
1

581361 Software Testing (Ohjelmistojen testaus)

5 cr / op (new degree structure)
3 cu / ov (old degree structure)

Jukka Paakki
Department of Computer Science

University of Helsinki

Jukka Paakki 2

Lecturer: Jukka Paakki
§ Lectures 01.11.-08.12.2005

– Tuesday, 10-12, CK112 (not on 06.12.)
– Thursday, 12-14, D122

§ Office hours:
– Tuesdays, 9:30-10:00 & Wednesdays, 16:00-17:00 (room D240b)

§ E-mail: jukka.paakki@cs.helsinki.fi
§ Phones: 191 51387, 0500-852368

Course assistant: Juha Gustafsson
§ Exercise sessions 07.11 – 09.12.2005

– Tuesday, 12-14, C222 (not on 06.12.)
– Thursday, 10-12, CK107

mailto:jukka.paakki@cs.helsinki.fi

2

Jukka Paakki 3

Prerequisites
§ Software Engineering (Ohjelmistotuotanto)

§ Software Engineering Project
(Ohjelmistotuotantoprojekti)

Special course (at least) in the Software Engineering
specialization area

Jukka Paakki 4

Objectives of the course

§ general introductory course on software testing
§ main concepts and principles
§ main techniques
§ no deep theory
§ no particular application area
§ practical small-scale training by exercises

3

Jukka Paakki 5

Grading

§ Maximum: 60 points
– Course exam: maximum 50 points
– Exercises: maximum 10 points (not mandatory)
– Pass: at least 30 points

§ Scale: 1, 2, 3, 4, 5

Jukka Paakki 6

Course material
http://www.cs.helsinki.fi/u/paakki/software-testing-s05.html
§ Lecture slides
§ Exercises

No lecture notes or primary text book, but the following
book covers most of the contents:

R. V. Binder: Testing Object-Oriented Systems –
Models, Patterns, and Tools. Addison-Wesley, 2000.

http://www.cs.helsinki.fi/u/paakki/software-testing-s05.html

4

Jukka Paakki 7

Examinations

§ Course exam: Monday, December 12, 16:00-19:00

§ Separate exams:
– Tuesday, February 7, 2006, 16:00-20:00
– Tuesday, April 4, 2006, 16:00-20:00
– Friday, June 9, 2006, 16:00-20:00
– Extra points from the course exercises do not count

Jukka Paakki 8

Contents
1. Software quality, terminology
2. Principles of software testing
3. Management of testing: process, reports, tools
4. Black-box testing
5. White-box testing
6. State-based testing
7. Testing object-oriented software
8. Integration testing
9. Regression testing
10. Statistical testing
11. Practical aspects of testing (incl. guest lecture?)

5

Jukka Paakki 9

1. Software quality

Standard Glossary of Software Engineering
Terminology [IEEE610.12]:

Quality: (1) The degree to which a system,
component, or process meets specified
requirements. (2) The degree to which a system,
component, or process meets customer or user
needs or expectations.

Jukka Paakki 10

R.S. Pressman: Software Engineering –
A Practitioner’s Approach (5th ed). McGraw-Hill,
2000:

Software quality: Conformance to explicitly
stated functional and performance requirements,
explicitly documented development standards,
and implicit characteristics that are expected of all
professionally developed software.

6

Jukka Paakki 11

adaptability to
new environments

ability to
undergo change

operational
characteristics

Portability
Reusability
Interoperability

Maintainability
Flexibility
Testability

Correctness
Reliability
Efficiency
Integrity
Usability

Dimensions of software quality

Jukka Paakki 12

§ Portability: The effort required to transfer the
system from one hardware and/or software
environment to another.
§ Reusability: The extent to which the system (or
part of it) can be reused in other applications.
§ Interoperability: The effort required to couple the
system to another.
§Maintainability: The effort required to introduce
a modification (usually a correction) into the
system.
§ Flexibility: The effort required to modify or
customize the system in operation.
§ Testability: The effort required to test the system
to ensure that it performs its intended function.

7

Jukka Paakki 13

§ Correctness: The extent to which the system satisfies
its specification and fulfils the users’ needs.
§ Reliability: The extent to which the system can be
expected to perform its intended function with required
precision and without failure.
§ Efficiency: The amount of computing resources
(space, time) required by the system to perform its
function.
§ Integrity: The extent to which access to the system or
its data by unauthorized persons can be controlled.
§ Usability: The effort required to learn, operate,
prepare input and interpret output of the system.

Measurement ?

Jukka Paakki 14

Standard Glossary of Software Engineering
Terminology [IEEE610.12]:

Quality assurance: (1) A planned and systematic
pattern of all actions necessary to provide adequate
confidence that an item or product conforms to
established technical requirements. (2) A set of
activities designed to evaluate the process by which
products are developed or manufactured.

8

Jukka Paakki 15

§ application of sound technical methods and tools
§ formal technical reviews and inspections
§ software testing
§ enforcement of standards
§ documentation
§ control of change
§ extensive measurement
§ record keeping and reporting of the process

Jukka Paakki 16

Verification: are we building the product right ?

Validation: are we building the right product ?

Users’ needs

Specifications

Software

Validation

Verification

9

Jukka Paakki 17

2. Principles of software testing
(1) Testing is a process of executing a program with the
intent of finding a defect. So, there must be some program
code to be executed.

(2) A good test case is one that has a high probability of
finding an as yet undiscovered defect. So, the test cases
(the program input) should be selected systematically and
with care, both for correct and incorrect behavior.

(3) A successful test is one that uncovers an as yet
undiscovered defect. So, testing is psychologically
destructive since it tries to demolish the software that has
been constructed.

Jukka Paakki 18

(4) Testing cannot show the absence of defects, it can
only show that they are present (Dijkstra).
[Testing is not formal verification.]

(5) Testing is quite an ineffective method of quality
assurance.
[Though, usually the most applicable one.]

(6) Successful testing shall be followed by a separate
debugging phase.

(7) Testing is also by itself a process that must be
systematically managed (and assisted with special testing
tools).

10

Jukka Paakki 19

Error (virhe): A mistake (human action) made by a
software developer. It might be a total mis-
interpretation of user requirements, or a simple
typograhpical missprint. An error introduces a defect
into the software code.

Defect, fault, bug (vika): A difference between the
incorrect program and its correct version; a coding
error. A defect in the software, if encountered during
execution, may cause a failure.

Failure (häiriö): An externally observable deviation of
the functional software from its specification; an
incorrect result of computation.

Jukka Paakki 20

Implications:

§ One must know what is “correct” and what is “incorrect”
§ There must be a specification against which to check
the results of testing
§ Full automation of testing is impossible

– theoretically, the total behavior of a program is
undecidable (halting, failures)
– in practice, exhaustive testing is intractable
– tracking of (technical) failures to (human) errors is
impossible
– we can never be sure that the testing tool (a
program) works correctly

11

Jukka Paakki 21

Why testing? Why systematic testing?

§ According to several empirical studies, a (professionally
produced commercial) software system contains 3 – 30
defects in every 1000 lines of code

§ ..., the average debugging effort is 12 hours of working
time for a single defect

§ ..., maintenance eats about 50% of software development
costs, mostly in error removal

Jukka Paakki 22

Example
The program reads three integer values. The three values are

interpreted as representing the lengths of the sides of a triangle.
The program prints a message that states whether the triangle is
scalene, isosceles, or equilateral. Write test cases (specific input
values) that you feel would adequately test this program.

§ In a valid triangle, no side may have a length of zero or less, and
each side must be shorter than the sum of all sides divided by 2.

§ Equilateral (tasasivuinen) triangle: all sides are of equal length.
§ Isosceles (tasakylkinen) triangle: two sides are of equal length.
§ Scalene (epäsymmetrinen) triangle: all sides are of unequal

length.

12

Jukka Paakki 23

Example (cont.)

In mathematics, the number of integer values is infinite. However,
computers have finite space which limits the number of values
that can be processed. Let us assume that our triangle program is
running in a tiny computer with 10.000 as the largest integer
value. Then there are 104 × 104 × 104 = 1012 possible length
combinations of triangle sides (including the invalid ones).

§ Suppose you are a very fast tester, running and checking 1000
tests per second, 24 hours per day, 365 days per year.

§ Then the exhaustive testing effort (testing each possible length
combination) would take over 317 years.

Jukka Paakki 24

Example (cont.)
Myers (The Art of Software Testing, 1978) lists 24 test cases:

1. (5, 3, 4): scalene
2. (3, 3, 4): isoscele
3. (3, 3, 3): equilateral
4. (50, 50, 25): isoscele
5. (25, 50, 50): isoscele (permutation)
6. (50, 25, 50): isoscele (permutation)
7. (10, 10, 0): invalid (zero)
8. (3, 3, -4): invalid (negative)
9. (5, 5, 10): invalid (too long)
10. (10, 5, 5): invalid (too long, perm.)
11. (5, 10, 5): invalid (too long, perm.)
12. (8, 2, 5): invalid (Too long)

13. (2, 5, 8): invalid (Too long, perm.)
14. (2, 8, 5): invalid (Too long, perm.)
15. (8, 5, 2): invalid (Too long, perm.)
16. (5, 8, 2): invalid (Too long, perm.)
17. (5, 2, 8): invalid (Too long, perm.)
18. (0, 0, 0): invalid (all zeros)
19. (@, 4, 5): invalid (non-integer)
20. (3, $, 5): invalid (non-integer)
21. (3, 4, %): invalid (non-integer)
22. (, 4, 5): invalid (missing input)
23. (3,,5): invalid (missing input)
24. (3, 4,): invalid (missing input)

13

Jukka Paakki 25

Example (cont.)
Remarks:

§ most test cases represent invalid inputs
§ each valid triangle type is tested at least once
§ permutations are used to check that the order of the input

values does not affect the result
§ boundary input values are used (length of exactly zero,

length of exactly the sum of all sides divided by 2)
§ input values of wrong type (non-integers) are used
§ the number of test cases is rather small with respect to the

number of all possible inputs

Jukka Paakki 26

Requirements
elicitation

Requirements
analysis

Architecture
design

Module
design

Coding

Module
testing

Integration
testing

Acceptance
testing

System
testing

The “V” model of software testing:

Specification Test planning Testing level (phase)

14

Jukka Paakki 27

Module (unit) testing:

§ each independent unit tested separately
§ level: source code
§ usually need for simulated execution environment
(“stubs”, “drivers”)

Jukka Paakki 28

Integration testing:

§ modules grouped into subsystems for testing
§ “big bang”: all the modules tested as a whole
§ incremental approaches: modules into subsystems
level-wise (“stubs” and “drivers”)
§ level: interfaces between modules

15

Jukka Paakki 29

System testing:

§ the whole system (including hardware, databases,
sensors, …) tested
§ target: performance, capacity, fault-tolerance,
security, configuration, …
§ level: external interface

Jukka Paakki 30

Special forms of system testing:

§ Volume testing
§ Load / stress testing
§ Security testing
§ Performance testing
§ Configuration testing
§ Installability testing
§ Recovery testing
§ Reliability / availability testing
§ Maintainability testing

§ Protocol conformance testing, etc.

16

Jukka Paakki 31

Acceptance testing:

§ user involvement (alpha, beta)
§ “actual needs”

§ usability testing at the user interface
– development team in development environment:
“standard”, general usability errors
– real user representatives in laboratory environment:
task-specific usability problems (real tasks, talk-aloud,
taping, post-analysis by experts)

Jukka Paakki 32

Black-box (functional) testing:

§ internal details of modules or subsystems are hidden
and cannot be studied from outside
§ concentrates on the interfaces of modules and
(sub)systems (e.g. user interface)
§ externally observable functionality and input-output
behavior
§ based on input classification
§ especially suitable for integration, system, and
acceptance testing

17

Jukka Paakki 33

X1 X2 X3 xn

Y1 Y2 Y3 yn

Black box:

Jukka Paakki 34

White-box (structural) testing

§ structure of the software is examined in detail at the level
of program code
§ objective to traverse as many paths over the code as
considered necessary
§ based on control flow and data flow
§ several forms of coverage (path, statement, branch, …)
§ especially suitable for module (unit) testing

18

Jukka Paakki 35

y

x

White box:

Jukka Paakki 36

3. Management of testing

§ plan
§ execute
§ evaluate
§ document
§ report

process

19

Jukka Paakki 37

Requirements
engineering

Require-
ments

Test
planning

Test
plan

Test case
specification

Test
cases

Scripting Test
scripts

Test
execution

ResultsEvaluation
of results

Test summary
report

Management
of testing

Inspection

Inspection

Bug
reports

Testing process (for each main phase):

Testing
tools

Jukka Paakki 38

Standard for Software Test Documentation
[IEEE 829]:

1. Test plan: the scope, approach, resources, and
schedule of the testing activities.
2. Test-design specification: the refinements of the test
approach, and the features to be tested by the design
and its associated tests.
3. Test-case specification: a test case identified by a
test-design specification.
4. Test-procedure specification: the steps for executing
a set of test cases or, more generally, the steps used to
analyze a software item in order to evaluate a set of
features.

20

Jukka Paakki 39

5. Test-item transmittal report: the test items being
transmitted for testing, including the person responsible
for each item, its physical location, and its status.
6. Test log: a chronological record of relevant details
about the execution of tests.
7. Test-incident report (bug report): any event that
occurs during the testing process which requires
investigation.
8. Test-summary report: the results of the designated
activities, and evaluations based on these results.

Jukka Paakki 40

3.1. Test plan
1. Test-plan identifier: specifies the unique identifier
assigned to the test plan.
2. Introduction: summarizes the software items and
software features to be tested, provides references to the
documents relevant for testing (overall project plan,
quality assurance plan, configuration management plan,
applicable standards…).
3. Test items: identifies the items to be tested, including
their version/revision level; provides references to the
relevant item documentation (requirements specification,
design specification, user’s guide, operations guide,
installation guide, …); also identifies items which are
specifically excluded from testing.

21

Jukka Paakki 41

4. Features to be tested: identifies all software features
and their combinations to be tested, identifies the test-
design specification associated with each feature and each
combination of features.
5. Features not to be tested: identifies all features and
significant combinations of features which will not be
tested, and the reasons for this.
6. Approach: describes the overall approach to testing (the
testing activities and techniques applied, the testing of
non-functional requirements such as performance and
security, the tools used in testing); specifies completion
criteria (for example, error frequency or code coverage);
identifies significant constraints such as testing-resource
availability and strict deadlines; serves for estimating the
testing efforts.

Jukka Paakki 42

7. Item pass/fail criteria: specifies the criteria to be used to
determine whether each test item has passed or failed
testing.
8. Suspension criteria and resumption: specifies the
criteria used to suspend all or portion of the testing activity
on the test items (at the end of working day, due to
hardware failure or other external exception, …), specifies
the testing activities which must be repeated when testing
is resumed.
9. Test deliverables: identifies the deliverable documents,
typically test-design specifications, test-case
specifications, test-procedure specifications, test-item
transmittal reports, test logs, test-incident reports,
description of test-input data and test-output data,
description of test tools.

22

Jukka Paakki 43

10. Testing tasks: identifies the set of tasks necessary to
prepare and perform testing (description of the main
phases in the testing process, design of verification
mechanisms, plan for maintenance of the testing
environment, …).
11. Environmental needs: specifies both the necessary and
desired properties of the test environment (hardware,
communications and systems software, software libraries,
test support tools, level of security for the test facilities,
drivers and stubs to be implemented, office or laboratory
space, …).

Jukka Paakki 44

12. Responsibilities: identifies the groups of persons
responsible for managing, designing, preparing,
executing, witnessing, checking, and resolving the testing
process; identifies the groups responsible for providing
the test items (section 3) and the environmental needs
(section 11).
13. Staffing and training needs: specifies the number of
testers by skill level, and identifies training options for
providing necessary skills.
14. Schedule: includes test milestones (those defined in
the overall project plan as well as those identified as
internal ones in the testing process), estimates the time
required to do each testing task, identifies the temporal
dependencies between testing tasks, specifies the
schedule over calendar time for each task and milestone.

23

Jukka Paakki 45

15. Risks and contingencies: identifies the high-risk
assumptions of the test plan (lack of skilled
personnel, possible technical problems, …), specifies
contingency plans for each risk (employment of
additional testers, increase of night shift, exclusion of
some tests of minor importance, …).
16. Approvals: specifies the persons who must
approve this plan.

Jukka Paakki 46

3.2. Test-case specification
1. Test-case-specification identifier: specifies the unique
identifier assigned to this test-case specification.
2. Test items: identifies and briefly describes the items
and features to be exercised by this test case, supplies
references to the relevant item documentation
(requirements specification, design specification, user’s
guide, operations guide, installation guide, …).
3. Input specifications: specifies each input required to
execute the test case (by value with tolerances or by
name); identifies all appropriate databases, files, terminal
messages, memory resident areas, and external values
passed by the operating system; specifies all required
relationships between inputs (for example, timing).

24

Jukka Paakki 47

4. Output specifications: specifies all of the outputs and
features (for example, response time) required of the test
items, provides the exact value (with tolerances where
appropriate) for each required output or feature.
5. Environmental needs: specifies the hardware and
software configuration needed to execute this test case,
as well as other requirements (such as specially trained
operators or testers).
6. Special procedural requirements: describes any
special constraints on the test procedures which execute
this test case (special set-up, operator intervention, …).
7. Intercase dependencies: lists the identifiers of test
cases which must be executed prior to this test case,
describes the nature of the dependencies.

Jukka Paakki 48

3.3. Test-incident report (bug report)

1. Bug-report identifier: specifies the unique identifier
assigned to this report.
2. Summary: summarizes the (bug) incident by
identifying the test items involved (with version/revision
level) and by referencing the relevant documents (test-
procedure specification, test-case specification, test log).

25

Jukka Paakki 49

3. Bug description: provides a description of the
incident, so as to correct the bug, repeat the incident or
analyze it off-line:

• Inputs.
• Expected results.
• Actual results.
• Date and time.
• Test-procedure step.
• Environment.
• Repeatability (whether repeated; whether occurring always,
occasionally or just once).
• Testers.
• Other observers.
• Additional information that may help to isolate and correct the cause
of the incident; for example, the sequence of operational steps or
history of user-interface commands that lead to the (bug) incident.

4. Impact: Priority of solving the incident / correcting the
bug (urgent, high, medium, low).

Jukka Paakki 50

3.4. Test-summary report

1 Test-summary-report identifier: specifies the unique
identifier assigned to this report.
2. Summary: summarizes the evaluation of the test items,
identifies the items tested (including their
version/revision level), indicates the environment in
which the testing activities took place, supplies
references to the documentation over the testing process
(test plan, test-design specifications, test-procedure
specifications, test-item transmittal reports, test logs,
test-incident reports, …).

26

Jukka Paakki 51

3. Variances: reports any variances/deviations of the test
items from their design specifications, indicates any
variances of the actual testing process from the test plan
or test procedures, specifies the reason for each variance.
4. Comprehensiveness assessment: evaluates the
comprehensiveness of the actual testing process against
the criteria specified in the test plan, identifies features or
feature combinations which were not sufficiently tested
and explains the reasons for omission.
5. Summary of results: summarizes the success of testing
(such as coverage), identifies all resolved and unresolved
incidents.

Jukka Paakki 52

6. Evaluation: provides an overall evaluation of each test
item including its limitations (based upon the test results
and the item-level pass/fail criteria).
7. Summary of activities: summarizes the major testing
activities and events, summarizes resource consumption
(total staffing level, total person-hours, total machine time,
total elapsed time used for each of the major testing
activities, …).
8. Approvals: specifies the persons who must approve this
report (and the whole testing phase).

27

Jukka Paakki 53

3.5. Inspection checklist for test plans:
1. Have all materials required for a test plan inspection been
received?
2. Are all materials in the proper physical format?
3. Have all test plan standards been followed?
4. Has the testing environment been completely specified?
5. Have all resources been considered, both human and
hardware/software?
6. Have all testing dependencies been addressed (driver function,
hardware, etc.)?
7. Is the test plan complete, i.e., does it verify all of the requirements?
(For unit testing: does the plan test all functional and structural
variations from the high-level and detailed design?)
8. Is each script detailed and specific enough to provide the basis for
test case generation?
9. Are all test entrance and exit criteria sufficient and realistic?

Jukka Paakki 54

10. Are invalid as well as valid input conditions tested?
11. Have all pass/fail criteria been defined?
12. Does the test plan outline the levels of acceptability for pass/fail
and exit criteria (e.g., defect tolerance)?
13. Have all suspension criteria and resumption requirements been
identified?
14. Are all items excluded from testing documented as such?
15. Have all test deliverables been defined?
16. Will software development changes invalidate the plan? (Relevant
for unit test plans only.)
17. Is the intent of the test plan to show the presence of failures and
not merely the absence of failures?
18. Is the test plan complete, correct, and unambiguous?
19. Are there holes in the plan; is there overlap in the plan?
20. Does the test plan offer a measure of test completeness and test
reliability to be sought?
21. Are the test strategy and philosophy feasible?

28

Jukka Paakki 55

3.6. Inspection checklist for test cases:
1. Have all materials required for a test case inspection been
received?
2. Are all materials in the proper physical format?
3. Have all test case standards been followed?
4. Are the functional variations exercised by each test case required
by the test plan? (Relevant for unit test case documents only.)
5. Are the functional variations exercised by each test case clearly
documented in the test case description? (Relevant for unit test case
documents only.)
6. Does each test case include a complete description of the expected
input, and output or result?
7. Have all testing execution procedures been defined and
documented?
8. Have all testing dependencies been addressed (driver function,
hardware, etc.)?
9. Do the test cases accurately implement the test plan?

Jukka Paakki 56

10. Are all data set definitions and setup requirements complete and
accurate?
11. Are operator instructions and status indicators complete, accurate,
and simple?
12. Have all intercase dependencies been identified and described?
13. Is each condition tested once and only once?
14. Have all test entrance and exit criteria been observed?
15. Are the test cases designed to show the presence of failure and not
merely the absence of failure?
16. Are the test cases designed to show omissions and extensions?
17. Are the test cases complete, correct, and unambiguous?
18. Are the test cases realistic?
19. Are the test cases documented so as to be 100 percent
reproducible?
20. Has the entire testing environment been documented?
21. Has configuration management been setup, directories established,
and have case data and tools been loaded?

29

Jukka Paakki 57

Requirements
engineering

Require-
ments

Test
planning

Test
plan

Test case
specification

Test
cases

Scripting Test
scripts

Test
execution

ResultsEvaluation
of results

Test summary
report

Management
of testing

Bug
reports

3.7. Test automation

Specification languages (TTCN),
GUI recorders

GUI recorders,
scripting languages

Regression tools,
report generators

Jukka Paakki 58

Why automation of testing
§ Test automation: software that automates some aspects of the testing of a

system (in some particular application area)
– capabilities to generate test inputs and expected results, to run test suites

without manual intervention, and to evaluate pass / no pass
– enhances effective and repeatable testing

§ Provides consistent and complete test summary reports
§ Makes testing more objective and less dependent on the skills of an

individual tester
§ Especially useful in white-box testing, regression testing where (almost) the

same tests are repeated as such, and performance / stress testing where the
system is pushed beyond its design limits
– analysis of code coverage (what parts of the program have been tested?)
– validation of response times for a large number of (concurrent, real-time)

transactions
– running tests that exceed the maximum input rate

30

Jukka Paakki 59

Limitations of test automation

§ Expensive investment
– high price and complexity of commercial tools
– personnel costs: education, maintenance of testware (test cases, test

suites, test harness = the testing environment)

§ Not suitable for testing phases where the user has a central role
(usability testing)

§ Limited support for tasks that inherently cannot be automated
– test project planning
– test case design (exceptions: model-based testing, specification-based

testing, conformance testing of communication protocols)

§ Manual testing + automated testing an effective practice
– for instance, manual test case design and black-box testing +

automated analysis of code coverage that was reached

Jukka Paakki 60

(a) Basic tools
– Graphical User Interface (GUI) testers (capture / record)
– Regression testers (automatic replay / playback)
– White-box code coverage analyzers
– Debuggers, dynamic tracers
– Report generators

(b) Advanced tools
– Load/stress testers, performance testers
– Mutation testers
– Application-specific testers (protocols, embedded systems, ...)

(c) Future tools
– Semi-automatic ”algorithmic” debuggers
– ”Regression scripters” for automated testware maintenance
– Self-testing and self-repairing programs

Testing tools

31

Jukka Paakki 61

How to start with testing tools

§ Tool selection as a project
– lots of commercial, super-expensive tools on the market
– lots of marginal costs: licenses, training, testware maintenance, ...

§ Selection, installation, and training before actual software
development, to make test planning possible

§ Pilot project!
– in-house, in the operational environment
– by own employees
– with own target software
– with own test data
– with a realistic case
– with specified goals for automation (effectiveness, quality, money, ...)

Jukka Paakki 62

3.8. Testing organizations
1. Testing is each person’s responsibility: the product developers are
also responsible for testing their own code. Drawback: testing must
be done independently; programmers are too biased by their own
solutions and blind to their errors.
2. Testing is each group’s responsibility: the product developers
within the project group test each other’s code. Microsoft: “joint
ownership and responsibility”. Drawback: usually development
efforts finally dominate over testing efforts.
3. Testing is performed by a dedicated resource: there is a person in
the project group who only concentrates on testing. Drawback: a
person might be nominated who is less effective in development (and
probably in testing as well).
4. Testing is performed by a test organization: testing is a component
of quality assurance with a dedicated team. Drawback: additional
organizations and processes.

32

Jukka Paakki 63

Analysis

Design

Coding

Testing

Maintenance

Waterfall modelWaterfall model

Inspec-
tion

Inspec-
tion

Inspec-
tion

Inspec-
tion

Inspec-
tion

Inspec-
tion

Too
late !

3.9. Testing in a software development process

Jukka Paakki 64

Analysis

Design

Coding

Testing

Proto 1

Analysis

Design

Coding

Testing

Proto 2

Analysis

Design

Coding

Testing

Final
version

Maintenance

Iterative, incremental model (prototype model)Iterative, incremental model (prototype model)

Re-
gression !

33

Jukka Paakki 65

User
feature 1

Planning
1

Unit
tests 1

Unit
testing 1

Integration 1

Lightweight process (Extreme Programming, XP)Lightweight process (Extreme Programming, XP)

Pair
coding 1

R
ef

ac
to

ri
ng

User
feature 2

Planning
2

Unit
tests 2

Unit
testing 2

User
feature n

Planning
n

Unit
tests n

Pair
coding 2

Pair
coding n

Unit
testing n

Integration 2 Final
build

Sys-
tem
tes-

ting ?

Jukka Paakki 66

x f(x) f(x) = y?
yes

Specifi-
cation

y

ok

failure!

no

4. Black-box testing

34

Jukka Paakki 67

Principles

§ Based on specifications and documents
– requirements
– technical plans, architectures
– user manuals

§ Code not necessarily needed (while it certainly helps)
§ General strategy, applies especially to integration testing,

system testing, acceptance testing
§ Can be assisted by a post-white-box testing phase, to obtain

code coverage measures as indicators of testing quality

Jukka Paakki 68

4.1. Domain partitioning: equivalence classes

System domain: set of all input values

Equivalence class: certain set of input values
(subset of domain, subdomain)

35

Jukka Paakki 69

Input
domain

Equivalence
classes

Invalid and
illegal values

Equivalence classes:

Jukka Paakki 70

§ each equivalence class represents a central property of
the system

§ each value in an equivalence class makes the system
behave “in the same manner”

in testing, each value reveals a failure or
makes the system behave ok

§ each value activates (almost) the same execution path
through the system

§ in black-box testing, based on system’s specification
and experience / intuition of tester

36

Jukka Paakki 71

Black-box testing hypothesis:

§ each value in an equivalence class results in correct execution
when used as input to the system

OR
§ each value in an equivalence class results in failure when used
as input to the system

§ for testing purposes, one representative input value from each
equivalence class is enough !

§ in practice, the hypothesis does not hold universally, so the
system shall be tested with several input values from each
equivalence class

Jukka Paakki 72

Input
domain

Equivalence
classes

Invalid and
illegal values

Failure
ok

37

Jukka Paakki 73

§ range of values ⇒ one valid and two invalid classes

“integer x shall be between 100 and 200” ⇒
{integer x | 100 ≤ x ≤ 200},
{integer x | x < 100},
{integer x | x > 200}

§ specific value within a range ⇒ one valid and two invalid
equivalence classes

“value of integer x shall be 100” ⇒
{integer x | x = 100},
{integer x | x < 100},
{integer x | x > 100}

Jukka Paakki 74

§ set of values ⇒ one valid and one invalid equivalence class

“weekday x shall be a working day” ⇒
x ∈ {Monday, Tuesday, Wednesday, Thursday, Friday},
x ∈ {Saturday, Sunday}

§ Boolean ⇒ one valid and one invalid equivalence class

“condition x shall be true” ⇒
x = true, x = false

38

Jukka Paakki 75

§ one or several equivalence classes for illegal values, that is,
for values that are incompatible with the type of the input
parameter and therefore out of the parameter’s domain

“integer values x” ⇒
{real-number x}, {character-string x}

§ if there is reason to believe that the system handles each
valid/invalid/illegal input value differently, then each value
shall generate an equivalence class

§ if there is reason to believe that the input values in an
equivalence class are not processed in an identical manner by
the system, the class shall be subdivided into smaller classes

Jukka Paakki 76

Input
domain

Equivalence
classes

Invalid and
illegal values

4.2. Boundary analysis
Bugs often lurk at domain boundaries (verified by
empirical studies on programming: most progamming
errors are made with relational expressions <, >, <=, …)

39

Jukka Paakki 77

Domain boundaries are generated by boundary conditions over
the domain:

§ open boundaries: generated by inequality operators (<, >)
§ closed boundaries: generated by equality operators (=, ,)

§ on point: value that lies on a boundary
– for open boundaries: the boundary value; for instance x > 0

§ off point: value not on a boundary

§ 1×1 (”one-by-one”) domain testing strategy: one on point and
one off point for each domain boundary

Jukka Paakki 78

Selection rules for on and off points:

§ open boundary: one on point and one off point
– on point: a value outside the domain ⇒ the condition is false
– off point: a value inside the domain ⇒ the condition is true

§ closed boundary: one on point and two off points (on both sides
of the boundary, as close as possible)
– on point: a value inside the domain ⇒ the condition is true
– one off point: a value outside the domain ⇒ the condition is false

§ nonscalar type: one on point and one off point
– enumerations, Booleans, strings, complex numbers, …
– on point: the condition is true
– off point: the condition is false
– the difference between on and off values should be minimized (for

instance, for strings a single character difference)

40

Jukka Paakki 79

§ range of values ⇒ two boundary conditions

“integer x shall be between 100 and 200” ⇒
{integer x | (x 100) ∧ (x ≤ 200)}

closed boundaries

– on points: 100, 200
– off points: 99, 101, 199, 201

§ strict inequality operator ⇒ open subdomain

“integer x shall be greater than 100” ⇒
{integer x | x > 100}

– on point: 100
– off point: 101

Jukka Paakki 80

§ specific value ⇒ one (closed) boundary condition

“value of integer x shall be 100” ⇒ {integer x | x = 100}

– on point: 100
– off points: 99, 101

§ set of values ⇒ nonscalar type

“weekday x shall be a working day” ⇒
x ∈ {Monday, Tuesday, Wednesday, Thursday, Friday}

– on point: Friday, off point: Saturday

§ Boolean ⇒ nonscalar type

– on point: true, off point: false

41

Jukka Paakki 81

4.3. The category-partition method

systematic black-box test design method based on
equivalence partitioning of input

(1) Specification of input categories, “problem parameters”

Array sorting categories:

size of array
type of elements
maximum element value
minimum element value
position of maximum element in the array
position of minimum element in the array

Jukka Paakki 82

(2) Division of categories into
choices = equivalence classes

Array sorting / choices for size of array:

size = 0
size = 1
2 ≤ size ≤ 100
size > 100
(“size is illegal”)

42

Jukka Paakki 83

(3) Test specification:

§ A set of test frames: sets of choices, with each
category contributing either zero or one choice.
§ A set of test cases: a single value from each of the
choices in a test frame.

Array sorting / test case:

size of array = 50 (choice: 2 ≤ size ≤ 100)
type of elements = integer
maximum element value = 91
minimum element value = −3
position of maximum element in the array = 15
position of minimum element in the array = 43

Jukka Paakki 84

(4) Generation of test cases for the test frames into
executable form (using a tool), combination into test
suites.

(5) Storing the testware into a test database.

(6) Testing of the unit by the test cases, refinement of
conflicting choices, maintenance of test database (using
a tool).

43

Jukka Paakki 85

size
of

array

type
of

elements

maxi-
mum

mini-
mum

pos.
of max.

pos.
of min.

Categ-
ories

0 1

2

100

50

101

#

int.

91

-3

15

43

Choices

Test
case

Test
frame

Jukka Paakki 86

ok

failure

⇒

Choice refinement:

44

Jukka Paakki 87

4.4. System testing / user interface testing:

§ target: operations available at the (graphical) user
interface

§ parameters of operations divided into equivalence
classes

§ testing by all different combinations of equivalence
classes (with one input value from each class)

§ testing of operation sequences (not independent)

§ based on user’s manual

§ supported by tools (capture / replay)

Jukka Paakki 88

Example:

Find (document, text, direction, match case)

§ document: the current text file, subject to search

§ text: the character string to search for

§ direction (down, up): direction of the search with
respect to current position of the cursor

§ match case (yes, no): whether or not the operation is
case sensitive to letters

45

Jukka Paakki 89

Equivalence classes:

§ text:
{strings with lower-case letters but without upper-case letters}
{strings with upper-case letters but without lower-case letters}
{strings with both upper-case and lower-case letters}
{strings with no letters}
{empty (illegal) strings}

§ direction: {down}, {up}

§ match case: {yes}, {no}

§ document: {text found}, {text not found}

Jukka Paakki 90

Method: exhaustive combination of equivalence classes

lc uc luc no-luc ε d u y n f n-f

text dir. match doc.

x

x

x

x

…

X

x

…

x

x

x

X

x

x

x

x

x

x

x

x

x

x

x

x

X

x

X

x

x

x

46

Jukka Paakki 91

Number of (independent) combinations =
Total number of tests :

E1 ∗ E2 ∗ … ∗ Ek

where Ei = number of equivalence classes for parameter i

Here: 5 ∗ 2 ∗ 2 ∗ 2 = 40

Note: some of the (invalid, illegal) combinations might be
unexecutable, but that must be tested too!

Jukka Paakki 92

Test case patterns (40):

§ text: lower-case, direction: down, match case: yes,
document: found (1)

§ text: lower-case, direction: down, match case: yes,
document: not found (2)

§ text: lower-case, direction: up, match case: yes,
document: found (3)

§ text: lower-case, direction: up, match case: yes,
document: not found (4)
…

§ text: empty, direction: up, match case: no,
document: not found (40)

47

Jukka Paakki 93

Selection of test cases (40):

§ each pattern generates a test case
§ each equivalence class in a pattern is realized as an input
value in the corresponding test case
§ in different test cases, different values are selected for the
same equivalence class (better coverage)
§ boundary values are selected, when applicable

– for text, both short and long character strings
– for text, the whole character set

Jukka Paakki 94

document text direction match case

This beautiful text (1) bea down yes
This beautiful text (2) beatles down yes
This 1beautiful text (3) 1bea up yes
This 1Beautiful text (4) 1bea up yes
This &%1bEAutiful text (5) %1beau down no
This &%2beautiful text (6) %1beau down no
This BE utiful text (7) b up no
This BE utiful text (8) beauti up no

This BEAUTIFUL text (9) BEA down yes
This BEAUTIFUL text (10) BEAT down yes
THIS beautiFUL text (11) THIS up yes
THIS beatiful text (12) TH2S up yes
This Beautiful Text (13) HIS down no
this %#& beautiful text (14) S down no
this %#& beautiful text (15) HIS %#& up no
This %#&beautiful text (16) #& BE up no

48

Jukka Paakki 95

document text direction match case

This Beautiful Text (17) Text down yes
This Beautiful Text Text down yes
THIS is beautiful text IS is up yes
This is beautiful text IS is up yes
This text 1-99 ExT 1 down no
This text 1 and text 2 eXt 1 down no
This was beautiful text His Was Beauti up no
(This) (Was) (123text) (24) aS() up no

123 one-two-three (25) 123 down yes
One-two-three 1-2-3 12-3 down yes
This &007# mess & up yes
This Bloody Mess #% up yes
(This) (was1) (was[2]) 2] down no
0987654321!”#%&/*/// 7654321# down no
1!2”3#4$5%6&7/8(9)0=oops #4$5%6&7/8(9) up no
This %#&beautiful text (32) 22 up no

This is beautiful texT (33) down yes
1 or two down yes
1 or two up yes
0K1+(8Those up yes
1 & 2 down no
_ down no
This %#&beautiful text up no
_ (40) up no

Jukka Paakki 96

Example: print (file, copies, font, pagination)

Input parameters:

§ name of the file (must be provided)

§ -cn, where n is the number of copies (1 ≤ n ≤ 100);
default: n = 1

§ -fkm, where k indicates a font (1 ≤ k ≤ 9) and m indicates
a mode (N for normal or B for bold);

defaults: k = 1, m = N

§ -np: no pagination (default: pagination shall be done)

49

Jukka Paakki 97

Equivalence classes:

Related to file name:
1. Name of existing file given (Valid).
2. No file name given (NotValid).
3. Name of non-existing file given (NV).
4. “Name” does not follow the syntactic rules (NV).

Related to copies (-cn):
5. 1 ≤ n ≤ 100 (V).
6. Default: no n given (V).
7. n = 0 or n > 100 (NV).

Jukka Paakki 98

Related to fonts (-fkm):
8. 1 ≤ k ≤ 9 (V).
9. Default: no k given (V).
10. m = N or m = B (V).
11. Default: no m given (V).
12. k = 0 or k > 9 (NV).
13. m other than N or B (NV).

Related to pagination (-np):
14. -np given (V).
15. -np not given (V).
16. Something else than -np given (NV). (This class
covers also the other syntactically invalid -options.)

50

Jukka Paakki 99

Number of exhaustive combinatory test cases:

print file [-cn] [-f k m] [-np]

4 ∗ 3 ∗ 3 ∗ 3 ∗ 3 = 324

This might be too many, so a method reducing the number
of test cases is needed.

Jukka Paakki 100

print file [-cn] [-fkm] [-np]

Optimizing principle:
- one test case for each NV equivalence class
- each equivalence class covered by at least one test case

(a) -c5 -np
(b) xxyy -c3 (no file xxyy in directory)
(c) #%$file5.3
(d) myfile -c0 (file myfile is in directory)
(e) myfile -f100N
(f) myfile -f2H
(g) myfile -c5 -f1 -hjk

51

Jukka Paakki 101

Test cases /
Eq. classes (a) (b) (c) (d) (e) (f) (g)

1 √ √ √ √
2 ;

3 ;

4 ;

5 √ √ √
6 √ √ √
7 ;

8 √ √
9 √ √ √ √

10 √
11 √ √ √ √ √
12 ;

13 ;

14 √
15 √ √ √ √ √
16 ;

Ok : just 7 test cases

However:

no actual task

with valid

parameters tested !!

Jukka Paakki 102

Extending principle: combinations over the number of parameters

§ name of existing file always given

§ a test case where all the parameters are missing (0 present)

§ a test case for each individual parameter (1 present)

§ each parameter included in the set of pairs (2 present)

§ each parameter included in the set of triplets (3 present)

§ all the parameters given (4 present)

52

Jukka Paakki 103

print file [-cn] [-fkm] [-np]

(h) myfile (none present)
(i) myfile –c1 (n present)
(j) myfile –f9 (k present)
(k) myfile –fB (m present)
(l) myfile –np (-np present)
(m) myfile –f1N (k, m present)
(n) myfile –c100 –np (n, -np present)
(o) myfile –c50 –f5 –np (n, k, -np present)
(p) myfile –c1 –fB –np (n, m, -np present)
(q) myfile –c99 –f2N –np (all present)

Jukka Paakki 104

Test cases /
Eq. classes (h) (i) (j) (k) (l) (m) (n) (o) (p) (q)

1 √ √ √ √ √ √ √ √ √ √
2
3
4
5 √ √ √ √ √
6 √ √ √ √ √
7
8 √ √ √ √
9 √ √ √ √ √ √
10 √ √ √ √
11 √ √ √ √ √ √
12
13
14 √ √ √ √ √
15 √ √ √ √ √
16

In total:

17 test cases

– 10 valid ones

– 7 invalid ones

53

Jukka Paakki 105

User interface errors (preventing use of the system):
1. Functionality. Something one reasonably expects the system to do
is hard, confusing, or impossible.
– Excessive functionality: the system tries to do too much, and is
therefore hard to learn and use.
– Inadequacy for the task at hand: a key feature isn’t there at all, or is
too restricted or too slow in which case the system cannot be used for
real work. For instance, a database management system that takes
eight hours to sort 100 records does provide the sorting feature but in a
totally unusable form.
– Missing function: a major function is not available even though it is
documented in a specification or user’s manual, or is obviously
desirable (such as “save” and “print” in a word processor).
– Wrong function: a function should do one thing (according to a
specification or user’s manual) but it does something else.
– Functionality to be created by the user: the system supplies all the
basic capabilities but the actual functions to be used must be
assembled from primitives by the user.

Jukka Paakki 106

2. Communication. Information flow from the
system to the user is somehow imperfect.
– Missing information: some relevant information is
not available on the screen (or other interfacing
device), examples being operating instructions, on-
line help, activity and state information, and
acknowledgement of finished operations.
– Wrong, misleading, or confusing information: the
relevant information is available, but it cannot be
trusted since it looks suspicious or has been
erroneous in earlier phases of execution.
– Display bugs: the information is there, but in a
wrong place or partly hidden.

54

Jukka Paakki 107

3. Command structure and entry. The system organizes
the available commands from the user to the system
improperly.
– Inconsistencies: in different situations, the same
command is presented in a different format (abbreviated,
with different name, positioned differently, in different
syntax, ...).
– Excessive commands: a command is provided to the
user, even though it actually cannot be activated in that
particular situation.
– Missing or incomplete dialogs: parameters of a
command should be given to the system via a dialog at the
graphical user interface, but the dialog is not available at
all or it lacks some of the parameters. The dialog may also
be inert by not accepting any keystrokes by the user.

Jukka Paakki 108

4. Missing commands. A command is not available, even
though it should be there .
– Corrupted name: the name of a command (provided in
some kind of a menu) is simply mis-spelled, e.g., “Inster”
instead of “Insert”.
– Misleading name: a command is not doing what it logically
should do according to its name; e.g. the command “Save”
might save the resources of the computer by immediately
shutting it down (instead of storing the contents of a file in
some secure place).
– State transitions: the user cannot reach every viable state of
the system (commands cannot be stopped, execution cannot
be aborted, ...).
– Disaster prevention: the system does not minimize the
consequences of failures (no back-ups, no general undo
mechanism, no incremental saves, ...).

55

Jukka Paakki 109

5. Performance. The system is too slow, consumes too
much memory, or severly limits the size of processed input.
– Slow system: an operation is not usable in practice
because it takes too much time to execute (slow echoing of
commands, no warning that an operation will take a long
time, too long or short time-outs over data entries by the
user, ...).
– System out of memory: the system cannot fulfil its task
because it has already consumed all the memory available
in the computer / device.
– Insufficient user throughput: the amount or quantity of
data provided from the user as input to the system exceeds
the system’s processing capabilities (and there are no
documented restrictions on the volume of input).

Jukka Paakki 110

6. Output. The system output is erroneous or in a wrong format.
– Incorrect output: the system exhibits a failure.
– Certain data missing: the system does not provide all output
data the user is interested in (according to a specification or
user’s manual).
– Format incompatible: the output data of the system (or a
subsystem) should be given as input to a follow-up process, but
the passing of data fails due to an incompatible format.
– Layout misleading: the output data is represented in a format
that is not properly understood by the user (and the format
cannot be dynamically customized).

56

Jukka Paakki 111

5. White-box testing

0 + 1 + 2 + … + i, i ∈ [0, 100]:

read(i);
if ((i < 0) || (i > 100))

error();
else

{ sum=0; x=0;
while (x < i)

{ x=x+1;
if (i==10) sum=1; else sum=sum+x; }

print(sum); }

Jukka Paakki 112

Black-box test cases (without looking at source code):

i = −1 OK
i = 0 OK
i = 1 OK
i = 50 OK
i = 99 OK
i = 100 OK
i = 101 OK

However:

i = 10 ⇒ FAILURE! (sum=1)

57

Jukka Paakki 113

White-box testing principles:

§ details of source code analyzed
§ design of test cases on the basis of code structure

§ execution path: a certain sequence of program
statements, executed when starting the program with a
certain input (test case)
§ different test cases => different execution paths

§ control-flow testing: based on the execution order of the
statements
§ data-flow testing: based on the processing of the data
during execution

Jukka Paakki 114

§ (control) flow graph: abstraction of the program’s control
flow, in graphical form
§ data-flow graph: abstraction of the program’s data flow
(for a certain input variable), in graphical form; usually
extension of control-flow graph

§ control-flow graph, data-flow graph automatically
produced
§ test cases designed from the graphs

§ coverage: the relative amount of statements (and others)
executed during testing, computed from control-flow /
data-flow graph

58

Jukka Paakki 115

Flow-graph structures:

s1

s2

sn

s1;
s2;
…;
sn

OR

(a) Statement sequence:
s1; s2; …; sn

p

s1 s2

(b) Conditional (if) statement:
if (p) then s1 else s2

yes no

Jukka Paakki 116

s
yes

no

(c) Loop (while-do) statement:
while (p) do s

(e) Iterative (for) statement:
for (s1; p; s2) do s

s1

p

p s

s2

yes

no

s

p
yes

no

(d) Loop (do-while) statement:
do s while (p)

e

s1

s2

sn

…

e1

e2

en

(f) Switch (case) statement:
switch (e) {case e1: s1;

case e2: s2; …;
case en: sn}

59

Jukka Paakki 117

5.1. Control-flow testing
Coverage: how extensively the program has been (or will be)
tested with a given set of test cases

§ the (relative) number of nodes (statements) in the flow
graph executed during testing
§ the (relative) number of edges (control transitions) in the
flow graph traversed during testing

§ statement coverage: each node (statement) has to be
executed at least once
§ branch coverage: each edge (transition) has to be
traversed at least once
§ a large number of variations of different coverage power
§ special target: loop testing

Jukka Paakki 118

Definition 5.1. An execution path is a sequence of nodes (and
connecting edges) from the unique begin-node of the flow graph to
the unique end-node of the graph.
[A certain execution of the underlying program.]
[May contain the same node several times: loops.]

1 2

5

3

6

4

7 8

60

Jukka Paakki 119

Definition 5.2. A set P of execution paths satisfies the statement
coverage criterion if and only if for all nodes n in the flow
graph, there is at least one path p in P such that p contains the
node n.
[Each statement of the program is executed at least once during
testing, by some test case.]

– criterion met => complete (100%) statement coverage
– criterion not met => partial statement coverage (< 100%)
– begin-node, end-node, junctions excluded
– complete coverage surprisingly hard to achieve in practice
– “dead code” / conditional compilation

Jukka Paakki 120

Definition 5.3. A set P of execution paths satisfies the branch
coverage criterion if and only if for all edges e in the flow graph,
there is at least one path p in P such that p contains the edge e.
[Each control-flow branch / decision (true / yes, false / no) is
taken at least once during testing, by some test case.]

– criterion met => complete (100%) branch coverage
– complete branch coverage => complete statement
coverage (branch coverage subsumes statement coverage)
– usually more tests are needed for complete branch
coverage than for complete statement coverage
– branch coverage is more extensive: the criterion is stronger
than the statement coverage criterion
– criterion not met => partial branch coverage (< 100%)

61

Jukka Paakki 121

read(i)

(i<0)
| |

(i>100)

error() sum=0;
 x=0

x < i
x=x+1

i==10

sum=1 sum=sum+x

print(sum)

yes

yes no

no

no

yes

Not executed !!

i = -1

i = 0

i = 1

i = 50

i = 99

i = 100

i = 101

Statement coverage:

9 / 10 = 90%

Branch coverage:

13 / 15 = 87%

Jukka Paakki 122

read(i)

(i<0)
| |

(i>100)

error() sum=0;
 x=0

x < i
x=x+1

i==10

sum=1 sum=sum+x

print(sum)

yes

yes no

no

no

yes i = -1

i = 1

i = 10

Statement coverage:

10 / 10 = 100%

Branch coverage:

15 / 15 = 100%

62

Jukka Paakki 123

read(i);
if ((i < 0) || (i > 100)) error() else
{ sum=0; x=0;
while (x < i)
{ x=x+1; if (i <> 10) sum=sum+x; }
print(sum); }

Statement coverage ≠ Branch coverage:

Jukka Paakki 124

read(i)

(i<0)
| |

(i>100)

error() sum=0;
 x=0

x < i
x=x+1

i<>10

sum=sum+x

print(sum)

yes

no yes

no

no

yes

 i = −1

i = 1

OK;
100% statement coverage

63

Jukka Paakki 125

read(i)

(i<0)
| |

(i>100)

error() sum=0;
 x=0

x < i
x=x+1

i<>10

sum=sum+x

print(sum)

yes

no yes

no

no

yes

 i = 10

sum = 0 !!!
Failure !!!

Jukka Paakki 126

read(i)

(i<0)
| |

(i>100)

error() sum=0;
 x=0

x < i
x=x+1

i<>10

sum=sum+x

print(sum)

yes

no yes

no

no

yes

 i = −1

i = 1

Branch coverage: 13 / 14 =93 %

64

Jukka Paakki 127

Definition 5.4. A set P of execution paths satisfies the condition
coverage criterion if and only if for every control node in the
flow graph consisting of atomic predicates (c1, c2, …, cn), ci
yields true (yes) when evaluated within a path p1 in P and ci
yields false (no) when evaluated within a path p2 in P, i = 1, 2,
…, n.

– internal structure of composite control predicates taken into
account: (i < 0) || (i > 100)

– each atomic predicate separately tested

true / false true / false

Jukka Paakki 128

Definition 5.5. A set P of execution paths satisfies the
multicondition coverage criterion if and only if for every
control node in the flow graph consisting of atomic predicates
(c1, c2, …, cn), each possible combination of their truth values
(true/yes, false/no) is evaluated within at least one path p in P.

– stronger requirement than for condition coverage

– all the combinations

– for 2 atomic predicates: (true,true), (true,false), (false,true), (false,false)

– for 3 atomic predicates: 8 combinations, etc….

65

Jukka Paakki 129

Definition 5.6. The path coverage criterion.

Definition 5.7. The independent path coverage criterion.

§ Path coverage the strongest criterion

– usually impossible to reach

§ Independent path coverage stronger than branch coverage

– used also in complexity analysis of programs

Jukka Paakki 130

(x <> 0)
&&

(z >= 0)
y = z/x

yes

no

statement coverage vs. branch coverage vs.
condition coverage vs. multicondition coverage:

if ((x <> 0) && (z >= 0)) y = z/x

66

Jukka Paakki 131

§ Complete statement coverage: (x = 1, z = 0) [1 test]

§ Complete branch coverage: (x = 1, z = 0) for the yes-
branch, (x = 1, z = −1) for the no-branch [2 tests]

§ Complete condition coverage: (x = 0, z = 0) for the
combination (false, true), (x = 1, z = −1) for the combination
(true, false) (yes-branch unexplored !) [2 tests]

§ Complete multicondition coverage: (x = 1, z = 0) for the
combination (true, true), (x = 1, z = −1) for the combination
(true, false), (x = 0, z = 0) for the combination (false, true),
(x = 0, z = −1) for the combination (false, false) [4 tests]

Jukka Paakki 132

Selection of test cases

A certain code coverage criterion and percentage (e.g. 100% branch
coverage) has been chosen ⇒ one has to design test cases to reach the
criterion.

1. Construct a flow graph for the program (with a white-box tool).
2. Choose the execution paths that satisfy the criterion.
3. For each execution path, design a test case (program input) that

activates a traversal of the path.
4. Execute the tests (with the white-box tool that calculates the coverage).
5. If the required coverage has not been reached, return to step 3 to design

additional test cases for those execution paths that have not been
traversed yet during testing.

67

Jukka Paakki 133

The process of designing a test case for a particular execution
path is called path sensitization:

– In general, path sensitization is undecidable: there is no algorithm that can
find a suitable test case for each possible path.

– Symbolic execution and equation solving tools succeed in some cases.
– A heuristic: Begin with the control conditions of a branch at the end of the

path. Select such variable values that will satisfy these conditions. Repeat
this analysis for each prior branch in the path until you reach the entry node
of the flow graph. Use the selected values of the input variables as the test
case for the path.

– There may be infeasible paths that cannot be executed with any input,
caused by short-circuit evaluation, contradictory or mutually exclusive
control conditions, redundant control predicates, or dead code

Jukka Paakki 134

§ the crucial points in a flow-graph are those where the execution diverges,
that is, the control predicates of branches

§ one has to find the input values such that when executing the program
with the input, control branches into the desired direction and the
predicate p obtains the corresponding value (true / false) or value
combination

– note 1: p may depend on the input just indirectly
– note 2: it may not be possible to obtain all the required truth values for p:

((x == 1) && (x==2))

p

68

Jukka Paakki 135

(a) Simple
loops

(b) Nested
loops

(c) Serial
 loops

(d)
Unstructured
 loops

5.2. Loop testing

Basic
coverage-
based white-
box methods
do not take
into account
the inherent
iterative
nature of
loops

Jukka Paakki 136

§ Testing of simple loops: 0 iterations (no looping), minimum number of
iterations (possibly 0), minimum+1 iterations, typical number of iterations,
maximum-1 iterations, maximum number of iterations, maximum+1
iterations (should not be feasible)
– note: loops with fixed iteration control may not be executable (testable)

with all the suggested iteration patterns

for (j=0; j < 999; ++j) { … }

§ Testing of serial loops:
– if there is no data-flow relationship between the loops, test them both as

simple loops
– if there is a data-flow relationship between the loops, test them as if the

loops were nested

§ Testing of unstructured (”spaghetti”) loops: test the loop with an equivalent
simple / serial / nested loop as model
– spaghetti code should be rewritten into structured form, for testing as

well as for maintenance purposes

69

Jukka Paakki 137

§ Testing of nested loops:
– There would be too many tests when repeating all the inner loop tests

every time an outer loop is iterated, so:

1. The innermost loop is tested first using the simple-loop strategy. The
other loops are iterated their minimum number of times.

2. Set up the looping conditions of the previously tested loop such that it
will be iterated a suitable number of times (minimum, typical, or
maximum).

3. Proceed to testing the outer loop which is nesting the previously
tested one, using the simple-loop strategy. (The outer loops are
iterated their minimum number of times, the inner loops are iterated
their suitable number of times.)

4. Repeat the steps 2 and 3, until the outermost loop has been tested.
5. Set up a test that will iterate all loops their maximum number of

times.

Jukka Paakki 138

5.3. Data-flow testing
Events on data (variables):
§ d (defined): the variable gets a value by an assignment
statement, initialization, input statement, …
§ k (killed): the variable gets undefined, e.g., by
deallocation of its space. [Of minor importance.]
§ u (used): the value of the variable is referred to and
used. If necessary, the uses can be classified further:

− c (computation): the value of the variable is used in
computation, typically in the expression on the right-
hand side of an assignment.
– p (predicate): the value of the variable is used in a
control predicate for branching the execution flow,
typically in an if-statement, while-statement, for-
statement, or a switch-(case-)statement.

70

Jukka Paakki 139

Data-flow anomalies:

...; x:= 1; y:= y+10; read(z); z:= x+y+z;
d u

§ dd: suspicious, but may be harmless: x:= 1; x:= 2.
§ dk: probably a bug (a data-flow “anomaly”); why define the
variable without using it at all?
§ du: the normal case; the variable is defined and then used.
§ kd: normal situation; the variable is killed and then redefined.
§ kk: harmless, but probably a bug; why kill the variable twice?
§ ku: a bug; the variable is undefined, so its value cannot be used.

Jukka Paakki 140

§ ud: normal situation (in imperative languages):
y:= x+1; x:= 10 or x:= x+1.

§ uk: normal situation.
§ uu: normal situation: y:= x+x.
§ −d: the normal case.
§ −k: probably a bug; the variable is killed even though it does
not exist.
§ −u: probably a bug; the variable is used without a value.
§ d−: suspicious; why give a value that will never be used?
§ k−: normal situation.
§ u−: usually the normal case. (However, if the variable is
dynamic, it should also be killed and the space for it should be
deallocated.)

71

Jukka Paakki 141

Data-flow testing methods:

§ data-flow graph with respect to a certain variable:
annotation of the control-flow graph

§ annotation: coding of the nodes with the symbols
d, k, c, p (u)

§ several forms of coverage: how extensively the
sequences of d, k, c, p (u) are exercised during testing
§ stronger than control-flow methods:

more testing needed to reach a certain coverage

Jukka Paakki 142

Definition 5.8. A definition-clear path with respect to a
variable x is a path where no node contains a definition
occurrence (d) of x.

Definition 5.9. A definition occurrence (d) of a variable
x at a node n reaches a use occurrence (u, c, p) of x at a
node v, if and only if there is a path of nodes (n, w1, w2,
…, wm, v) from n to v, and (w1, w2, …, wm) is
definition-clear with respect to x.

x = ... = … x

d

x

u (p)

= … x

u (c) u (c)

= … x

72

Jukka Paakki 143

Definition 5.10. A set P of execution paths satisfies the
all-definitions criterion (with respect to a variable x) if
and only if for all definition occurrences (d) of x, there is
at least one path in P that includes a subpath through
which the definition of x reaches some use occurrence (u,
c, p) of x.

Definition 5.11. A set P of execution paths satisfies the
all-uses criterion (with respect to a variable x) if and
only if for all definition occurrences (d) of x and all
use occurrences (u, c, p) of x that the definition
reaches, there is at least one path in P that includes a
subpath through which that definition reaches the use.

Jukka Paakki 144

read(i);
if ((i < 0) || (i > 100))

error() else
{ sum=0; x=0;
while (x < i)

{ x=x+1;
if ((i == 1) || (i == 10)) sum=1
else sum=sum+x; }

print(sum); }

73

Jukka Paakki 145

read(i)

(i<0)
| |

(i>100)

error() sum=0;
 x=0

x < i
x=x+1

(i==1)
||

(i==10)

sum=1 sum=sum+x

print(sum)

yes

no

no

yes

yes no

d

d

cd

c

i = 1

i = 2

⇓

100%

all-definitions

coverage

Jukka Paakki 146

read(i)

(i<0)
| |

(i>100)

error() sum=0;
 x=0

x < i
x=x+1

(i==1)
||

(i==10)

sum=1 sum=sum+x

print(sum)

yes

no

no

yes

yes no

d

d

cd

c

i = 1

i = 2

⇓

< 100%

all-uses

coverage

i = 0

74

Jukka Paakki 147

Definition 5.12. The all-du-paths criterion.

Definition 5.13. The all-p-uses / some-c-uses criterion.

Definition 5.14. The all-c-uses / some-p-uses criterion.

Jukka Paakki 148

read(date, x)

x > 99

error() new =
date

x =
50 x=x+1

i==10

sum=1 sum=sum+x

print(new)

yes

yes no

no

no

yes

”seed”

Technique:

automatic data-flow

slicing

75

Jukka Paakki 149

path coverage

all-du-paths

all-uses

all-p / some-c all-c / some-p

all-definitions

statement c.

multicondition
c.

independent path c.

condition c.

branch c.

5.4. Subsumption among white-box methods

stronger

weaker

Jukka Paakki 150

5.5. Main differences between
black-box and white-box:

§ white-box: source code needed
§ black-box: test cases obtained directly by design
§ white-box: test cases obtained by separate code analysis
§ black-box: less systematic and “formal”, more ad-hoc and
based on intuition ⇒ technically easier, but more risky
§ white-box: strong theoretical background, automation
possibilities (code coverage)
§ black-box: no standard notion for internal testing quality
(“coverage”) [input space / functionality / features ?]
§ black-box: more commercial testing tools
§ black-box: more common in industry

76

Jukka Paakki 151

number of faults
detected

resources
needed black-

box
white-

box
formal
verification

reason to change
the method

reason to change
the method

”trivial” faults,
easy to detect

”fatal” faults,
hard to detect (e.g., Pentium)

