Research

The terms in the field are really confusing \bigcirc

Research areas

- Probabilistic and information-theoretic modeling in sciences and business
 - Bayesian and Causal Networks
 - Information-theoretic modeling approaches
 - Very Large Scale Data Analysis
 - Competitive online statistics
- Stochastic optimization in complex domains
 - simulated annealing
- · Tools and theory for E-learning

Student: So what is it like to do research in AI?

- · Great fun!
- Some hacking
- · some math
- Some gaming
- · Some technology "freaking"
- · Some science fiction

Current areas of interest

- Building (predictive) models from very large data sets (DeepC)
- Finding the position of a mobile device (LocIt)
- Personalization (PAI, LockUp)
- Intelligent Search
- Collaborative tools for e-learning (EDUCO, OurWeb)

Very Large Scale Data Modeling

Quick Summary

- Designed for dependency analysis with graphical models
- ASP architecture (works with most browsers)
- inference of Bayesian networks (and elementary causal networks)
- · "tutorial style" user interface
- no user modifiable parameters
- · interactive tool for inference
- · extendible platform (v 2.0 classification)

B-course Data Analysis Server (http://b-course.cs.helsinki.fi)

So what "science" was needed?

- · Theory, heavy theory
- · Empirical work with data sets ...
- · Multidiciplinary cooperation
- Brilliant hacking (B-course had predecessors: D-Side, BAYDA)

"On the shoulders of Giants"

Andrey Nikolaevich Kolmogorov

Rev. Thomas Bayes

Bayes vs. MDL

Under regularity conditions $-\log P_{NML}(x^n \mid M) =$

$$-\log P(x^n \mid \hat{\theta}_i(x^n)) + \frac{k}{2}\log \frac{n}{2\pi} + \log \int \sqrt{\det I(\theta)} d\theta + o(1)$$

Under regularity conditions $-\log P_{Bayes}(x^n \mid M) \approx$

$$-\log P(x^n \mid \hat{\theta}_i(x^n)) + \frac{k}{2}\log \frac{n}{2\pi} - \log w(\hat{\theta}) + \log \sqrt{\det I(\theta)} d\theta + o(1)$$

If we take Jeffrey's prior

$$w(\theta) = \sqrt{\det I(\theta)} / \int_{\theta} \sqrt{\det I(\theta)} d\theta \quad \dots \quad \odot$$

Cell ID

Cell ID errors

Enhanced Observed Time Difference (E-OTD)

Modeling approach

Modeling alternatives

Modeling architectures

- · three modeling architectures varying in
 - data gathering,
 - network information requirements,
 - accuracy
- · GeoMode Network (GM-N)
- GeoMode Data (GM-D)
- · GeoMode Hybrid (GM-H)

GM Network (GM-N)

Phone fingerprint **Network information** GM-N GM-N runtime model builder model Coordinates

Parameter tuning measurements

©Henry Tirri 2002

"Theory"

GM-N vs. Cell ID errors visualization

GM Data (GM-D)

Phone fingerprint Fingerprint data gathering GM-D GM-D runtime model builder model Coordinates

Calibration testing

©Henry Tirri 2002

NYC Trial 2001

Accuracy NYC Trial 2001

- 20166 points
- tracking; testing done in a car;

Trials: Manhattan 2002

Accuracy NYC Trial 2002

- · 30 points
- · static; testing done by walking;

Genaralization: WLAN

Intelligent Tools for E-learning

EDUFORM

EDUCO

OurWeb

Done

🎒 Evolutionary game theory - Microsoft Internet Explorer

My Computer

Personalized, adaptive interface

Search-Ina-Box concept

and other things $\stackrel{\smile}{\smile}$

Termejä

- computational intelligence = laskennallinen älykkyys
- artificial intelligence = tekoäly, artificial life = keinoelämä
- probablistic modeling = probabilistinen mallintaminen
- positioning = paikannus