Resource Functions I.

High Availability and Timeliness in Linux
Katalin Réti
02.04.2003

Introduction

The Hardware Platform Interface (HPI) provides a platform-
independent interface to platform-specific management services. The
components of the system are identified and described to the extent that
they may be monitored, controlled, or detected by the platform
management infrastructure of the system. The components are presented
by the HPI in terms of how they are seen by the management
infrastructure.

A component of the system is called an entity. Each entity is
identified by an entity path, which is determined by the component's
location in the physical containment hierarchy of the system.

Access to the entities in the system is through management
access points in the system infrastructure, represented in the HPI as
resources. Every resource is responsible for managing and presenting to
the HPI user the entities that it has management control over.

The HPI view of a system is divided into one or more domains,
where a domain provides access to some set of the resources within the
system. A domain represents some part of the system that is capable of
being managed by a single HPI user.

All access to the HPI is via a session. Each session is opened on
a single domain. A session provides access only to resources that are
visible in the domain upon which the session is opened.

The Resource Presence Table (RPT) contains an entry for each
resource currently present in the domain. The RPT is automatically built
and maintained by the HPI implementation. The RPT entry for a resource
includes a flag that indicates what capabilities the resource supports.

Management Instruments

Management capabilities of system entities are modeled in the
HPI with “management instruments”. There are four types of
management instruments: sensors, controls, entity inventory repositories
and watchdog timers. Management instruments are contained in HPI
resources, and are associated with specific physical entities.

Entity inventory repository

Each physical entity in the system may have inventory data
associated with it. This inventory data, such as manufacturer, model
number, revision level, serial number, and static configuration
information is accessible by reading records from an entity inventory
repository. The HPI user may read the inventory data from any repository,
and may also update the data in a repository.

Sensors

A sensor is used to monitor physical characteristics of an
entity, such as temperature, voltages, latch positions, etc. Generally,
sensors are used to model values that may change over time. They may
report analog or discrete values.

Sensors also have associated event states. When changes in the
reading occur, the sensor can assert or de-assert one or more of its event
states. When a sensor asserts or de-asserts an event state, an HPI event
may be created and sent to an HPI user or put in a log.

Controls

A control is used to send a command to an entity. There are six
types of controls to handle different sorts of data that may need to be sent
to an entity: digital, discrete, analog, stream, text and OEM defined.

Watchdog timers

A watchdog timer management instrument is used to control
physical watchdog timers that may be implemented on physical entities.
Specialized function calls are available to configure and start a watchdog
timer, to send “keep-alive” heartbeats to it, and to define what actions are
taken when it expires.

Resource Data Record Repository Management

Resource functions are used to access the Resource Data
Record (RDR) repository for a specific resource. Every resource must have
an associated RDR. The RDR repository holds information indicating the
set of sensors, controls, watchdogs and entity inventory repositories for all
of the entities that are managed by a resource. All sensors, controls,
watchdogs and entity inventories present in a resource must be specified
in the resource's RDR repository.

The concept of RDRs provides for much of HPI's portability and
extensibility across a multitude of hardware platform implementations.
Because each platform will have a different population of domain
controllers and resources, the RDR concept provides a means of
discovering and managing these varied populations of hardware platforms
and sensors. The RDR repository is used during discovery to learn the

management capabilities of the resource.

The HPI model uses a distributed repository where each
resource maintains a local repository of records. At the resource level, the
RDR repository is a logical database containing a collection of records that
describe sensors, controls, watchdogs and entity inventory repositories.
Each RDR contains common fields that define record type and naming
information.

HPLAP|

HF Im plzmentaticn

Do ain Sontoller Resource 0 Resource 1 - e Resource M

_AOR

Resource
Presence Tahle
i S0 i

Domain Event Log

Fig. 1. Distributed RDR Repositories

Function saHpiRdrGet() returns a resource data record from
the addressed resource.
Protoype
SaErrorT SAHPI_API saHpiRdrGet(
SAHPI_IN SaHpiSessionIdT Sessionld,
SAHPI_IN SaHpiResourceIdT Resourceld,

SAHPI_IN SaHpiEntryldT Entryld,
SAHPI_OUT SaHpiEntryldT *NextEntryld,
SAHPI_OUT SaHpiRdrT *Rdr

);

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

Entryld — [in] Handle of the RDR to retrieve. Reserved entry
ID values: SAHPI_FIRST _ENTRY Get first entry

SAHPI_LAST ENTRY Reserved as
delimiter for end of list. Not a valid entry
identifier.
NextEntryld — [out] Pointer to location to store Entry ID of
next entry in RDR repository.
Rdr — [out] Pointer to the structure to receive the requested
resource data record.
Return value
SA_OK is returned on successful completion; otherwise, an
errorcode is returned.

Sensor Functions

These functions are valid for resources that have the “Sensor”
capability set in their corresponding RPT (Resource Presence Table)
entries.

Sensors contain several configuration parameters that may be
set with the appropriate set sensor functions. Typically, these parameters
are set to appropriate defaults by the HPI implementation. These set
functions are available for management software to override these
defaults.

When a resource is re-initialized, the HPI implementation may
reset these parameters. If the resource that hosts the sensor supports
parameter control, it may be possible to store the newly loaded parameter
values in non-volatile storage so that the new settings will remain with
the resource through removal or reinsertation.

Function saHpiSensorReadingGet() is used to retrieve a

sensor reading.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

SensorNum — [in] Sensor number for which the sensor reading
is being retrieved.

Reading — [out] Pointer to a structure to receive sensor reading
values.

Function saHpiSensorReadingConvert() converts between
raw and interpreted sensor reading values.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

SensorNum — [in] Sensor number for which reading is
associated.

ReadingInput — [in] Pointer to the structure that contains raw
or interpreted reading to be converted.

ConvertedReading — [out] Pointer to structure to hold
converted reading.

Function saHpiThresholdsGet() retrieves the threshold for

the given sensor.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

SensorNum — [in] Sensor number for which threshold values
are being retrieved.

SensorThresholds — [out] Pointer to returned sensor
thresholds.

Function saHpiSensorThresholdSet() sets the specified

thresholds for the given sensor.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

SensorNum — [in] Sensor number for which threshold values
are being set.

SensorThresholds — [out] Pointer to sensor thresholds values
being set.

Function saHpiSensorTypeGet() retrieves the sensor type

and event category for the specified sensor.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

SensorNum — [in] Sensor number for which the type is being
retrieved.

Type — [out] Pointer to returned enumerated sensor type for
the specified sensor.

Category — [out] Pointer to location to receive the returned
sensor event category.

As mentioned in section “Management Instruments” sensors
have associated event states. Each event state belongs to a category. An
event state can be asserted or deasserted. When an event state changes
from asserted to deasserted (or from deasserted to asserted) a message can

5

be generated.

Function saHpiSensorEventEnablesGet() provides the

ability to get the disable or enable event message

generation status for individual sensor events. The sensor

event states are relative to the event category specifies by the

sensor.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

SensorNum — [in] Sensor number for which the event enable
configuration is being requested.

Enables — [out] Pointer to the structure for returning sensor
status and event enable information.

Function saHpiSensor EventEnablesSet() provides the

ability to set the disable or enable event message generation

status for individual sensor events.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

SensorNum — [in] Sensor number of which the event enables
are being set.

Enables — [in] Pointer to the structure containing the enabled
status for each event.

Aggregate Resource Status

If a resource entry has the -capability bit of
SAHPI_CAPABILITY AGGREGATE_STATUS set to 1 it means that the
resource supports aggregate resource status. Aggregate resource status
provides a session owner the capability to quickly derive information
about the functional, thermal, and power state of the single or primary
entity associated with that resource. If a resource manages multiple
entities, the entity path in the RPT entry for the resource indicates which
entity the aggregate status sensors are associated with. A resource, which
supports aggregate resource status must provide the following types of
Sensors: SAHPI_OPERATIONAL, SAHPI_POWER_UNIT and
SAHPI_TEMPERATURE.

The aggregate operational status sensor reflects the functional
status of the entity. There are two event states, one indicates that the
entity is performing its intended function, the other one indicates that it is

not.

The aggregate power status sensor reflects the power status of
the entity. The power status is reported in terms of how it effects the
operation of the resource. Six event states are used. Three of them signals
a change to a degraded power status at the lower end of the range. The
first one does not impact the functional status, the second one signals a
change to a severely degraded power status that may impact the
functional status, and the third one signals a change to a catastrophic
power status that has impacted the functional status. The other three
states signal a change to a degraded power status at the higher end of the
range the same way as the above ones do on the lower end.

The aggregate thermal status sensor reflects the thermal
status of the entity. The thermal status is reported in terms of how it
effects the operation of the entity. Six event states are used. Three of them
signals a change to a degraded thermal status at the lower end of the
range. The first one does not impact the functional status, the second one
signals a change to a severely degraded thermal status that may impact
the functional status, and the third one signals a change to a catastrophic
thermal status that has impacted the functional status. The other three
states signal a change to a degraded power status at the higher end of the
range the same way as the above ones do on the lower end.

Controls

These functions are valid for resources, that have the “Control”
capability set in their corresponding RPT entries.

Function saHpiControlTypeGet() retrieves the type of a

control object.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

CtriINum — [in] Control number.

Type — [out] Pointer to saHpiCtrlTypeT variable to receive the
enumerated control type for the specified control.

Function saHpiControlStateGet() retrieves the current state
of a control object.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resourceld of the addressed resource.
CtriINum — [in] Number of the control for which the state is

being retrieved.
CtrlState — [in/out] Pointer to a control data structure into
which the current control state will be placed.

Function saHpiControlStateSet() is used for setting the

state of the specified control object.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.

CtriINum - [in] Number of the control for which the state is
being set.

CtrlState — [in/out] Pointer to a control state data structure
holding the state to be set.

Entity Inventory Data

These functions are valid for resources that have the “Entity
Inventory” capability set in their corresponding RPT entries. Resources
that support entity inventory data may contain inventory data for for one
or more entity inventory repositories. Each set of inventory data provides
detailed identification information for a physical entity. The entities for
which the resource contains inventory data may be found via Inventory
Data Records in the RDR repository.

Inventory information is stored in an entity inventory
repository in a set of variable length records. Functions are provided to
read the whole inventory information from a particular entity inventory
repository, or the write the whole inventory information in a particular
repository. Except at initial manufacture, there will generally always be
one or more inventory records already present in a repository, and
management middleware will, at most, be adding to or modifying the
existing inventory information. Therefore the typical usage is to first read
the inventory data, and then modify it appropriately and then write the
inventory data back to the entity inventory repository, as modified.

Function saHpiEntityInventoryDataRead() returns
inventory data for a particular entity associated with a
resource.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.
Eirld — [in] Identifier for the entity inventory repository.
BufferSize — [in] Size of the InventData buffer passed in.

InventData — [in] Pointer to the buffer for the returned data.
ActualSize — [out] Pointer to size of the actual amount of data
returned.

Function saHpiEntityInventoryDataWrite() writes the
specified data to the inventory information area.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the addressed resource.
Eirld — [in] Identifier for the entity inventory repository.
InventData — [in] Pointer to data to write to the repository.

Watchdog Timer

Many high availability platforms contain watchdog timers to
provide a means of monitoring the overall health of the software system.
The HPI provides a standardized set of functions to access these watchdog
timers. Additionally, the HPI provides a means to configure selected
actions that will be taken when the watchdog timer expires. These actions
include power off, power cycle, and reset actions.

A timer use value is set whenever the watchdog is set. There
are no restrictions on using timer use values, but some of them have pre-
defined values.

The watchdog timer can be used as a two-stage watchdog. If
the pre-timeout interrupt is set an interrupt occurs at a configured
interval of time before the rimer expires. The pre-timeout interrupt
handler may implement a wide variety of actions. While the type of
interrupt is configured, the caller is responsible for installing the
appropriate interrupt handler before setting the watchdog configuration.

More than one watchdog timer may be supported by a resource.
The watchdog records in the RDR repository identify which entity a
particular watchdog timer is associated with.

When a watchdog times out, in addition to the configured
action, an event may be generated. It is possible to configure the watchdog
to take no actions other than the generation of the event.

These functions are valid for resources that have the watchdog
timer capability set in their corresponding RPT entries.

Function saHpiWatchdogTimerGet() retrieves the current
watchdog timer settings and configuration.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the resource, which contains
the watchdog timer being addressed.

WatchdogNum — [in] The watchdog number that specifies the
watchdog timer on a resource.

Watchdog — [out] Pointer to watchdog data structure.

Function saHpiWatchdogTimerSet() provides a method for

initializing the watchdog timer configuration.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the resource, which contains
the watchdog timer being addressed.

WatchdogNum — [in] The watchdog number specifying the
specific watchdog timer on a resource.

Watchdog — [out] Pointer to watchdog data structure.

Function saHpiWatchdogTimerReset() provides a method to

start or restart the watchdog timer from the initial countdown

value.

Parameters

Sessionld — [in] Handle to session context.

Resourceld — [in] Resource ID of the resource, which contains
the watchdog timer being addressed.

WatchdogNum — [in] The watchdog number specifying the
specific watchdog timer on a resource.

References

(1) Service Availability Forum Interface Specification 1.0.
(2) Service Availability Forum specification white paper

10

