Resource Functions I1.

High Availability and Timeliness in Linux
Gyula Bajor
09.04.2003.

Discovery of Resources

The discovery of resources is accomplished by accessing two data
structures: The Resource Presence Table (RPT) associated with a domain,
and the Resource Data Records (RDRs) associated with resource.

The RPT is maintained for each domain defined in the interface. In RPT
there is an entry for each resource that is a member of the corresponding
domain. An RPT may also contains entries that reference additional
domains available through the interface. The user can discover all the
resources available in the platform, even if some of them are included in a
different domain. In order to support this full resource discovery each RPT
includes domain reference entries. If the user accesses the “default
domain” defined in the specification then accesses all the domains
referenced in the RPT of that domain, and continues this process for all
those domains. Therefore all domains available in the system will be
discovered.

Service Availability middleware or other carrier-grade software will need
to create an internal model of the entire system; that is the “physical view”
of the system. This complete discovery can be done by invoking
saHpiResourcesDiscover function.

This function may be called during operation to regenerate the RPT table.
For those FRUs that must be discovered by polling, latency between FRU
insertion and actual addition of the resource associated with that FRU to
the RPT exists. To overcome this latency, a discovery of all present
resources may be forced by calling saHpiResourcesDiscover.

Event Generation and Logging

Users of the HPI need subscribe to receive events from the HPI on a
domain-by-domain basis. After subscribing to events the HPI sets up an
event queue for the user, and places a copy of all events related to any
resource that is member of that domain on the queue as they are
generated. A user may read events from the queue via a blocking or non-
blocking call. If a user process makes a blocking call, that process will wait
until an event is received, and will then be “woken up” to process, the
received event.

Users need not poll the various management instruments in the system,
because event messages are generated for all “significant occurrences” in
the system platform. In order to operate this way, the user must be aware
of the “initial state” of the system. The HPI provides a special feature that
allows the user to learn this initial state via processing event messages.
When the user subscribes to receive events from a domain, a flag may be
set that requests the HPI to place events on the user's event queue for all
active alarms in the system. This effectively recreates events that occurred
prior to the subscription request, but that the user “needs to know about”
if it is not going to poll all sensors for their current state.

Exactly what events are placed in the resource and domain system event
logs is implementation-specific. All system event logs, either the domain
system event log, or a resource system event log may be managed by the
user through these HPI functions. Management of a system event log
includes activities such as reading records from it, writing records to it,
clearing it, setting the timestamp clock, etc.

In addition to forwarding events to the subscribers, the HPI also logs
events in a non volatile memory associated with each domain. This event
log is accessible by users through the HPI at any time, to retrieve a
historical record of events that have been generated for a domain.

Hot Swap Capabilities

Managing hot swappable devices and a changing platform configuration
is one of the key features of the Service Availability Forum Platform
Interface. A component that can be added or removed from the system is
called a Field Replaceable Unit (FRU) in the specification. FRUs are
always modeled as a separate resource allowing the interface to
dynamically adjust as the hardware platform configuration changes.
Resources which support hot swap events and functions will have the
“Managed Hot Swap” capability set in their RPT entry. Including
“Managed Hot Swap” flag indicates that the resource follows the hot swap
model and usage described in this section and can be managed using the
functions described below.

When a FRU is inserted in the system, the HPI will add a corresponding
resource to a domain, and will generate an event message. User software
can then access the RDRs in that newly added resource to discover its
capabilities.

Similarly, when a FRU is removed from the system, the corresponding
resource is removed from any domains in which it had membership, and
appropriate events are sent. User software thus is aware that all the

management instruments hosted by that resource are no longer available
in the system, and the entities they are associated with have been
removed.

The HPI supports two models of the actual hot-swap activity. For FRUs
that require special processing related to their insertion or extraction, the
full hot swap model may be used, as shown in Figure 1. This model
includes five states: Not Present, Insertion Pending, Present, Extraction
Pending, and Inactive.

A simplified hot-swap model is used for FRUs that do not require any
special processing as they are inserted or removed. The state diagram for
this model is shown in Figure 2.

Bymmchanical action (eject latch)
or call to
SaHpiHotSwapActionRequest(),
r¢quest to extract FRU is
recelved

Insertion auto-insert pojicy
completes, or user calls
SaHpiResourceActiveSEt{)

Extraction
Pending

Activel/
Healthy

Insertion
Pending

Fendir

Active/
Unhealthy

Extraction autg-extract polig
completes, pr user calls
SaHpiResourdelnactiveSet]

FRU is inserfed in system
Event is issuad by rasaure

solree showlng
transition from fNol Pr

ent” to i R - =
sl vl fuksniieg Event is issued byl resource shoy
Insertior] Panding transition from “Ef
By mechani™a] action or call to 1o “Ingctive
received
Event 12 issuad by domainis) shoMhg
lransition from “Inactive’ to ‘Insertion
Not Fru is removed from system :
Prasent Inactive
Event is i domain(s)
showing tr n “Inactive” to
resent’
Figure 1. Full Hot Swap model

Fruis inserted in system

Active/
Healthy

Not
Present

Resource issues HS event
showing transition from “Not
Present” to “Active/Healthy"
or "Active/Unhealthy” state.

Fru is removed from system ’
Active/

Unhealthy

Resource issues HS event showing
transition from "Active/Healthy” o
“Active/Unhealthy” state to "Not
Present” state,

Figure 2. Simplified Hot Swap Model

NOT PRESENT

The NOT PRESENT state is actually a virtual state that represents a
resource that is not currently present in the domain, because the FRU
associated with that resource is not currently present in the system. A
resource is in this state before the FRU is physically inserted into the
system or if it has been removed from the system. A resource typically
transitions to this state from the INACTIVE state, but a resource can
transition to this state from any state due to a surprise extraction of the
FRU. The HPI implementation should generate a hot swap event with
SAHPI_HS STATE_NOT_PRESENT when the resource transitions from
any state to the NOT PRESENT state. The event can indicate a normal
transition from INACTIVE to NOT PRESENT or a surprise extraction
from any other state.

INSERTION PENDING

The INSERTION PENDING state is entered after a resource has been
added to the domain, as a result of the associated FRU being physically
inserted into the system. This state indicates the resource is transitioning
from a NOT PRESENT or INACTIVE state into the ACTIVE state. When
transitioning into the INSERTION PENDING state, the resource should
generate a hot swap event with SAHPI_HS_STATE_INSERTION
_PENDING. The event can be generated when the ejector latch is shut
(cPCI) or the device is seated in a slot. Upon receiving the event,
middleware has the opportunity to discover the capabilities of the resource
before allowing the FRU associated with the resource to power on and
become an active component in the system. During this state, the FRU can

4

be commanded to power on or de-assert reset.

ACTIVE /HEALTHY, ACTIVE /| UNHEALTHY

The ACTIVE/HEALTHY and ACTIVE/UNHEALTHY states indicate that
a resource is now an active member of the domain. After a FRU completes
the hardware connection process, the associated resource enters an
ACTIVE/HEALTHY state if no faults are present. This does not mean that
the FRU is now active at the software level, but merely indicates that the
FRU is now active in the system, is healthy, and that it should not be
abruptly removed. The HPI implementation generates a hot swap event
with HotSwapState = SAHPI_HS_STATE_ACTIVE_HEALTHY when the
resource transitions to the ACTIVE_HEALTHY state from any state other
than ACTIVE/UNHEALTHY. The HPI implementation generates a hot
swap event with HotSwapState = SAHPI_HS_STATE_ACTIVE
_UNHEALTHY when the resource transitions to the ACTIVE/
UNHEALTHY state from any state other than ACTIVE/HEALTHY. This
indicates that the FRU is now available for use, but contains a fault that
may or may not prevent the FRU from functioning properly. A resource
will transition between ACTIVE/HEALTHY and ACTIVE/UNHEALTHY
as fault conditions are asserted or cleared on the FRU. No events are
generated on transitions between ACTIVE/HEALTHY and
ACTIVE/UNHEALTHY because it is assumed that other events related to
the specific fault being asserted or cleared will be issued, and the hot swap
event noting this state transition would be redundant.

EXTRACTION PENDING

The EXTRACTION PENDING state indicates that the resource has
requested extraction of the associated FRU. Typically, a resource enters
an extraction pending state when an ejector latch is opened (PICMG 2.1)
or when a hot swap button is pressed. The HPI implementation should
generate a hot swap event with HotSwapState = SAHPI_HS_STATE
_EXTRACTION_PENDING when a resource that supports Managed Hot
Swap requests extraction. Upon receiving the event, middleware has the
opportunity to unload software drivers, relocate processes, or unmount file
systems (software disconnect) before allowing a FRU to power down and
disconnect from the system.

INACTIVE

The INACTIVE state indicates that the FRU is no longer active in the
system, and that it has completed the extraction process. When a FRU

completes the hardware disconnection process, it is logically and
electrically disconnected or isolated from the platform but still physically
located in the platform, so the associated resource remains in the domain.
Typically, a FRU will be powered off or held in reset when in this state.
The HPI implementation should generate a hot swap event with
HotSwapState = SAHPI_HS_STATE_INACTIVE when the resource is
transitioning to an INACTIVE state.

Hot Swap Functions

HPI defines a set of routines for managing the hot swap
connection/ disconnection process.

Function SaHpiHotSwapControlRequest allows the caller, after
receiving a hot swap event with HotSwapState equal to
SAHPI_HS_STATE_INSERTION_PENDING or
SAHPI_HS_STATE_EXTRACTION_PENDING, to request control of the
hot swap policy and prevent the default policy from being invoked.
Because a resource that supports the simplified hot swap model will never
transition into Insertion Pending or Extraction Pending states, this
function is not applicable to those resources. A resource supporting hot
swap typically supports default policies for insertion and extraction. On
insertion, the default policy may be for the resource to turn the associated
FRU s local power on and to de-assert reset. On extraction, the default
policy may be for the resource to immediately power off the FRU and turn
on a hot swap indicator.

Function saHpiResourceActiveSet can be used to request a resource to
return to the ACTIVE/HEALTHY or ACTIVE/UNHEALTHY state from
the EXTRACTION PENDING state in order to reject an extraction
request. During insertion, a resource supporting hot swap will generate an
event to indicate that it is in the INSERTION PENDING state. If the
management middleware or other user software calls
saHpiHotSwapControlRequest() before the resource begins an auto-insert
operation, then the resource will remain in INSERTION PENDING state
while the user acts on the resource to integrate it into the system. During
this state, the user can instruct the resource to power on the associated
FRU, to de-assert reset, or to turn off its hot swap indicator using the
saHpiResourcePowerStateSet(), saHpiResourceResetStateSet(), or
saHpiHotSwapIndicatorStateSet() functions, respectively. Once the user
has completed with the integration of the FRU, this function must be

called to signal that the resource should now transition into
ACTIVE/HEALTHY or ACTIVE/UNHEALTHY state (depending on
whether or not there are active faults). Because a resource that supports
the simplified hot swap model will never transition into Insertion Pending
or Extraction Pending states, this function is not applicable to those
resources.

Function saHpiResourcelnactiveSet can be used to request a resource
to return to the INACTIVE state from the INSERTION PENDING state
to abort a hot-swap insertion action. During extraction, a resource
supporting hot swap will generate an event to indicate that it is in the
EXTRACTION PENDING state. If the management middleware or other
user software calls saHpiHotSwapControlRequest() before the resource
begins an auto-extract operation, then the resource will remain in
EXTRACTION PENDING state while the user acts on the resource to
isolate the associated FRU from the system. During this state, the user
can instruct the resource to power off the FRU, to assert reset, or to turn
on its hot swap indicator using the saHpiResourcePowerStateSet(),
saHpiResourceResetStateSet(), or saHpiHotSwapIndicatorStateSet()
functions, respectively. Once the user has completed the shutdown of the
FRU, this function must be called to signal that the resource should now
transition into INACTIVE state. Because a resource that supports the
simplified hot swap model will never transition into Insertion Pending or
Extraction Pending states, this function is not applicable to those
resources.

Function saHpiAutoInsertTimeoutGet allows the caller to request the
auto-insert timeout value. This value indicates how long the HPI
implementation will wait before the default auto-insertion policy is
invoked.

Function saHpiAutolnsertTimeoutSet allows the caller to configure a
timeout for how long to wait before the default auto-insertion policy is
invoked. This function accepts a parameter instructing the
implementation to impose a delay before a resource will perform its
default hot swap policy for auto-insertion. The parameter may be set to
SAHPI_TIMEOUT_IMMEDIATE to direct resources to proceed
immediately to auto-insertion, or to SAHPI_TIMEOUT_BLOCK to
prevent auto-insertion from ever occurring. If the parameter is set to
another value, then it defines the number of nanoseconds between the
time a hot swap event with HotSwapState =

SAHPI_HS_STATE_INSERTION_PENDING is generated, and the time
that the auto-insertion policy will be invoked for that resource. If, during
this time period, a saHpiHotSwapControlRequest() function is processed,
the timer will be stopped, and the auto-insertion policy will not be
invoked. Once the auto-insertion process begins, the user software will not
be allowed to take control of the insertion process; hence, the timeout
should be set appropriately to allow for this condition. Note that the
timeout period begins when the hot swap event with HotSwapState =
SAHPI_HS_STATE_INSERTION_PENDING is initially generated; not
when it is received by a caller with a saHpiEventGet() function call, or
even when it is placed in a session event queue.

Functions saHpiAutoExtractTimeOutGet/Set do the very same as the
previous two do, but in the reverse direction. Due to the fact these
functions are called when a resource is present in the RPT, there is a
parameter, called ResourcelD addressing the corresponding resource.

Function saHpiHotSwapStateGet allows the caller to retrieve the
current hot swap state of a resource. The returned state will be one of the
five, well known hot swap state:

- SAHPI_HS_STATE_INSERTION_PENDING

- SAHPI_HS_STATE_ACTIVE_HEALTHY

- SAHPI_HS_STATE_ACTIVE_UNHEALTHY

- SAHPI_HS_STATE_EXTRACTION_PENDING
- SAHPI_HS_STATE_INACTIVE

The state SAHPI_HS_STATE_NOT_PRESENT will never be returned,
because a resource that is not present cannot be addressed by this
function in the first place.

Function saHpiHotSwapActionrequest allows the caller to invoke an
insertion or extraction process via software. A resource supporting hot
swap typically requires a physical action on the associated FRU to invoke
an insertion or extraction process. An insertion process is invoked by
physically inserting the FRU into a chassis. Physically opening an ejector
latch or pressing a button invokes the extraction process.

Function saHpiResourcePowerStateGet/Set allows the caller to get/set
the current power state of the FRU associated with the specified resource.

8

A typical resource supporting hot swap will have to ability to control local
power on the FRU associated with the resource. During insertion, the
FRU can be instructed to power on. During extraction the FRU can be
requested to power off. Not all resources supporting managed hot swap
will necessarily support this function. In particular, resources that use the
simplified hot swap model may not have the ability to control a FRU hot
swap indicator (it is likely that none exists). An appropriate error code will
be returned if the resource does not support control of a hot swap indicator
on the FRU.

Function saHpiHotSwapIndicatorStateSet/Get allows the caller to
set/get the state of the indicator (e.g. an LED) may be present on the
resource. Valid states include SAHPI_HS INDICATOR_OFF or
SAHPI_HS_INDICATOR_ON. This function will set/get the indicator
regardless of what hot swap state the resource is in, though it is
recommended that this function be used only in conjunction with moving
the resource to the appropriate hot swap state. Not all resources
supporting managed hot swap will necessarily support this function. In
particular, resources that use the simplified hot swap model may not have
the ability to control a FRU hot swap indicator (it is likely that none
exists). An appropriate error code will be returned if the resource does not
support control of a hot swap indicator on the FRU.

Configuration

The can be used on any resources that have the “Configuration” capability
(SAHPI_CAPABILITY_CONFIGURATION), set in their RPT entries.

Function saHpiParamControl allows the user to save and restore
parameters associated with a specific resource. The restoring of the
parameters can be done by either reinitiating them with factory default
settings (sensor thresholds and configurations, and resource specific
configuration parameters) or loading configuration parameters from non-
volatile storage.

Reset Functions

The user can set/get the current reset state of a certain entity with the
following functions. The reset actions for the get function are

SAHPI_RESET_ASSERT (put the entity into reset state and hold reset
asserted, e.g., for hot swap insertion/extraction purposes) and

SAHPI_RESET_DEASSERT. The additional actions for the set functions
are SAHPI_COLD_RESET (perform a Cold Reset on the entity (pulse),
leaving reset de-asserted) and SAHPI_WARM_RESET (perform a Warm
Reset on the entity (pulse), leaving reset de-asserted).

Entities may be reset for a variety of reasons. A misbehaving entity may
be reset to bring it to a known state. In these cases, either a warm reset or
a cold reset may be performed. A warm reset preserves entity state,
whereas a cold reset does not. Both of these reset types are pulsed
asserted and then de-asserted by the HPI implementation. This allows the
HPI implementation to hold the reset asserted for the appropriate length
of time, as needed by each entity. saHpiResourceResetStateSet() can also
be used for insertion and extraction scenarios. A typical resource
supporting hot swap will have to ability to control local reset within the
FRU. During insertion, a resource can be instructed to assert reset, while
the FRU powers on. During extraction a resource can be requested to
assert reset before the FRU is powered off. This function allows the caller
to set the reset state of the specified FRU.

Function saHpiResourceResetStateGet gets the reset state of an
entity, allowing the user to determine if the entity is being held with its
reset asserted. If a resource manages multiple entities, this function will
address the entity which is identified in the RPT entry for the resource.

Function saHpiResourceResetStateSet directs to perform the specified
reset type on the entity that it manages. If a resource manages multiple
entities, this function addresses the entity that is identified in the RPT
entry for the resource.

A carrier-grade hardware - Sun Netra(TM) ct 800 servers

The Netra ct server is a CompactPCI-based, rack mountable server. The
server offers extremely attractive serviceability and modularity,
particularly for I/O-intensive applications, as are found in the telco and
internet service provider environments. The Netra ct server chassis is
highly configurable. Within its chassis, you can have a minimal
configuration of a single computer with two hot-swappable I/O slots. You
can also have a maximum configuration of up to four independent
computers with two I/O slots in each.

Some components in the Netra ct 800 server server are hot-swappable. A
hot-swappable component is a component that you can install or remove

10

and replace while the system continue to operate, without interrupting the
operating system. You are only required to enter software commands
before and after an installation or removal/replacement procedure. The
major components, which are the Field Replaceable Units are:

« CPU card

« Power Supply Units (hot swappable)

« System Status Panel (hot swappable)

+ System Controller Board

« Main Air Filters (hot swappable)

« Power Supply Unit Air Filters (hot swappable)

« Fan Trays and Fans (hot swappable)

« Hard Disk Drives (hot swappable)

- Removable Media Module (hot swappable)

« Alarm Card

- Midplane and Server Mechanical

References

Service Availability Forum, Forum Platform Interface, 2002.
SA Forum, Hardware Platform Interface Specification, 2002.
Sun Microsystems, Inc., Netra(TM) ct 400/800 server White Paper, 2001.

11

