Hardware Platform Interface
Data Type Definitions

Juhana Mattila

Helsinki 10th April 2003
Seminar on High Availability and Timeliness in Linux

University of Helsinki

Department of Computer Science

Contents

1 Introduction

2 Hardware Platform Interface Overview

2.1 Physical View o
2.2 Management Viewo
2.3 Management Instruments.

3 Using the Hardware Platform Interface

3.1 [Imitialization and Cleanup
3.2 Sessions . . .o ...
3.3 Domains L
34 Resourceso
3.5 Emtitieso
3.6 Discovery
3.7 Events

4 Conclusion

References

10

10

11

13

15

15

1 Introduction

The Service Availability™ Forum (SAF) Hardware Platform Interface (HPI)
provides an industry standard interface to monitor and control highly avail-
able telecommunications system platforms. HPI provides a common model,
presenting an “abstract view” of the hardware platform and its management
capabilities. The ability to monitor and control these platforms is provided
through a consistent and standard set of programmatic interfaces that are
targeted for adoption by the telecom building block industry to significantly
reduce product time-to-market and development costs while retaining or en-

hancing total system /network availability.

The HPI provides the interface between the middleware software solution
stack and the hardware solution stack, allowing portability of middleware
software building blocks across many different middleware software building
blocks. The HPI is shown in Figure 1 as Platform Interface between the

middleware and operating system.

A .__ Application
______________________ -—--7 Interface

- -- Platform
"""" Interface

Figure 1: The Service Availability™ Forum Interfaces

The primary user of the HPI is the Service Availability™ middleware soft-
ware itself. The “user” means any software component that is making use

of the HPI. Any software package that needs to monitor and control the

hardware platform can use the HPI.

2 Hardware Platform Interface Overview

The HPI provides a platform-independent interface to platform-specific man-
agement services. It does this by representing the platform-specific charac-
teristics of the system in an abstract model called “platform management
view”. The components of the system are identified and described to the
extent that they may be monitored, controlled, or detected by the platform
management infrastructure.The vendor-supplied implementation of the HPI
is responsible for representing the physical hardware in terms of this abstract
model, and for translating the library function calls that address the model

into appropriate actions on the physical hardware.

The model provides two different representations of the system — a “physi-
cal view” and a “management view”. The reason for the two views is that
the system is likely to consist of multiple components, which may be hot-
swappable. As a result, the management capabilities of the system may
change over time. The interface is also designed to allow different access to
management capabilities by different users, if desired. To achieve this, differ-
ent users may have different management views of the system, while seeing

the same physical view.

2.1 Physical View

The physical view of the system is achieved by identifying each component
in the system with an Entity Identifier. An entity identifier consists of
combination of an “Entity Type” and an “Entity Instance”. The entity type
describes the type of hardware component, and the entity instance identifies
which component, in case there is more than one hardware component of

the same type within the containing entity. For example a particular power

supply in the system may be identified as “Power supply number 2” or a

particular subrack as “Subrack 4”.

A single level description of the physical component is unlikely to be enough
because the high-availability computer systems tend to be complex. Instead
the HPI model uses a hierarchial model, where subsystems can be nested in-
side each other, with redundancy at various levels. Every entity is uniquelly
named by an entity path that identifies the component in terms of its con-
tainment within the system. An entity path consists of an ordered set of
{Entity Type, Entity Instance} pairs. The path defines the physical location
of the entity in the system. The path is ordered from the entity itself, to
the “root” of the system hierarchy. Each subsequent {Entity Type, Entity
Instance} pair in the list describes the next higher level of physical contain-

ment.

For example, consider a system that contains multiple racks, each of which
contain multiple subracks, with each subrack containing power supplies that
serve that subrack. Figure 2 shows an example of system platform with ex-
ample entity paths for a few components. A full Entity Path for an individual
power supply may be:

Entity type Entity Instance

Power Supply 2
Subrack 3
Rack 1

Figure 3 shows the Entity Containment Tree from the example system shown
in Figure 2 with additional entities not shown in Figure 2. Note that there

may also be more than one Entity Type at the top level of the system.

2.2 Management View

HPI presents a “platform management view” of the components in the sys-

tem. The physical entities in the system have basic management capabilities

AR AR .. o

SBC Blade 3
o e Subrack 1
Power supply 2 2
Subrack 1 Ragc]
Rack 1 = 1T

Entity Path
Power supply 1
Subrack 2

Rack 2

Entity Path
1/0 Blade 4
Subrack 2

Rack 1

Entity Path
SBC Blade 5
Subrack 4

Rack 1

Entity Path L
Powet supply 2

Subrack 3
Rack 1 d
P

Power Distribution Unit | Subrack

[owskorwe | | Fan |

Figure 3: Enity Containment Tree

that are modeled in the HPI as “management instruments”, such as sensors,
controls or watchdog timers. Management instruments throughout the sys-
tem are addressed using a hierarchial address consisting of a “Domain ID”,

“Resource ID” and “Instrument ID”.

A Resource is simply a collection of management instruments associated
with one or more entities in the system. Each resource is responsible for
managing and presenting to the HPI user the entities that it has management

control over.

The HPI view of a system is divided into one or more domains, where a

domain provides access to some set of the resources within the system. A
resource is a member of one or more domains. Access to all of the manage-
ment instruments contained in a resource is permited to all users who are
able to access a domain that contains the resource. Resources may be mem-
bers of more than one domain at the same time, permiting different sets of
users simultaneous access. Figure 4 shows an example of a system with two
domains. Many systems may have a single domain, whereas systems that

have areas dedicated to separate tasks may manage these through separate
domains.

Domain “B”

Domain “A”

Resource 1

Resource 4 K 8

€Source
Resource 6
Control 1

[Control 1]

Contral 2

Resource 3

Resource 5 Resource 7

__Se 3
L
[Sensorz |

Figure 4: HPI Management View Model

A user of the HPI accesses the system through sessions, where each session
is opened on a domain. A session provides access only to resources that are
visible in the domain upon which the session is opened. One HPI user may
have multiple sessions open at once, and there may be multiple sessions open
on any given domain at once. It is inteded that, in future releases of HPI,

access control to the HPI will be performed at the session level.

HPI uses the management view to represent the components in the system.

The entity paths from the physical view are used to identify the hardware

components that management instruments and resources are associated with.
Each management instrument is associated with entity path, which identifies
the specific hardware component in the system the management instrument
monitors or acts upon. FEach resource is associated with an entity path,
which identifies the “primary” hardware component associated with a hot-

swappable hardware component.

2.3 Management Instruments

Management capabilities of system entities are modeled in the HPI with
“management instruments”. Management instruments are contained in HPI
resources, and are associated with specific physical entities. Four types of

management instruments are defined.

Entity Inventory Records reports inventory and static configuration data
of the entity. The inventory data can include for example manufacturer,

model number, revision level, serial number.

Sensors are used to read values related to the operation or health of a com-
ponent. Generally, sensors are used to model values that may change
over time, like temperatures, voltages, latch positions, etc. When
changes in the reading occur, the sensor can assert or de-assert one
or more of its event states. When a sensor asserts or de-asserts an
event state, an HPI event message may be created and sent to an HPI

user or put in a log.

Controls are the controlling aspects of the operation of a component. Con-

trols are used to send commands to an entity.

Watchdog Timers are used to physical watchdog timers that may be im-
plemented on physical entities. Watchdog timers may cause implementation-

defined actions to occur when the timers expire.

3 Using the Hardware Platform Interface

The HPI is made available in a series of C language library calls and a
header file provided by a platform vendor. The header file is taken directly
from the SAF specification, and except for assigning a few basic data types
to the appropriate types for the processor family, no changes are required
by the vendor. The library functions, however, must be written specifically
for each system platform to map the HPI model and functionality to the
actual hardware platform capabilities. The platform vendor must provide
libraries appropriate for whatever operating system and compiler used on

the platform.

The Service Availability™ middleware, or other user software, invokes the
library by including the header file in its software modules, and making calls

to the appropriate library functions.

3.1 Initialization and Cleanup

There are two HPI function calls that should be used just once each for
system initialization and shutdown, respectively. These calls, which take no
parameters, are designed to allow the HPI implementation to schedule any

startup or close-down activities that may be needed on a global basis.

Before the user can use the HPI user must call the function saHpiInitialize()
to initialize the the HPI. The function returns the version of the HPI imple-
mentation. Initialization is run only once for each HPI instance. Though
many implementations may simply return from initialization function with-
out any further processing other implementations may use this as an oppor-
tunity to allocate memory, to open files, to set up default configurations,

etc.

After the user stops using the HPI user must call the function saHpiFinalize ()

to clean-up the HPI. The function is provided to allow for freeing of memory,

closing of files, etc., as needed by a particular implementation.

3.2 Sessions

A user of the HPI accesses the system through sessions, where each session is
opened on a domain. A user initiates interaction with the HPI by calling func-
tion saHpiSessionOpen(). The caller passes a domain identifier DomainId
to the open function, and a session identifier SessionId is returned. There
is also a parameter for security characteristics SecurityParams but it is re-
served for future versions of HPI. At this point this parameter must be set
to NULL.

Once a session is opened on a domain all subsequent function calls that
reference that session (via session identifier), implicitly address a specific
domain. All subsequent function calls have a session identifier SessionId as
a parameter. A user may have multiple session open at once. A user is able

to access resources and retrieve events via a session.

The function saHpiSessionClose() closes a session. A session identifier
SessionId is passed to the function and the identifier will no longer be

valid.

3.3 Domains

An HPI system is organized into one or more domains. Regardeless of how
domains are implemented by specific HPI service, to HPI user, all domains
have a common structure. A domain consists of a domain controller, and it
may contain zero or more resources. Figure 5 shows a typical domain. A
domain controller is a abstraction of set of services that provide information
about the resources in the domain. These services include management of a

Resource Precense Table (RPT), and management of Events.

Ia[[onuo))
IR o]

Figure 5: Example Domain

The RPT contains an entry for each resource currently present in the domain,
and users of the HPI may read these entries. The resources can be used to
discover which entities are present. The contents of RPT entry describing
a resource is covered in more detail in section 3.4 Resources. The RPT is
automatically built and maintained by the HPI implementation. Resource
entries will be dynamically added to or removed from the RPT as Field Re-
placeable Units (FRUs) are physically added to or removed from a platfrom.
If a resource is contained in multiple domains, it will be recorded in the RPT

of each of the respective domain controllers.

The event management service in domain controller, forwards events to users
of the HPI and maintains a historical log of events. The event management
service collects events in a domain controller and then distributes those events
to the System Event Log (SEL) and to users who have subscribed for events.
If the HPI implementation presents multiple domains, the domain controller
in each domain will manage its own set of events. The event management

service is covered in more detail in section 3.7 Events.

The first important aspect to consider in domain architecture is the default
domain (DomainID = SAHPI_DEFAULT_DOMAIN_ID). The default domain al-
lows the user of the HPI to open a domain and interact with the HPI imple-
mentation, even when it has no prior knowledge of the platform. The use of

the default domain is coverd in more detail in section 3.6 Discovery.

3.4 Resources

Resources represent the management access to the components of the system.
Each resource provides access to information about some of the components
of the system called entities. Each resource currently accessible in a domain
must be represented by an entry in the RPT in the domain controller of that

domain. Each RPT entry includes:

e RPT entry ID.
e Resource ID of the resource with which the RTP entry is associated.

e Resource info that contains static configuration data concerning the
management controller associated with the resource, or the resource
itself.

e Entity path of the primary hardware component with which the re-

source is associated.

e Cababilities of the resource. This identifies if the resource is a domain
or a resource (or both). Capabilities also include information of what

types of management instruments are associated with this resource.
e Domain ID if the RPT entry is associated with a domain.

e Informational value that supplies the caller with naming information

for the resource.

3.5 Entities

There is no single element of the HPI that represents the entity. Rather,
each entity is modeled as a collection of Resource Data Records (RDRs),
which contain information about the controls, sensors, watchdog timers, and
inventory data associated with the entity. Every RDR contains the entity

path of the entity to which it relates; hence, the user can determine the type

10

of a given entity, and the set of the RDRs in the system, and correlating
RDRs with the same entity path. Each RDR includes:

e Management instrument ID used to address the management instru-

ment in the resource.

e Type of management instrument — sensor, control, entity inventory

repository, watchdog.

e Entity path for the physical hardware component with which the man-

agement instrument is associated.

e In the case of sensors and controls, descriptive information about the
particular management instrument, including information on what it

actually monitor or controls.

Every entity in the system must have at least one RDR associated with
it. If the entity contains no controls, sensors, or watchdog timers, then the
HPI implementation should supply an empty entity inventory RDR for that
entity.

3.6 Discovery

After establishing a session to a domain, user software can use function calls
provided in the HPI to discover all the resources and management capabil-
ities of the system platform. Since domains are the largest aggregation of
resources that can be addressed, the first task in discovering the content of
a system is to determine the domains that are present in the system. Ev-
ery HPI implementation must have one domain with a DomainId equal to
SAHPI_DEFAULT_DOMAIN_ID. This domain allows the HPI user to open an
initial session to the HPI, and serves as the starting point for a full discovery

procedure.

11

In order to support this full system discovery, the specification requires that
the HPI implementation include domain reference entries in RPTs so that
if a user accesses a default domain, and then accesses all the domains ref-
erenced in the RPT of that domain, and then continues this process for all
those domains, and so on, then all domains available in the system will be

discovered.

To discover the resources in the domain, the user reads the RPT entries
of the domain by calling function saHpiRptEntryGet (). The caller passes a
session identification SessionId and an RPT entry identification EntryId to
the function. The function returns the RPT entry RptEntry for the specified
entry and a entry identification NextEntryId of the next entry in RPT. To
retrieve an entire list of entries, function saHpiRptEntryGet () is first called
with the RPT entry identification EntryId set to SAHPI_FIRST_ENTRY. Then
the function returns the first entry in RPT and the identification of the next
entry. Then caller uses the returned NextEntryId in the next call. This is
repeated until the NextEntryId returned is SAHPI_LAST_ENTRY.

For each RPT entry the user extracts the capability flags ResourceCapabilities
for that resource to find out if the RPT entry identifies a resource or a do-
main. The user also extracts the resource ID or domain ID, which will be

used in the following function calls.

After discovering each resource, the user should then access the RDRs main-
tained by that resource to find out the entities managed by the resource.
The user reads the RDRs from the RDR repository by calling function
saHpiRdrGet (). The caller passes a session identification SessionId, an
resource identification ResourceId and an RDR identification EntryId to
the function. The function returns the RDR Rdr for the specified entry and
a entry identification NextEntryId of the next entry in RDR repository. To
retrieve an entire list of entries, the function saHpiRdrGet () works the same
way as the function saHpiRptEntryGet (). The user can use the entity path
Entity in the RDR to determine which RDRs refer to same entities.

If a RPT entry is also identifying a domain with unique domain ID, user

12

should repeat the same process for this subdomain. This will allow all do-

mains to be discovered.

After the process described above user has information of all domains, re-
sources and entities in the system. The physical view of the system can be

constructed during this process by using the entity paths contained in each
RDR.

3.7 Events

After discovery is complete, user software may operate in polled mode, an
event driven mode, or a combination of the two. The event driven mode is

described below.

To get events on current session, the user must first subscribe to receive
events by calling function saHpiSubscribe(). The caller passes a session
identifier SessionId and a boolean value ProvideActiveAlarms to the func-
tion. (The parameter ProvideActiveAlarms is described below.) When a
user subscribes to events from a particular domain, the HPI sets up an event
queue for the user, and places a copy of all events related to any resource

that is a member of that domain on the queue as they are generated.

After subscribing, a user may read events off the queue by calling function
saHpiEventGet (). The caller passes a session identifier SessionId and a
timeout parameter Timeout to the function. The function returns next avail-
able event Event, the resource data Rdr associated with the event and the
RPT entry RptEntry associated with the resource that generated the event.
The returned event includes the identification of the source which generated
the event, the type of the event, a timestamp when the event was generated

and information about the severity of the event.

If the timeout parameter Timeout is set to SAHPI_TIMEQUT_IMMEDIATE the
events are read with a non-blocking call which returns immediatly if there are
no events in the event queue. If the timeout parameter is set to SAHPI_TIMEQUT_BLOCK

13

the events are read with a blocking call which will block until there are new

events in the event queue.

A user can operate simply by receiving and responding to events, without
having to poll the various management instruments in the system on a reg-
ular basis. However, to operate this way, the user must first be aware of
the “initial state” of the system. To assist with this, the HPI allows the
user to learn this initial state via processing event messages rather than
having to poll all the sensors in the domain. When the user calls the func-
tion saHpiSubscribe() with the parameter ProvideActiveAlarms set to
SAHPTI_TRUE, the HPI places events on the user’s event queue for all active

alarms in the system.

In addition to forwarding events to subscribing users, the HPT also logs events
in a nonvolatile “event log” associated with each domain. This event log is
accessible by users through the HPI at any time, to retrieve a historical record
of events that have been generated for a domain. Users may also add records

to the event log, if desired.

Figure 6 shows how events are processed by the HPI for a particular domain.

HFIl sessions opento
this domain, s howing

aetive functions e

{jsan 3poidyes
(e agadies
(MU AT PP d e
{Wiu3Bopans Jpoidyes

Resaurce 1

i
EEreaEmp s
! Femarder Event Log
| LY .. (SEL)

i

|

Domain Controller

Domain &

Figure 6: Domain event processing

14

4 Conclusion

The HPI provides a standard interface for the rich management capabilities
found in the carrier-grade hardware platforms used with applications that
msut provide continuous availability. The interface is built on a model that
provides an abstract view of the system, while still allowing full access to
whatever management capabilities it may contain. A “discover what is there”
approach is used so that Service Availability™ middleware or the carrier-
grade software can be developed that is adaptable to the underlying system

capabilities, thus avoiding a “least common denominator” view of the system.

References

[SAF02a] The Service Availability™ Forum, Platform Interface. White
paper, 2002. Available at:
http://www.saforum.org/specification /specification _white paper.pdf

[SAF02b] Service Availability™ Forum, Hardware Platform Interface Spec-
ification. 2002. Available at: http://www.saforum.org/

15

