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Abstract—Internet of Things typically involves a sig-
nificant number of smart sensors sensing information
from the environment and sharing it to a cloud service
for processing. Various architectural abstractions, such
as Fog and Edge computing, have been proposed to
localize some of the processing near the sensors and
away from the central cloud servers. In this paper,
we propose Edge-Fog Cloud which distributes task
processing on the participating cloud resources in the
network. We develop the Least Processing Cost First
(LPCF) method for assigning the processing tasks to
nodes which provide the optimal processing time and
near optimal networking costs. We evaluate LPCF in
a variety of scenarios and demonstrate its effectiveness
in finding the processing task assignments.

Keywords-Cloud Computing, Fog Computing, Edge
Computing, Internet of Things, Task Assignment

I. Introduction

Internet of Things (IoT) typically involves a large num-
ber of smart sensors sensing information from the envi-
ronment and sharing it to a cloud service for processing.
A recent study by National Cable & Telecommunications
Association (NCTA) assumes that close to 50.1 billion IoT
devices will be connected to the Internet by 2020 [1]. This
leads to two major issues for computing IoT-generated
data: i) the processing time of time-critical IoT applica-
tions can be limited by the network delay for offloading
data to cloud, and ii) uploading data from a large number
of IoT generators may induce network congestion thus
incurring further network delay.

To tackle network issues involved in IoT and similar ap-
plication’s computation, researchers have proposed bring-
ing the compute cloud closer to data generators and con-
sumers. One proposal is Fog computing cloud [2] which lets
network devices run cloud application logic on their native
architecture. The objective of Fog cloud is to perform
low-latency computation/aggregation on the data while
routing it to the central cloud for heavy computations
[3], [4]. On the other hand, Edge-centric computing cloud
[7] takes inspiration from projects such as SETI@Home,
Folding@Home etc. [5], [6], and proposes a consolidation of
human-operated, voluntary resources such as desktop PCs,
tablets, smart phones, nano data centers as a cloud. As the
resources in Edge cloud usually lie in one-hop proximity

to the IoT sensors; processing the data at the edge can
significantly reduce the network delay [8], [9].

While both Edge and Fog cloud envision bringing the
cloud closer to the users, the two approaches only utilize
their resources to carry out pre-processing tasks thus
relying on a centralized cloud for heavy, computationally
intensive tasks. This semi-dependence on a central cloud
works well for applications which require tight data and
compute coupling but proves disadvantageous for appli-
cations which generate large amounts of distributed data
interactive user involvement.

In this paper, we present a node-oriented, fully decen-
tralized hybrid of Edge and Fog compute cloud model,
Edge-Fog cloud. As the name suggests, the outermost layer
of the Edge-Fog cloud is composed of a large number of
volunteer, human-operated edge devices connected via ad-
hoc network chains. The inner layer is composed of a dense
network of Fog devices with high compute capabilities.
Due to its decentralized architecture, the Edge-Fog cloud
is capable of decoupling processing time from network
delays by effectively handling processing close to the data
generators. Edge-Fog cloud offers reliable data storage of
raw and computed data at the central data store located
at the core of its architecture.

The contributions we make in this paper are as follows:

• We present Edge-Fog cloud architecture, which is
based on classifying compute devices into Edge and
Fog layers, depending on their capabilities and own-
ership.

• We design LPCF algorithm which assigns tasks on
the available nodes in the Edge-Fog cloud while min-
imizing the processing time and network costs. We
show that LPCF achieves near-optimal networking
costs in polynomial time as opposed to exponential
time complexity.

• We develop an Edge-Fog cloud simulator and inte-
grate it with LPCF assignment solver. We demon-
strate and compare the efficiency of LPCF with its
related works across a range of parameters and sim-
ulations.

• We discuss and provide insights regarding the char-
acteristics of Edge-Fog cloud that will affect its per-
formance in real-world.

The remainder of the paper is organized as follows. In978-1-5090-4960-8/16/$31.00 c©2016 IEEE
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Figure 1: Proposed Edge-Fog cloud architecture

Section II, we describe the Edge-Fog cloud architecture.
We propose our approach for deploying compute appli-
cation tasks on the Edge-Fog cloud in efficient manner
in Section III. In Section IV and V we evaluate the
effectiveness of our LPCF algorithm and discuss Edge-
Fog deployment issues. We discuss the related work in
Section VI. Section VII concludes the paper.

II. Edge-Fog Cloud
A. Architecture

Figure 1 shows the architecture of the Edge-Fog cloud.
Unlike the network-oriented view of the traditional cloud
model, the Edge-Fog cloud takes a node-oriented approach
wherein the model is divided into three layers comprising
of different resource types.
Edge Layer. The outermost layer of the cloud is Edge

layer. The Edge is a collection of loosely coupled, vol-
untary1 and human-operated resources such as desktops,
laptops, nano data centers, tablets, etc. As the name
suggests, the resources reside at the edge of the network
and are within one/two-hop distance from the IoT sensors
and clients. Edge resources have varying ranges of compu-
tational capabilities from highly capable devices such as
workstations, nano data centers etc. to less capable such as
tablets or smart phones. Edge layer resources are assumed
to have device-to-device connectivity within the layer and
reliable connectivity to Fog layer.
Fog Layer. The Fog layer resides on top of the edge and

is a consolidation of networking devices such as routers
and switches with high computing capabilities and ability
to run cloud application logic on their native architecture.
We envision Fog resources to be manufactured, managed
and deployed by cloud vendors (such as CISCO [10]). As
Fog layer forms the network backbone of Edge-Fog cloud,
the resources in this layer are interconnected with high-
speed, reliable links. Moreover, Fog resources reside farther
from the edge of the network when compared to Edge layer

1Several incentive/credit mechanisms can be employed for de-
vices to volunteer as Edge resource. However, discussion of such
mechanisms is currently out-of-scope of this paper.

but closer than a central cloud. Fog is used to effectively
handle computationally intensive tasks offloaded by Edge
resources.
Data Store. Unlike the traditional cloud model, the

core of the Edge-Fog cloud has no computational capa-
bilities and only serves as a repository for archiving all
data in the cloud. A centralized store provides reliability
and easy access to data by any computing resources in
the cloud. Being at the core of the architecture, the Data
Store is accessible by both Edge and Fog layers.

B. Benefits of the Edge-Fog cloud
The Edge-Fog cloud offer several benefits:
1) Reduced network load: The Edge-Fog cloud provides

computation at the edge of the network near the IoT
generators thus reducing the amount of data that
flows in the network.

2) Native support for mobility: Mobility along with reli-
ability is a quintessential requirement for many IoT
applications. Edge resources such as smartphones or
laptops can offer native physical and virtual mobility
for supporting such mobile IoT applications.

3) Providing context: Resources in Edge-Fog cloud also
provide contextual awareness to data generated by
sensors. Edge resources play a role in combining data
from sensors using location or application contexts.

4) No single point of failure: As computation in Edge-
Fog cloud is completely decentralized, the model has
no single point of failure. Several snapshots of an
application can be deployed on the cloud for increased
reliability.

Applications such as connected vehicles, energy moni-
toring, automated traffic control etc. can highly benefit
from Edge-Fog cloud as most of the tasks in such applica-
tions are distributed and network-constrainted.

III. Task Deployment on Edge-Fog Cloud
The Edge-Fog cloud is a scalable platform for a large

number of interconnected Edge and Fog devices and effi-
ciently utilize the processing power they offer. However,
as the devices in the Edge-Fog cloud are governed by cer-
tain processing and network capabilities, deploying tasks
on these devices has an associated cost. A typical task
deployment algorithm must map a job node from the job
graph to an Edge/Fog resource. The cost of deployment
is dependent on both the properties of resources and
that of the deployed task itself. For example, the more
coordination needed by task with its peers for comple-
tion, the higher will be the associated network cost. In
order to provide a scalable and efficient solution, the
task deployment algorithm for Edge-Fog cloud should find
the deployment snapshot with least possible cost without
unduly impacting the overall completion time of that
process.

Figure 2 shows a snapshot of Edge-Fog cloud of three
Edge and two Fog resources. Edge and Fog is represented
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Figure 2: Deployment example. Each job in Figure 2(b) needs to be deployed on a resource in Figure 2(a).

by circular and rectangular nodes respectively. The link
weight denotes the distance/communication cost between
two devices. The processing power of each device is listed
along with its label. Figure 2(b) shows the job graph to
be deployed on the Edge-Fog cloud. We assume only two-
way dependency between the jobs wherein Job J1 and J2
are dependent on each other if there exists a connection
between them. The size of each job, listed along with its
label, denotes the processing power required to complete
the job.

We assume that the number of tasks and devices to be
equal while task deployment. If there are more tasks than
devices, we split existing devices into virtual devices such
that their number is equal to the number of tasks. In the
opposite case, we simply ignore the superfluous devices.

A. Network Only Cost (NOC) Assignment
Previous works have tried to model task deployment

algorithms which minimize the associated networking
cost [11]. The formal definition of such task assignment
strategies is to find an assignment which places N jobs
on N devices such that the associated network cost is
minimized. For the rest of the paper, we refer to all such
algorithms as Network-Only Cost (NOC) algorithms. Let
Dconn(i,j) represent the cost of connectivity between the
devices Di and Dj and Jconn(i,j) denote the dependency
between the jobs Ji and Jj . Both Dconn and Jconn are
square matrices of size NxN . f(i) signifies the constraint
of assigning a particular job to a device.

With N devices/jobs, the search space of possible as-
signments in NOC is N !. For example, in Figure 2, the
assignment D1 → J1; D2 → J2; D3 → J3; D4 → J4;
D5 → J5 has network cost 17, whereas, the assignment
D1 → J4; D2 → J5; D3 → J3; D4 → J1; D5 → J2 has
cost 13. A naive NOC implementation would iteratively
search for the assignment with least possible cost in the
entire search space thus having the worst case complexity
of O(N !). On the other hand, NOC closely resembles the
well-known Quadratic Assignment Problem (QAP) [12].
QAP generalizes minimal cost assignment as:∑

i,j∈A

Jconn(i, j) ∗Dconn(f(i), f(j)) (1)

where A is set of all arcs in the graph.
However, QAP is an NP-hard problem and its solution

Topology size 5 10 15 30 60 100 150
Original search
space

5! 10! 15! 30! 60! 100! 150!

LPCF search
space

1! 3! >4! >5! >7! >8! >9!

Table I: Problem search space reduction in LPCF

can only be approximated by applying constraints. Com-
puting the optimal deployment for a problem space of 30
nodes using QAP may take up to a week on a computa-
tional grid comprising of 2500 machines [14]. Branch-and-
bound based algorithms such as Gilmore-Lawler Bound
(GLB) or Hungarian bounds can estimate the solution for
small-sized QAP problems. Since the job scheduling on an
Edge-Fog cloud may encompass computing an assignment
of hundreds of devices, a more efficient algorithm for
finding an optimal task assignment is needed.

B. Least Processing Cost First (LPCF) Assignment
As the Edge resources of the Edge-Fog cloud may not

be highly processing-capable, the task assignment algo-
rithm must also consider the associated processing cost of
deployment. We thus propose LPCF, a task assignment
solver which first minimizes processing cost of the assign-
ment and further optimizes the network cost. In section IV
we show that LPCF algorithm is highly scalable when
compared to NOC based algorithms. LPCF computes its
optimal task assignment in the following manner.
1) Optimize the associated processing cost: LPCF

calculates the processing cost associated with each possible
assignment in the search space. The minimization function
used by LPCF is: ∑

i,j∈A

C

(
Jsize(i)
Dproc(j)

)
xij (2)

where C denotes the overall cost function; Jsize and
Dproc are matrices of size 1xN representing the job sizes
and the processing power of involved devices respectively.
xij is a binary job assignment variable.

Eq. 2 is an objective function of Linear Assignment
Problem (LAP) which unlike QAP, is polynomial [15].
Algorithms such as Kuhn-Munkres/Hungarian guarantee
an optimal solution for this problem in O(n3) (worst case).
The first step of LPCF employs such an algorithm to
compute an assignment which has the least associated
processing cost.



2) Reducing the sub-problem space size: As the
Edge-Fog cloud consists of several homogeneous devices
with similar processing capabilities, interchanging jobs
assigned on any such two devices does not alter the associ-
ated processing cost. The same argument is also applicable
to homogeneous jobs in job graph. To illustrate, using
equation 2 the assignment D1 → J1; D2 → J2; D3 → J3;
D4 → J4; D5 → J5 in Figure 2 has the processing cost
of 5.97 which remains the same if we interchange the jobs
deployed on D1 and D4.

LPCF computes all possible compositions of the assign-
ment computed in the first step and forms a smaller search
space of assignments with least associated processing cost.
Table I shows the reduction in problem search space
achieved by LPCF.
3) Accounting network cost of the assignment:

In this step, LPCF computes the network cost associated
with each assignment in the reduced problem search space
and chooses the one with least network cost. Note that
as the optimal assignment is updated at each iteration of
the exhaustive search of sub-search space, a branch-and-
bound variant of the algorithm can find the assignment
within a time bound for large search space sizes. Thus, the
assignment computed by LPCF has the least associated
processing cost and almost optimal network cost.
Our approach has several advantages over NOC-based

algorithms. The most fundamental of them is that unlike
the NOC assignment, our algorithm guarantees an assign-
ment in polynomial time thus significantly reducing the
deployment calculation time. Moreover, as not all devices
in the Edge-Fog cloud are highly processing capable,
LPCF also takes into account the processing cost of the
assignment.

IV. Evaluation
We now evaluate the computation complexity for de-

ploying jobs on several different Edge-Fog topologies. We
have designed and implemented an Edge-Fog cloud simu-
lator in Python (simulator code is available at [13]). The
simulator generates a network of Edge and Fog resources
and a job dependence graph based on several user-defined
parameters. Table II shows the default parameter values
we use for evaluating Edge-Fog cloud in this paper.

We further implement and integrate LPCF task assign-
ment solver in the Edge-Fog cloud simulator. To compare,
we measure the performance of LPCF against two variants
of NOC task assignment solver, permutation-based and
QAP-based. For the QAP-based variant of NOC, we use
an open-source implementation of Kuhn-Munkres solver
available from QAPLIB [12].

A. Processing time analysis
We analyze the overall processing time for computing

an assignment by LPCF and NOC algorithms for several
problem sizes. We set the maximum completion time of
computation to one hour. The results are in Table III.

Properties Value
Total number of devices/jobs Experiment

specific
Number of Edge devices 60% of total
Number of Fog devices 40% of total
Processing power of Edge resources 2-5
Processing power of Fog resources 7-9
Connection density in Edge layer (0-1) 0.2
Connection density in Fog layer (0-1) 0.6
Connection density between
Edge and Fog layer (0-1) 0.5
Lowest job size in job pool 2
Highest job size in job pool 6
Inter-dependence density between jobs (0-1) 0.2

Table II: Default parameter values of Edge-Fog cloud
simulator

It is evident from the results that LPCF performs
much better than both NOC-based solvers. For ~30 node
topology, where both solvers are unable to find an optimal
assignment within the time limit, LPCF computes its
assignment in under a second. For large topologies of ~150
nodes, LPCF exceeds the maximum allotted time for the
computing an optimal assignment. The primary reason
for this increased computation time is due to the large
size of the reduced search space size in LPCF. The cur-
rent implementation of LPCF iteratively searches for the
optimal assignment in reduced problem space which can
be costly. However, a branch-and-bound variant of LPCF
can significantly reduce the search time thus reducing the
overall computation time.

B. Comparative study of associated costs
Figure 3(a) compares the cost minimization achieved

by LPCF when compared to NOC QAP task assignment
solver. The minimum/maximum bounds are obtained by
choosing the N smallest/largest link costs in the Edge-
Fog cloud resource graph. It should be noted that the
minimum/maximum cost depicted might not belong to a
valid assignment as it does not consider job dependencies.

It is evident from the figure that even though the
assignment computed via LPCF first optimizes processing
time for assignment, the associated network cost is within
10% range of the optimal value computed by the NOC.
Also, we can see from Table II that the QAP-based NOC
solver have significantly higher computing time when com-
pared to LPCF. We further implemented a branch-and-
bound variant of QAP solver which approximates the best
solution within the specified time limit. We then limit the
computation time of QAP to that of LPCF and plot the
associated network costs of the optimal assignments found
by both these algorithms. The plot is shown in Figure 3(b).
Here we see that for large topologies, the assignment
computed by LPCF has lower associated network cost
than that computed by NOC.

Figure 3(c) compares the associated processing cost
of assignments computed by the two solvers. As unlike
NOC, the assignment computed via LPCF is optimized
on processing cost, the associated processing cost of the



Number of
Devices/Jobs = 5 10 15 20 30 40 50 60 100 150

NOC Permutation solver 0.068s 23m 20.785s >1h >1h >1h >1h >1h >1h >1h NA
NOC QAP solver 0.026s 36.273s 3m 22.508s 18m 38.23s >1h >1h >1h >1h >1h NA
LPCF 0.0005s 0.002s 0.044s 0.045s 0.18s 0.82s 4.358s 26.85s 7m3s >1h

Table III: Optimal assignment computation time
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Figure 3: Edge-Fog cloud associated cost analysis

0.2 0.4 0.6 0.8
Device Connection Probability

220

240

260

280

300

320

340

N
et

w
or

k 
C

os
t

Edge
Fog
Edge-Fog
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connection densities

assignment computed by LPCF is always lower than that
computed by NOC.

V. Discussion
Q1. Which node is responsible for running the

assignment solver?
The LPCF algorithm needs a centralized controller for

managing the execution of the algorithm, however, its
actual execution can be distributed and is not dependent
on any single node. One node needs to be able to get the
snapshot of the system state (availability of nodes and
costs of links) and we assume this snapshot to remain con-
stant during the execution of the algorithm. Calculating
the individual assignment permutations for processing or
networking costs in steps 1 and 3 can be distributed to
other nodes or can be performed by the controller. The
LPCF algorithm can thus be executed by any of the nodes
in the system, whether an Edge node or a Fog node. We
do not consider the cost of running the algorithm in our
evaluation since the overheads are similar for both LPCF
and NOC QAP (namely obtaining the snapshot and going
through the permutations).
Q2. How well should the devices in the Edge-Fog

cloud be connected to each other?
Edge layer has optimistic connections within itself

whereas the Fog layer has dense network connections; but
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Figure 5: Effect of job dependence on network cost of
assignment

the inter-layer connections between the Edge and the Fog
are much higher cost and spans multiple hops. We try to
find the optimal connection density of each layer (and
inter-layer connections as well) such that the resulting
assignment has low associated network cost. We increase
the connection density of each layer from 20% to 80% and
plot the changes in network cost of assignment computed
by LPCF in Figure 4.

As we increase the connection density of Edge, Fog and
interconnections we see a decrease of ~21%, ~9% and ~17%
in network cost respectively. The inter-layer connections
play a major part in resulting network cost; increasing
their density impacts the overall cost much more. We can
infer that deploying jobs in an Edge-Fog cloud which have
well-connected devices in edge layer and dense connections
between edge and fog layers, the overall cost of deployment
is significantly reduced.
Q3. Do the properties of job graph deployed on

the Edge-Fog cloud also affect the overall cost?
In Figure 5, we change the interdependence of the

job graph deployed on the Edge-Fog cloud from 10% to
100% and calculate the network cost associated with the
deployment. We then deploy the job graph on several
topology sizes of Edge-Fog cloud.

The results clearly show that higher dependence be-



tween the jobs result in a higher network cost. This is
because the dependence links between the sub-jobs are
mapped to the links between the devices of the Edge-Fog.
Larger dependence links map to a mesh of device linkages
thus leading to an increased network cost. It can also be
seen from the figure that after a particular job dependency
value, the associated network cost of assignment stabilizes.
This is primarily because after a particular job inter-
dependence all heavy links of the device graph are part
of the computed assignment and adding more links does
not change the overall network cost significantly.

VI. Related Work
Cloudlets [16] propose a small-scale, localized cloud

installed at the edge of the network along with the cen-
tralized cloud and is based on virtualization technologies.
Several other works have explored combining stable peer-
resources as nano data centers, micro clouds, community
clouds, etc., for compute/storage tasks [17]–[20].

Several researchers have proposed to bring part of the
cloud closer to the edge of the network. Following the Fog
cloud characteristics proposed by CISCO [2], Bonomi et
al. [21] and Yannuzzi et al. [3] show that the fog is the
appropriate platform for loosely coupled, computation-
ally intensive IoT-based applications, such as connected
vehicles and smart cities. Hong et al. [4] provide a pro-
gramming model and API for developing applications on
the Fog cloud. On the other hand, unlike installing man-
aged compute resources as Fog devices to process cloud
applications, Lopez et al. [7] propose a semi-centralized
cloud architecture, Edge cloud, composing of volunteer-
based, user-centric compute resources. Likewise, Ryden et
al. [22] proposed a dispersed cloud, Nebula, which utilizes
volunteer resources for running data-intensive tasks. The
authors discuss the effectiveness of their approach by
deploying Map-reduce jobs on available resources.

Our work differs from all these approaches as un-
like them, wherein a central entity schedules and pro-
cesses several application tasks; Edge-Fog cloud proposes
an entirely decentralized computing mechanism. Due to
its unique nodular and layered architecture, the Edge-
Fog cloud natively supports computations on distributed,
semi-dependent data produced by IoT.

VII. Conclusion
In this paper, we proposed the Edge-Fog cloud, a decen-

tralized cloud model for handling computation-based, high
volume and distributable data such as that generated by
IoT. The model builds on the existing Edge and Fog cloud
approaches and provides data resilience through a central-
ized data store. We also provided a novel task allocation
mechanism for Edge-Fog cloud which significantly reduces
the deployment time without sacrificing the associated
cost when compared to related approaches. Further, we
address several questions which might impact the real-
world implementation of Edge-Fog cloud.

Future work in the area includes considering practical
implementation and deployment issues of LPCF in a
realistic Edge-Fog scenario.
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