presenting data mining

Aris Gionis
gionis@cs.helsinki.fi
Exactum A340

Helsinki Institute for Information Technology
Basic Research Unit
www.cs.helsinki.fi/hiit_bru

first year computer science students?

that’s awesome!

…starting a journey in one of the most fascinating sciences

why fascinating?
- huge impact
- extremely fast evolving
- diverse areas, diverse tools (many still unshaped)

1. impact

revolutionize the world over last two decades
- any-time any-place communication
- information on the tips of our fingers (vast amounts)
- intelligent systems in our service
- impact in all other sciences
 (data collection, data analysis, computational power)
- experience inapproachable environments,
 entertainment, etc.

2. computer science is evolving very fast

- looking 20 years back seems like “prehistory”
- students’ ideas 5 years ago are today’s standards
- nobody know what they will work 10 years from now
- extremely active communities
 conferences, workshops
 mobility of people
 cross fertilization of ideas
- a lot of energy and feel of discovering new things

3. diverse areas, diverse visions,
 diverse abilities, diverse tools

- systems
 emphasis on how computer systems work
- theory
 emphasis on studying in-depth limits of computing
- information processing
 emphasis on how to model knowledge and analyse information

The best way to predict the future is to invent it

Alan Kay
2003 Turing award recipient
3. diverse areas, diverse visions, diverse abilities, diverse tools

systems:
- **vision:** improve the way that computer systems work
- **specializations:** networks, distributed systems, software engineering, reliability
- **abilities:** programming skills, creativity, good engineering design

theory:
- **vision:** understanding in-depth limits of computing
- **specializations:** algorithms, complexity, security, cryptography, quantum computing
- **abilities:** mathematical skills, discrete and combinatorial math

3. diverse areas, diverse visions, diverse abilities, diverse tools

information processing:
- **vision:** make computers look intelligent
 - modeling of physical world
 - representation of knowledge
- **specializations:** data mining, machine learning, intelligent systems
- **abilities/tools:** probability, statistics, algorithms

data mining

vision: find patterns in large collections of data

(also replace patterns with: knowledge, structure, rules, etc)

Data often in too large amounts
- data collected in sciences
- biology (human genome has 3 billion base pairs)
- web (more than 4 billion pages)
- other large text collections
- stock market, customer transactions, industry...

so, why is it difficult?

efficiency:
- searching for patterns can slow down the computer a lot
 (too many possible patterns to search for all)

semantics:
- what are the right patterns to search for?

example 1

Course/student data set

<table>
<thead>
<tr>
<th></th>
<th>C++</th>
<th>Java</th>
<th>Boolean logic</th>
<th>Database</th>
<th>Data mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna P.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Heikki M.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jouni S.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Karl L.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Taneti M.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Simple rules:
- **DB => DM** (80%)
- **BL => not DM** (80%)
discovering rules

Course1 => Course2

Idea!
generate all rules X->Y and verify them

Unfortunately too many ……

C++ => Java Java => C++ C++ => BL
BL => C++ C++ => DB DB => C++
…

For n courses, \(n^2 \) possible pairs
If we want (X,Y) => Z we have \(n^3 \) possible triples, etc.

core courses and specializations

<table>
<thead>
<tr>
<th>C++</th>
<th>Java</th>
<th>Boolean</th>
<th>Databases</th>
<th>Data-mining</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne P.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Heikki M.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jouni S.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kai L.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Taneli M.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

…

generate all possible groupings of courses and try each one how well explain the data

For n courses and 2 groups: \(2^n \) possible groupings

example 2

Course/student data set (again)

<table>
<thead>
<tr>
<th>C++</th>
<th>Java</th>
<th>Boolean</th>
<th>Databases</th>
<th>Data-mining</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne P.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Heikki M.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jouni S.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kai L.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Taneli M.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

…

Question: what are the “core” courses and the “specializations”

do we always know what we are looking for?

web search:
give a few keywords
get the most relevant website

Google monopoly
idea of important websites
(a website is important if other many other important websites point to it)

importance of websites

many other ideas, but didn’t work so well
has everything been solved in web searching?

Never try: “best basketball player after Jordan”
instead: “top-ten basketball players”

Need more intelligent engines
better language processing
representation of the available information
personalization
...

how should we analyse customer behavior?

collaborative filtering:
recommend a product to a customer based on her purchases
what is the right model?

how should we compare time-series?

current themes in our group (BRU)

(group leader: prof. Heikki Mannila)
analysis of scientific data
- data with geographic information
- biology, physics, paleontology
analysis of genomic sequences
- finding structure in the genome
analysis of matrices of 0-1 data
data clustering

summary

computer science is a really exciting science to study with endless possibilities
data mining and data analysis are very important fields
some of the world experts in the field are in the U of H
you should definitely consider taking some courses