

The Role of Program Structure in Software Maintenance

Jaana Lindroos

Helsinki, 27th of February 2005
Seminar on Software Maintenance
Department of Computer Science
UNIVERSITY OF HELSINKI

The Role of Program Structure in Software Maintenance

Jaana Lindroos
Seminar on Software Maintenance
Department of Computer Science
UNIVERSITY OF HELSINKI
27th of February 2005, 8 pages

Abstract

It has been mentioned that application should be designed for maintenance [AlC98].
Maintainability is defined as the ease with which systems can be understood and modified
[GiS89]. Maintenance is required for old legacy systems as well as new developed systems,
which for example use object-oriented (OO) languages. It is well known that software
maintenance consumes the majority of the costs of a software system during its entire life;
estimates vary between 50 and 70 % [DoL97].

For software systems that are under development the target is to reduce maintenance of
software system already in early phase of software development. In that process measuring
program structure can be used as a guideline for producing better code that contains fewer
errors after the software system is released to the market. Old legacy systems that are in
maintenance phase can also utilize software metrics that measures programs structure. In
that case the target is to provide early estimates for allocating resources and estimating
costs for maintenance tasks.

Maintenance is a very challenging and time consuming task and researchers have tried to
cope the problem with different kinds of empirical and theoretical studies by trying to solve
the problem by using program structure metrics in different phases of software development
and maintenance processes. So far the results of those studies are promising, but there is
still lack of common and widely used good practices that could be shared easily to different
kinds of environments and languages used.

ACM Computing Classification System 1998:
D.1.5 [object-oriented programming]
D.2.2 [design tools and techniques]
D.2.7 [Distribution, Maintenance, and Enhancement]
D.2.8 [Metrics]
D.2.9 [management: software quality assurance]

Keywords: software maintenance, predicting software maintenance performance, software
metrics, object-oriented software metrics, software quality

Contents

1 Introduction.. 1

2 Measuring Program Structure ... 1

3 Empirical Study ... 3

4 Discussion ... 5

5 Conclusions... 6

References ... 7

 1

1 Introduction

Development and maintenance of the software product is a continuous process [TjL01].
Maintainability is defined as the ease with which systems can be understood and modified
[GiS89]. In past studies, it has been operationalized as "number of lines of code changed",
time (required to make changes) and accuracy, and "time to understand, develop, and
implement modification" [BVT03]. For developers, it is crucial to understand the structure of a
system before attempting to modify it [MMC99].

It is well known that software maintenance consumes the majority of the costs of a software
system during its entire life; estimates vary between 50 and 70 % [DoL97]. Effort estimation
is a valuable asset to managers in planning maintenance activities and performing
cost/benefit analysis. Early estimates and accurate evaluations permit to significantly reduce
project risks and to improve resource scheduling. Software project costs are essentially
human resource costs and this entails that the effort (i.e. man-days needed for system
maintenance) should be kept under severe control. [DDS02]

The Object-Oriented (OO) paradigm has become increasingly popular in recent years. The
benefits of object-oriented software development are now widely recognized [AlC98]. The
insertion of OO technology in the software industry, however, has created new challenges for
companies that use product metrics as a tool for monitoring, controlling, and improving the
way they develop and maintain software [BBM96]. Researchers agree that, although
maintenance may turn out to be easier for OO systems, it is unlikely that the maintenance
burden will completely disappear [BVT03].

The maintenance is also required for old legacy software systems. Changes may be driven
by market pressure, adaptation to new environments or situations, or improvement needs.
During its life cycle a legacy system is continuously subject to ordinary maintenance that
includes the interventions that must be reactively implemented to maintain the system in
operation, i.e. corrective maintenance and smaller forms of adaptive and preventive
maintenance. Periodically, legacy systems are subject to extraordinary maintenance;
examples include migration and massive adaptive maintenance [DPP02].

The rest of the paper is structured as follows. Chapter 2 explains how program structure can
be measured. In Chapter 3 one empirical study about the role of program structure and
maintenance is described. Chapter 4 contains discussion about current and future situation
in the role of program structure and maintenance. Chapter 5 concludes the paper and the
next Chapter contains references.

2 Measuring Program Structure

Program structure is the way the source code is designed and developed in the software
system. The more complex a system is the more difficult it is to understand, and therefore to
maintain [GiS89]. Empirical research shows that complex programs require more corrective
maintenance throughout their lives [Gre84, VeW83]. Complex programs contain more errors,
and errors are more difficult to undercover during testing. Consequently, they remain
undetected until late in the software development life cycle.

About half of a software maintainer’s time is spent trying to understand programs.
Unfortunately, we cannot measure program understandability directly. Complexity metrics,
however, can give some clues as to components that may incur high maintenance costs
[HTO94]. The metrics help the engineer to recognize parts of the software that might need
modifications and re-implementation. The decision of changes to be made should not rely

 2

only on the metric values [SyY99]. The metrics are guidelines and not rules and they should
be used to support the desired motivations.

For example in object-oriented languages the intent is to encourage more reuse through
better use of abstractions and division of responsibilities, better designs through detection
and correction of anomalies. Positive incentives, improvement training and mentoring, and
effective design reviews support probability of achieving better results of using object-
oriented metrics. [LoK94] This can be done in design and implementation phase of software
project in order to ease up upcoming maintenance tasks.

Object-oriented development requires not only different approaches to design and
implementation; it also requires different approaches to software metrics. Metrics for object-
oriented system are still a relatively new field of study. The traditional metrics such as lines of
code [IEE93] and Cyclomatic complexity [McC76, WEY88] have become standards for
traditional procedural programs [LIK00, AlC98].

The metrics for object-oriented systems are different due to the different approach in
program paradigm and in object-oriented language itself. An object-oriented program
paradigm uses localization, encapsulation, information hiding, inheritance, object abstraction
and polymorphism, and has different program structure than in procedural languages
[LIK00].

If we are going to improve the object-oriented software we develop, we must measure our
designs by well-defined standards. Thresholds are affected by many factors, including the
state of the software (prototype, first release, third reuse and so on) and your local project
experiences. The language used and different coding styles affect some of the metrics. This
is primarily handled with different threshold values for the metrics, which indicate heuristic
ranges of better and worse values. For example, C++ tends to have larger method sizes than
Smalltalk. Thresholds are not absolute laws of nature. They are heuristics and should be
treated as such. Possible problems in our system designs can be detected during the
development process. [LoK94]

Software should be designed for maintenance [AlC98]. The design evaluation step is an
integral part of achieving a high quality design. The metrics should help in improving the total
quality of the end product, which means that quality problems could be resolved as early as
possible in the development process. It is a well-known fact that the earlier the problems can
be resolved the less it costs to the project in terms of time-to-market, quality and
maintenance.

Another way of measuring program structures in research area are old legacy systems that
are mainly on maintenance phase. The objectives for pure maintenance projects in legacy
systems are first of all to get maintainers to understand the software structure they are going
to maintain. For developers, it is crucial to understand the structure of a system before
attempting to modify it [MMC99]. On the other hand many legacy systems are so large and
so complex that they cannot be comprehended in their entirety no matter what forms of
representation is used. Yet these programs must be maintained. Erdös and Sneed claim in
their study that it is not necessary to comprehend a program in order to maintain it. [ErS98]
One of the main targets in legacy system maintenance work is early estimates that can help
in resource allocation and estimating time and costs for the project. That can be done using
different kind of metrics that measures for example program complexity [DPP01, DPP02,
DDS02].

Even though many empirical research studies conclude that less complexity programs
reduce the maintenance work, the writer of this paper couldn't find any evident of those
conclusions in empirical studies. There seems to be clear division in research area of
studying the programs that are in development phase and the programs that are old legacy
systems. In development phase of programs the results of the empirical studies will end to

 3

the phase where the program is released to the customer. According to my opinion the
researches should continue their studies to the maintenance phase, where the results of
metrics and estimations could really be validated. The reason for a lack of continuation in
following the projects from development phase till maintenance phase might be that empirical
researches in real world situations would probably take years until some results could be
available. In this study it was found out that there are two different research areas, first for
new programs that are under development, and second for old legacy systems and it is very
difficult to find connectivity between these two different research areas.

There exists also some criticism that predicting maintenance costs based solely on
characteristics of the developed software is not enough even though the approach is very
popular among researchers working in the metric field, since software can be measured and
the metrics related to effort in correcting or changing the code. The research is useful in
helping to identify cost drivers but according to Sneed it is much too limited in scope. [Sne04]

3 Empirical Study

De Lucia, Di Penta, Stefanucci and Venturi have performed a case study, where they present
an approach for an early effort estimation based on the knowledge of a fraction of the
programs composing the work-packet. The proposed approach has been applied to a large
massive maintenance project performed by a major international software enterprise, namely
EDS Italia Software (EDS SC), in conducting massive adaptive maintenance projects with a
close deadline. The researchers’ aim was to analyze and assess the stability of the process
and to provide indications for future projects. [DDS02]

The assessment was performed on only a subset of the software system in order to reduce
time and costs. The researchers’ used regression analysis to build effort estimation models
validated against real data collected from a large Y2K remediation project. The resulting
model allows estimating the costs of a project conducted according to the adopted massive
maintenance process. [DDS02]

The analyzed project process was similar to earlier processes where EDS SC has conducted
several Y2K and EURO conversion projects. EDS SC has adopted a process based on a
preliminary assessment and inventory phase, aiming to decompose an application portfolio
into loosely coupled sets of cohesive components called work-packets (WPs) that can be
independently and incrementally modified and delivered. Overall, the massive adaptive
maintenance process used by EDS SC was based on a waterfall model composed of six
phases: portfolio inventory and assessment, analysis, design, implementation, testing and
delivery-installation. More details on the process can be found in [DPP01].

The analyzed project consisted about 40,000 software components from which about 15,000
components were modified during maintenance process. The guideline for researchers’ work
was composed of three steps:

• Collection of the information (applications, software platform, programs and their
location);

• Static analysis of the objects of each application (executed through automatic tools);
and

• Analysis of the results for each application.

The analysis of the results focused on the identification and interpretation of some
maintainability indicators grouped in the following categories:

• Size (number of programs, lines of code);

 4

• Complexity (Cyclomatic complexity, Software Science Volume, control variables);
• Structure (control flow knots), and;
• Other (unused copybooks, number of go to statement).

The project was used to identify the relationships between the costs, as identified by the
effort required to modify and make Y2K compliant a WP, and the size of the project,
measured through the metrics shown in Table 1. Data were collected from a sample subset
composed of 14 WPs.

Metric Description
SC Number of software code components of the WP
LOC Lines of code, including comments, blanks, and declarative lines1
CYC McCabe Cyclomatic complexity [McC76]
CVAR Number of control variables
VOL Halstead Software Science Volume [Hal77]
UPL Number of logical branch not used
Effort Actual effort of the WP measured as man-days

 Table 1. Used Metrics

For each work packet the effort spent, the number of source files maintained, and the mean
values of the metrics were calculated. It was supposed that the maintainer has available data
about a given percentage of programs of each WP, to be used to estimate the effort to
maintain the WP itself.

The researchers’ chose only an appropriate set of metrics to model the effort. In order to do
this they used correlation analysis. The chosen metrics that they took into account in their
model were:

• The number of programs composing each WP (SC)
• The mean value of, at least, one dimensional metric, say LOC; and
• The mean value of, at least a structural metric, say Cyclomatic complexity (CYC).

In other words, the idea was to predict the effort on the whole, given some characteristics
(i.e., metrics) from on of its part, and what percentage of the whole each part represents,
assuming that the part was extracted so to have similar characteristics of the whole.
Therefore, a multivariate model was chosen among the different possible regression models
considered. The model was built computing mean values of selected set of metrics on all the
programs composing each WP. [DDS02]

After the values in the model were calculated the researchers' examined the Mean
Magnitude Relative Error (MMRE) rate for each examined WPs (14 in this case). The
average prediction error occurred was about 35 %. According to researchers considering 10
% of the programs, the average MMRE was 47,5 %, wasn't excellent for effort prediction, but
not so bad considering errors occurred (60 %) in a study "Assessing Massive Maintenance
Processes: an Empirical Study" by De Lucia, Pannella, Pompella and Stefanucci [DPP01].
According to my opinion it doesn’t make your results any better, if some other studies have
got even worse results.

The researchers we also satisfied with their effort prediction model by claiming that the
model works well even if the sample extracted is small, given that:

• A sufficiently larger data set (coming from similar projects, or from previously
maintained WPs) were used to build the model; and

1 Note that the LOC used here is not defined according to LOC definition in IEEE standard [IEE93].

 5

• The sample were uniformly extracted, so that, as said the part exhibits similar
characteristics of the whole. [DDS02]

According to my opinion especially the second bullet limits the usage of the model quite
much. In practice there might not be so many programs that can be divided into parts that
represent uniformly the whole program. That is because nowadays the programs are quite
complex and they are divided to many subsystems that might use different programming
languages and different kind of application interfaces to other programs.

The researchers conclude the empirical study by saying that the metrics used in the model
are early and easily available at the beginning of the operative phase of the maintenance
project through the aids of code analysis tools. They also claim that the model they proposed
can provide an effort estimate very early in the process, allowing the managers to make
reasonably the first staffing, cost, and resources allocation decisions without the need of
analyzing the entire software system. [DDS02]

4 Discussion

As mentioned earlier in the Chapter 2 software should be designed for maintenance [AlC98].
Metric data provides quick feedback for software designers and managers already in design
and implementation phase of the project. By analysing the collected data, complexity and
design quality as well as some other properties of the final software can be predicted. If
appropriately used, it can lead to a significant reduction in costs of the overall implementation
and improvements in quality of the final product. The improved quality, in turn reduces future
maintenance efforts. However, information available in the early design phase is often
inaccurate and insufficient. In fact, many useful metrics cannot be used during the early
design phase. Because of this, information of software design presented by metric data
needs to be revisited and acquired in various phases of the software life cycle. [YSM02]

There is a definite need for further work in this (cost modeling of maintenance) field. Costs,
which occur after a system has gone into production, need to become predictable. If not,
user organizations will never be able to control their costs [Sne04]. Maintenance complexity
(and costs) will increase exponentially as the number of independent COTS (commercial off-
the-shelf product) packages integrated into a system increases [RBB03].

A large system will have different complexities at different levels – at component level, at the
subsystem level and at the system level. The maintenance operation may lead to an
increase in the number of components and subsystems, but it should not lead to an increase
in their interactions. They should remain at least at the same level, if not decrease as a result
of reengineering efforts. This applies only to static systems. Dynamic systems keep growing
until they reach some upper bound of complexity or until they have fulfilled all the
requirements of all users. [SnB03]

It is unlikely that universally valid program structure metrics and models could be devised, so
that they would suit for all languages in all development environments and for different kind
of application domains. But many researches studied while writing this paper were lacking of
ability to generalize the results even for particular language or for particular environment or
for small and large programs [GiS89, BBM96, ErS98, DPP01, TjL01, DPP02, DDS02,
YSM02, BVT03, SnB03]. Instead, some of the researches specifically concluded that
because the research was done only in one or couple of (real or testing) environment the
results might not be applicable to any other situation. Making a critical conclusion of the
above: every organization should have their own metrics for measuring the structure of the
programs for easing up the maintenance work.

Sneed is also concern about lack of real empirical results and research in the area of
software maintenance. According to his opinion the research community must come to grips

 6

with life cycle cost management and provide well founded models based on empirical studies
of real world maintenance operations. Only by building up a statistical database will that be
possible. Therefore, the first step is to establish corporate or even national metric databases
from which researchers can obtain the data they need to create their prediction models. To
this end there must be a joint venture on the part of business and government to support
such research. [Sne04]

5 Conclusions

This paper introduces the role of program structure in software maintenance. Program
structure is the way the source code is designed and developed in the software system.
Unfortunately, we do not have reliable metrics to accurately measure the maintainability of a
software system. Complexity metrics, however, can give some clues as to components,
which may incur high maintenance costs [HTO94]. The more complex a system is the more
difficult it is to understand, and therefore to maintain [GiS89].

One empirical study is introduced in more detailed [DDS02] in Chapter 2 and some other
studies are handled only briefly. In general empirical researches study the maintenance
problem only in one point of view, for example by studying programs that are still in
development phase or by studying only programs that are old legacy systems. Some other
viewpoints are related to program size and programming languages.

Discussion chapter tries to cover some issues that are generally discussed in scientific
articles related to role of program structure in software maintenance. As a conclusion there is
a concern about lack of real empirical results and research in the area of software
maintenance [Sne04].

 7

References

[AlC98] Alkadi Ghassan, Carver Doris L.: Application of Metrics to Object-Oriented

Designs, Proceedings of IEEE Aerospace Conference, Volume 4, pages 159 -
163, March 1998.

[BBM96] Victor R. Basili, Fellow, IEEE, Lionel C. Briand, Walcélio L. Melo, Member IEEE

Computer Society: A Validation of Object-Oriented Design Metrics as Quality
Indicators, IEEE Transactions on Software Engineering, Volume 22, Number

 10, pages 751 - 761, October 1996.

[BMB99] Lionel C. Briand, Sandro Morasca, Member, IEEE Computer Society, Victor R.
Basili, Fellow, IEEE: Defining and Validating Measures for Object-Based High-
Level Design, Volume 25, Number 5, pages 722 - 743, September - October
1999.

[BVT03] Rajendra K. Bandi, Vijay K. Vaishnavi, Fellow, IEEE, Daniel E. Turk, Member,

IEEE: Predicting Maintenance Performance Using Object-Oriented Design
Complexity Metrics, IEEE Transactions on Software Engineering, Volume 29,
Number 1, pages 77 - 87, January 2003.

[DDS02] Andrea De Lucia, Massimiliano Di Penta, Silvio Sttefanucci, Gabriele Venturi:

Early Effort Estimation of Massive Maintenance Processes, IEEE Proceedings
of the International Conference on Software Maintenance (ICSM’02), pages
234 - 237, October 2002.

[DoL97] Douce C., Layzell P. J.: Maintenance of Object-Oriented C++ Software: A

Protocol Study, IEEE Computer Society 2nd International Workshop on
Empirical Studies of Software Maintenance (WESS’97), pages 115 - 119,
October 1997.

[DPP01] Andrea De Lucia, Antonello Pannella, Eugenio Pompella, Silvio Stefanucci:

Assessing Massive Maintenance Process: an Empirical Study, IEEE
Proceedings of International Conference on Software Maintenance, IEEE CS
Press, pages 451 - 458, November 2001.

[DPP02] Andrea De Lucia, Antonello Pannella, Eugenio Pompella, Silvio Stefanucci:

Empirical Analysis of Massive Maintenance Processes, IEEE Proceedings of
the 6th European conference on Software Maintenance and Reengineering
(CSMR’02), pages 5 - 14, March 2002.

[ErS98] Erdös Katalin, Sneed Harry M.: Partial Comprehension of Complex Programs

(enough to perform maintenance), Proceeding of the 6th International Workshop
on Program Comprehension (IWPC'98), pages 98 -105, June 1998.

[GiS89] Virginia R. Gibson, James A. Senn: System Structure and Software

Maintenance Performance, Communications of ACM, Volume 32, Number 3,
pages 347 - 358, March 1989.

[Gre84] Lee L. Gremillion: Determinants of program repair maintenance requirements,

Communications of ACM, Volume27, Number 8, pages, 826 - 832, August
1984.

[Hal77] Halstead, Maurice H.: Elements of Software Science, Operating, and

Programming Systems Series, 127 pages, 1977.

 8

[HTO94] Toyohiko Hirota, Masaharu Tohki, Michael Overstreet, Masaaki Hashimoto,

Robert Cherinka: An approach to predict software maintenance cost based on
ripple complexity, IEEE Proceedings on Software Engineering Conference,
pages 439 - 444, December 1994.

[IEE93] IEEE Standard for Software Productivity Metrics, Software Engineering

Standards Subcommittee of the Technical Committee on Software Engineering
of the IEEE Computer Society, USA, 1993.

[LIK00] Shuqin Li-Kokko: Code and Design Metrics for Object-Oriented Systems,

Helsinki University of Technology, 9 pages, 2000.

[LoK94] Lorenz Mark, Kidd Jeff: Object-Oriented Software Metrics: A Practical Guide.

P T R Prentice Hall, Prentice-Hall, Inc. A Pearson Education Company, 146
pages, 1994.

[McC76] McCabe Thomas J.: A Complexity Measure, IEEE Transactions on Software

Engineering, Volume SE-2, Number 2, pages 308 - 320, September 1976.

[MMC99] Mancoridis S., Mitchell B. S., Chen Y., Gansner E.R.: Bunch: A Clustering Tool

for the Recovery and Maintenance of Software System Structures, IEEE
Proceedings of the International Conference on Software Maintenance
(ICSM’99), pages 50 - 59, August - September 1999.

[RBB03] Reifer Donald J., Basili Victor R., Boehm Barry W., Clark Betsy: Eight Lessons

Learned during COTS-Based Systems Maintenance, IEEE Software, Volume
20, Issue 5, pages 94 - 96, September - October 2003.

[SnB03] Sneed Harry M., Brössler Peter: Critical Success Factors in Software

Maintenance A Case Study, IEEE Proceedings of the International Conference
on Software Maintenance (ICSM’03), pages 190 - 198, September 2003.

[Sne04] Sneed Harry M.: A Cost Model for Software Maintenance & Evolution, IEEE

Proceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM’04), pages 264 - 274, September 2004.

[SyY99] Tarja Systä, Ping Yu: Using OO Metrics and Rigi to Evaluate Java software,

University of Tampere, Department of Computer Science, Series of
Publications A A-1999-9, 24 pages, July 1999.

[TjL01] Tjortjis Christos, Layzell Paul: Expert Maintainers’ Strategies and Needs When

Understanding Software: A Case Study Approach, IEEE 8th Asia-Pacific
Conference on Software Engineering, pages 281 - 287, December 2001.

[VeW83] Iris Vessey, Ron Weber: Some factors affecting program repair maintenance:

An empirical study, Communication of ACM, Volume 26, Number 2, pages 128
- 134, February 1983.

[WEY88] Weyuker Elaine J.: Evaluating Software Complexity Measures, IEEE

Transactions on Software Engineering, Volume 14, Number 9, pages 1357 -
1365, September 1988.

[YSM02] Ping Yu, Tarja Systä, Hausi Müller: Predicting Fault-Proneness using OO

Metrics An Industrial Case Study, Proceedings of the 6th European conference
on Software Maintenance and Reengineering (CSMR´02), pages 99 - 107,
March 2002.

	The Role of Program Structure in Software Maintenance
	The Role of Program Structure in Software Maintenance

	Abstract
	Contents
	References 7

	Introduction
	Measuring Program Structure
	Empirical Study
	Discussion
	Conclusions
	References

