Configuration-Level Adaptation

Md. Jamshed Haider Siddiqi

Abgtract—The mechanism of self-healing enables the
system to continue operating properly on the evendf the
failure of some of its components, to determine therrors
and to recover from them. In traditional mechanisms
analyzing, changing and reusing have never been aasy
task. An alternative and perhaps more efficient wayis
allowing the system to adapt dynamically at configtation
level. Configuration-level adaptation mechanism asenes
that the architecture of the system is modeled as a
collection of components. Each component has twoylar
architecture, healing layer and service layer. Anomlous
tasks are detected by means of message communicatio
between tasks in a component. Message communicatin
done via connectors and plays the important role in
detecting anomalous tasks, and, thus consequentlyn
reconfiguring components and repairing anomalous tsks.

I. INTRODUCTION

outside the running system. The component alwaysires
vigilant to detect if any anomaly occurs. After efgton,
errors are analyzed and repaired.

) Planning
Analysis) System
and Architecture
Repair 'y
Adaptatior Notification
Running | > Monitoring
System

Figure 1: Configuration-Level Adaptation

AY by day, computer systems are becoming more

sophisticated, and high degree of reliability isnd@ded.
With the change of system resources and environnibet
system may tend to show malfunctionality.

In adaptation mechanism, it is an importantesthat in
case of failure of any component of the system, system
will be able to detect the errors and continuegerate with
degraded functionality. Eventually the system nhestble to
recover from failure.

The adaptation mechanisms can be classifiecht@snal
and external. In internal, adaptation mechanisnestightly
integrated with the application itself and wiredanhthe code
level supported by some programming languages, (daya
Exceptions) or usual control checking by the progreers.
The major difficulty of traditional mechanisms ischlizing
the errors.

Configuration-level adaptation, the external hedsm,
outweighs traditional mechanisms because of itsbailo
perception on the system. This perception helpadapt the
system dynamically. Moreover, the mechanism carpaup
reuse in more efficient way, since adaptation iswiced into
application. Configuration-level adaptation is whan the
architecture of the self-healing system [4][8], artide
architecture changes during software execution. sthecture
of the run-time adaptation can be shortly viewedlastrated
in Figure 1. The system behavior is monitored bygonents

Manuscript received March 12, 2007
The author is with the Department of Computer SmerUniversity of
Helsinki, Finland. (e-mail: jamshed.siddiqi@cs.sheki.fi)

Despite the advantages of configuration-levehpdation,
the researchers have been facing some challengasdieg
this run time adaptation. Challenges include [3]:

Monitoring: How monitoring capabilities can be achieved
so that the regular functionalities of the compdeeare not
disturbed? What type of parameters should be ceresidfor
monitoring? How system components should be dedigoe
that they can be easily monitored?

Interpretation: How it can be determined that system
components are erroneous? What is the source afydtem
errors?

Resolution: There might be set of possible repairing
technigues. How the best technique can be chosen?

Adaptation: How adaptation should be done so that the
system continues to run properly? How the system
components should be designed so that they camldeted
dynamically?

This paper is organized as follows. Sectiond$alibes the
architecture of self-healing component. Then wedles the
architecture of self-healing connector in Sectidh How
anomalies are detected in self-healing systemsssribed in
Section IV. We discuss the self-healing mechanigmmbans
of message communication in Section V. The lasti@gc
Section VI, draws some conclusions of configuraievel
adaptation.

II. ARCHITECTUREFORSELF-ADAPTATION

The self-healing system architecture consists
components. Each component has two layers, heédiyay

Reconfiguration Plan Generator to generate plan for
geconfiguring the component. Reconfiguration Plan
Generator contains the information about the caméigon of

and service layer. The components in haling layes athe tasks in the components. There may be othghhering

designed to detect and heal anomalies in servigr ldnat
might emerge at run time [7]. The connectors irviserlayer
help the healing layer in detecting anomalies kyfying the
status of service layer components.

When the healing layer detects any abnormalities task,
it initiates self-healing mechanism for anomalowsskt
During healing phase the service layer limits isvices to
handling test data only. At the very first stepe thealing
layer reconfigures the service layer to isolate dhemalous

components in the system whose objects may betexfday
the behavior of the anomalous tasks. To mitigaeeitpact
of paralyzed tasks in other components the Recordtgpn
Plan Generator maintains the information about
organization of neighboring components.

Reconfiguration Plan Executor:The Reconfiguration Plan
Executor executes the plan generated by the Regoafion
Plan Generator. The Reconfiguration Plan Execut®r i
informed by the Self-Healing Controller and recgnofies the

the

task, and inform the neighboring components abduet i service layer by blocking sending and receiving nemtors

abnormalities of the task. After that, the heallager starts
to repair the anomalous task. The healing layereath
component (Figure 2) consists of the following comgnts

[2]:

Component Monitor: To monitor the behavior of the ™" : >R qUekS
tObjects. This component performs the operationsiainto

service components the Component Monitor contahmes
state transition diagrams for each task. State sttian
diagrams represent the functional
components. Component Monitor has a thread for ¢ask
in the component. The thread is responsible foctkeg the
state transition diagrams. The Component Monitpesuises
the behavior of tasks, connectors and passive tebjglae
object that does not have its own control, i.eoked by only
tasks).

Reconfiguration Plan
Generator

Repair Plan Generato

Self-Healing Controller

A

Reconfiguration Plan
Executor

Repair Plan Executor

\

Component Monitor

Figure 2: The Healing Layer of a Self-Healing Comg@at

Reconfiguration Plan Generator: Once Component
Monitor detects any anomaly in the component iffiestthe
Self-Healing Controller. The Self-Healing Controllequests

associated with the anomalous task. The sending and
receiving connectors will remain blocked until ttveomalous
task has been repaired.

Repair Plan Generator: The Repair Plan Generator has
knowledge of how to repair each individual task gradsive

Reconfiguration Plan Generator with the exceptibat tit

conditions of thglans for repairing.

Repair Plan Executor: The Repair Plan Executor executes
the plan generated by Repair Plan Generator. dt\atsks in
similar fashion like Reconfiguration Plan Executor.

Self-Healing Controller: The Self-Healing Controller acts
as a coordinator to conduct the self-healing meigmanThe
Self-Healing Controller listens to the Component nitor.
According to the received information from the Campnt
Monitor, the Self-Healing Controller requests ptgnerators
for generating plans. After receiving responseasfiirms the
executors to execute the desired plans.

lll. ARCHITECTUREOFSELF-HEALINGCONNECTOR

As described in the previous section the healaygr of a
self-healing component detects anomalies in thécselayer.
To identify mulfunctional tasks in the service lgyghe
Component Monitor communicates with the connectors
associated with the tasks. That means that deteatfo
anomalies is performed by means of communicatidh trie
connectors and repairing is executed through timaectors.
The self-healing connector can also be designédamfayers,
communication layer and healing layer [1]. Figure 3
illustrates the architecture of self-healing cortaec

The communication layer of the self-healing certor
sends messages to and receives them from heajieigdfthe
component. The healing layer consists of healingnagar.
The healing manager detects, reconfigures and reepai
anomalies as directed by the self-healing mechanihe
communication layer consists of (Figure 3):

Call Routine: TheCall Routine packs a message and sends
the packed message to a intended receiver.

Return Routine: The Return Routine unpacks the message
and sends it to the destination component

Incoming Message QueueThe Incoming Message Queue
stores messages received from other components

Healing Layer

Healing Manager

Analysis
Detect Notification
Repai
Communication
Layer
Call Return Incoming Outgoing
Routine Routine Message Message
Queue Queue

Figure 3: The Architecture of Self-Healing Connecto

Outgoing Message QueueT he Outgoing Message Queue
stores messages to be sent to the incoming queothef
components.

IV. ANOMALY DETECTION

The components in the architecture of a system
designed to perform specific and intended tasksary
component in the system does not carry the act®iit &
specified, then the system is considered as anomadio self-
healing mechanisms, the first step is to localiEdanomaly.
An anomaly occurs in the components or connectetsden
the components. A Finite State Machine (FSM) remrtsthe
behavior of the system composed of finite humbestafes
and transition between states [6]. The specificatiof

ensure the robustness of anomaly detection.

When a task invokes connectors between taskgpassive
objects, the connectors notify the Component Maniithe
connectors also notify the Component Monitor whes tasks
and passive objects complete their operations.
notification message is used by the Component Morti
detect anomalies of tasks, connectors between taskis
passive objects accessed by the task.

During and after the natification the Componktanitor is
involved with the state transition diagram for ttask. The
Component Monitor examines state diagram of thle saml
considers the task anomalous if the task does retuge
properly. In this way, the anomaly in a componeah de
traced, but if there is any anomaly in the conneitgelf the
anomaly may remain undetected. To overcome
connectors notify the Component Monitor about ttadus of
message communication. Meanwhile, the Component
Monitor uses timeout. If the Component Monitor doest
hear from the connector within a time intervalsconsiders
the respective connectors as erroneous.

The

this,

V. SELF-HEALINGMECHANISM AND MESSAGE
COMMUNICATION

Besides message communication, connectors aigorm
some extended operations to support the self-lgealin
mechanisms [2]. These extended operations include
reconfiguring the anomalous task in the serviceedagf a
component and testing the repaired task by tesh.dat
zConnectors acknowledge their status to the Compgonen
Monitor after receiving and storing data or message
buffers or queues. They also acknowledge the stafus
delivering messages to other task on behalf ofagsmciated
tasks. When a passive object is accessed by atbles tn the
service layer of a component and operations areplaisd
successfully, also needs to notify the Componenniddo
The trace of a task thread within a connector arphssive
object can determine the abnormalities of the cottmeand

components and connectors between components can phgsive object.

described using state transition diagram. Besidageral
techniques, a FSM can be represented as a dirgctguh,
where the set of vertices represents set of spdcifiates and
a directed edge represents a transition from oaée sto
another. The FSM can detect faults if the machirides
an output different from one specified by the otitfounction
or it enters into a different state rather thaisispecified by
the transfer function.

Anomalies in the system are detected at thel lefe

Figure 4 illustrates the architecture of a #&aéling
component and a scenario of sequence of message
communication in usual and intended case and alsase of
some abnormalities. Normal services of the Taskl,
Connectorl and Connector2 are described in Figurgy 4
message sequence M1 through M8. When Connectorl
receives the message M1 on behalf of the Taskl fiam
external object, it notifies the Component Monibgrsending

components and at the level of connectors betwedh® message M2 labeledput arrived. The message M2 bears
components [5]. The Component Monitor detects ariesia the meaning that Connectorl receives input fronexternal
by observing tasks and connectors between taske T®pject. After that, Connectorl allows the Comporidohitor

Component Monitor detects the errors with the #asie of

to wait for next messageput placed. When connectorl

connectors between tasks. Connectors provide messadaces the input in the queue or buffer associaiéu Taskl
communication mechanism, as well as, they inforne thit notifies the Component Monitoinput placed by the

Component Monitor about the status of message rndsi

message M3. When Connectorl places the input &g po

Reconfiguration Plan
Generator

™
N

M11:ReconPlan

M12:Reconfiguration Plan

M33: Unblock

M13:Blocked
M34: Unblocked

Reconfiguration
Plan Executor

Healing Layer

M12a: Block
Sender
M33a:

Unblock
Sender

Service Layer

M1: Input
(from external obj.)

Repair Plan
Generator

M10:RequesPlan

MlS:RequesPI?
%/Ile: Repair Plan

M14,35: Notify external connectors

Self-Healing Controller

\ M32:Repair Finished
M17:Repair Plan

M29:Test Results

M9:Failure
Notification

—

Monitor Repair Plan

Executor

‘—

M19: Test Begin
M28: Request Result
M30: Test Finished

M2,21: Input

Connectorl

arrived
M3,22: Arrv.
Input Plc.
M5,24:Read M18: Intilz. M7,26: Msg. Arrived
Input M20:Test Data M8,27: Msg. Placed
M31: Intliz.
Connector2
< Task! >
M4,23:Read Input M®6,25: Msg.

—> .
M12hb: Block Receiver
M33hb: Unblock Receiver

Figure 4: Self-Healing Component Architecture aneskhge Sequence [2]

receive an acknowledgememéad input (message M4 in Healing Controller informs neighboring componentsouat
Figure 4) from Taskl. After receiving the messagaforms the healthy state of the component through the agess35.
the Component Monitor via message M5. Receiving any

messages by the connectors and notifying the Coergon

Monitor go on in the same fashion. If the Component VI. CONCLUSIONS

Monitor missed to be informed about the sequence ofgxternal mechanism to detect and repair anomadiias
messages from the connectors it determines that t§6me advantages than that of programming level arésm.

respective tasks or connectors are anomalous amediately
start to carry its action to repair the unhealtlagkt or
connector by means of dynamic reconfiguration.

After detecting anomaly, the Component Monitatifies
the failure to the Self-Healing Controller (messa@). The
Self-Healing Controller requests Reconfiguration arPI
Generator to generate and send reconfiguration. pldre
Reconfiguration Plan Generator honors the requestsends
reconfiguration plan to the Self-Healing Contrallén order
to eliminate the impact of anomalous task to othealthy
objects in the component or other external objatis task is
blocked and restricted to send or receive any ngessduring
reconfiguration and repairing phases. In Figurel'dskl is
blocked. The Reconfiguration Executor serblisck sender
(M12a) message to the incoming connector (Conndgtoo
refrain the connector from adding any new messagdhe
gueue or buffer. In the meantime, it sends lituek receiver
message to outgoing connector
receiving any message from the queue or buffer cistsal
with the anomalous task. Reconfiguration againsick task
is performed through the message sequence M10 8 Tte
Self-Healing Controller also informs neighboringrqaonents
about the unhealthy state of the component via agess14.

After reconfiguring the anomalous task, the $tdfling
Controller takes initiatives to repair the task.f$tealing
Controller consults with the Repair Plan Generaiud let the
Repair Executor know (by message M17 in Figure Bhua
the planning for repairing the anomalous task, Taskhe
repairing of anomalous task generally includes
initialization or re-installation. The Repair Ex¢ourepairs
the task according to the plan received throughsages M17.
After repairing, the task is tested. Testing begibg
initializing the queue or buffer by means of messagls.
The Executor informs the Component Monitor that test
begins (M19) and sends test data (M20) to the Gzorie
The test data are defined when the self-healinghar@sm is
modeled. The remaining part of testing is perforrbgdhe

In this paper, we have described the required tachire for
configuration-level adaptation and healing mechani$he
architecture is designed in such a way so thatsazdn be
detected and repaired with the functionality of the
components of the model. One of the challenges in
configuration-level adaptation is to plan repairipglicy and
applying the appropriate plan to a certain faill8elf-healing
systems must consider the fact that they change tove.
The changes may come from operating mode changes,
resource faults, adaptation to external environmetd.
Dynamic changes of adaptation will increase thigieficy in
self-healing mechanisms. There must be some igéeiti
mechanism in repair plan generator to allow thétsehling
system to adapt dynamically. For example the hystafr
previous failures can be stored in order to analfmese.
These sorts of analysis may make the self-healiaghianism

(Connector2) to blodhktelligent and more adaptive.

REFERENCES

[1] Michael E. Shin, and Jung Hoon AngSelf-
Reconfiguration in Self-Healing Systems, Proceedings of the
Third IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems, March 2006, pp&9

[2] Michael E. Shin, and Daniel Cook€&onnector-Based

reself-Healing Mechanism for Components of a Reliable

System, Proceedings of the 2005 workshop on Design and
evolution of autonomic application software, Intational
Conference on Software Engineering, 2005, pp 1-7.

[3] David Garlan, and Bradley SchmerModel-Based
Adaptation for Self-Healing Systems, Workshop on Self-
Healing Systems, Proceedings of the First Workstroself-
Healing Systems, 2002, pp 27-32.

usual operations of Conncetorl, Taskl and Conrfbcto[r4] Eric M. Dashofy, Andre van der Hoek, and Riahay

through message sequence M21 to M27.
When the Component Monitor receives the testilrdsy

Taylor, Towards Architecture-Based Self-Healing Systems,
Workshop on Self-Healing Systems, Proceedings effinst

means of message M27 it sends the results to tip@ilRe \yorkshop on Self-Healing Systems, November20022pp

Executor via message M29. The Repair Executor ingothe
Self-Healing Controller that the repairing of theoaalous
tasks is completed via message M32. In order towathe
repaired task (Taskl) to resume its usual operattom Self-
Healing Controller requests the Reconfiguration dtxer to
unblock (M33) the sending and receiving connectévben
the component gets rid of its malfunctionality, tBelf-

32.

[5] Michael E. Shin, and Yan XuDetection of Anomalies in
a Software Architecture with connectors, International
Workshop on System/Software Architectures (WSSAQAx
Vegas, Nevada, USA, June 2005, Vol. 61, Issue 11§26

[6] Alexander Sakharow hybrid state machine notation for
component specification, ACM SIGPLAN Notices, April
2000, Val. 35, Issue 4, pp 51-56

[7]1 Peyman Oreizy, Michael M. Gorlick, Richard Naylor,
Dennis Heimbigner, Gregory Johnson, Nenad Medvijovi
Alex Quilici, David S. Rosenblum, and AlexanderWolf.,
An Architecture-Based Approach to Self-Adaptive Software,
IEEE Intelligent Systems, June 1999, Vol. 14, Is3upp. 54-
62

[8] Philip Koopman Elements of the Self-Healing System
Problem Space, Workshop on Software Architectures for
Dependable Systems (WADS2003) ICSE’03 International
Conference on Software Engineering, May 2003.

