
LZ77 Parsing, et c.

Simon J. Puglisi
University of Helsinki
Seminar on Data Compression Techniques

LZ77 is a lossless compression
method discovered by Abraham
Lempel and Jacob Ziv in 1977

Lossless
(We can get all the data back)

vs.
Lossy

(We can’t necessarily)

-  LZ77 parsing (compression)

-  Getting the data back (decompression)

-  Variations on the basic scheme
-  Real compressors that use LZ
-  Rightmost parsing
-  Explicit literals
-  Relative pointers
-  Encoding the output of the parsing efficiently…

Today

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b b a

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b b a

(1,1) (1,3) (5,3) (2,2)

LZ77 Parsing (Encoding)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b b a

(1,1) (1,3) (5,3) (2,2)

LZ77 Parsing (Encoding)

source

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b b a

(1,1) (1,3) (5,3) (2,2)

LZ77 Parsing (Encoding)

source length

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b b a

(1,1) (1,3) (5,3) (2,2)

LZ77 Parsing (Encoding)

(b,0)(a,0)

Lempel-Ziv (LZ) Parsing

The Lempel-Ziv parsing breaks a string X of n symbols into z
phrases.

If the parsing is up to position i, then the next phrase is either
-  X[i] – if symbol X[i] has not appeared before, or
-  X[i..j] – the longest substring starting at i and some pi < i in X

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a b b a
a b a a b a b a b b a

(1,1) (1,3) (5,3) (2,2)

LZ77 Parsing (Encoding)

(b,0)(a,0)

literal phrases repeat phrases

Major technique of lossless data compression for almost 40 years
–  gzip, 7zip, LZ4 are some popular file compressors
–  Powerful compression

Also a very handy algorithmic tool for string processing
–  Key to algorithms and data structures for repetition detection, covering,

approximate pattern matching, compressed text indexing, et c., et c.

Lots of research on how to compute the parsing efficiently…

Applications of LZ77

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

Näive parsing algorithm just scans the already parsed portion of
the string, looking for matches…

Computing the parsing

ababbaabababazababbzabbbz

…something like O(n2) time

Most compressors maintain some data structure over the already
parsed portion of the string to speed up matching

Faster parsing

ababbaabababazababbzabbbz

Most compressors maintain some data structure over the already
parsed portion of the string to speed up matching

–  e.g. a hash table containing the locations of short matches

Faster parsing

ababbaabababazababbzabbbz

Most compressors maintain some data structure over the already
parsed portion of the string to speed up matching

Faster parsing

ababbaabababazababbzabbbz

ab: 1,3,7,9,11,15,17,21
aa: 6

ba: 2,5,8,10,12,16
bb: 4,18
…

Most compressors maintain some data structure over the already
parsed portion of the string to speed up matching

Faster parsing

ababbaabababazababbzabbbz

ab: 1,3,7,9,11,15,17,21
aa: 6

ba: 2,5,8,10,12,16
bb: 4,18
…

Getting the data
back…

(i.e. decompression)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababa

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababaz

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababaz

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababaz

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababazababb

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababazababb

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababazababb

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababazababbzab

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababazababbzab

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababazababbzab

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

ababbaabababazababbzabbb

(a,0),(b,0),(1,2),(2,2),(1,4),(1,3),(z,0),(1,5),(14,3),(4,2),(19,3),(14,2)
(26,4)(22,3)(1,3)(11,5)(13,4),(30,6)(1,1)

LZ Decoding

Decompressing the original file from the LZ phrases is simple & fast
–  O(n) time, O(z) accesses to the already decoded part of the file

c = 0 !
for each phrase (p,l) !
 if l == 0 then /*literal phrase*/ !

S[c++] = p !
else /*repeat phrase*/ !

for i = 0 to l-1 do !
S[c++] = S[p++]

LZ Decoding

Dealing with big
files…

•  Big files cause difficulties for LZ77, for at least two reasons:

–  During compression: the index data structures used to perform parsing
efficiently grow linearly with the input size – on big files they can start to
exceed this size of memory

-  During decompression: copying characters from the already
decompressed part of the file requires a random access to retrieve those
characters. If the decompressed part of the file exceeds memory, this
random access will become a disk access (which is very slow)

-  Real compressors take shortcuts to deal with these situations…

Practicalities with big files

At compression time, break file into blocks, compress each block
separately, source & phrase must be in same block

Workaround (i.e. hack) for big inputs

At compression time, break file into blocks, compress each block
separately, source & phrase must be in same block

Workaround (i.e. hack) for big inputs

At compression time, break file into blocks, compress each block
separately, source & phrase must be in same block

Workaround (i.e. hack) for big inputs

At compression time, break file into blocks, compress each block
separately, source & phrase must be in same block

Workaround (i.e. hack) for big inputs

(.,.)(.,.)(.,.)…

At compression time, break file into blocks, compress each block
separately, source & phrase must be in same block

Workaround (i.e. hack) for big inputs

(.,.)(.,.)(.,.)… (.,.)(.,.)(.,.)…

At compression time, break file into blocks, compress each block
separately, source & phrase must be in same block

Workaround (i.e. hack) for big inputs

(.,.)(.,.)(.,.)… (.,.)(.,.)(.,.)… (.,.)(.,.)(.,.)… (.,.)(.,.)(.,.)… (.,.)…

A fixed-length window slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)…

A fixed-length windows slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)…

A fixed-length windows slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)…

A fixed-length windows slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)

A fixed-length windows slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)

A fixed-length windows slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)

A fixed-length windows slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)(.,.)

A fixed-length windows slides over the text as we parse
–  Source for the next phrase must be inside the window

Similar idea: use a sliding window

(.,.)(.,.)(.,.)… (.,.)(.,.)

No free lunch…

Workaround (i.e. hack) for big inputs

0

2

4

6

8

10

12

14

16

Wikipedia DNA reads Source code

ph

ra
se

s
(b

ill
io

ns
)

whole file
4GB blocks

No free lunch…

Workaround (i.e. hack) for big inputs

0

2

4

6

8

10

12

14

16

Wikipedia DNA reads Source code

ph

ra
se

s
(b

ill
io

ns
)

whole file
4GB blocks

>10x

Variations to the
basic scheme…

•  The greedy parsing algorithm minimizes # of phrases…

•  ...but often we are more interested in minimizing the total size
of the compressed file.

•  This forces us to think about how (pos,len) pairs are encoded,
–  and whether we should use the (pos,len) representation of a phrase at all.

Variations

•  Naive encoding: store (pos,len) as two 32-bit integers
–  This equates to 8 bytes per phrase
–  If we assume each character of the input needs 1 byte...
–  ...it’s only worth encoding a phrase as (pos,len) if its “fairly” long

Variations: encode short strings as literals

•  Naive encoding: store (pos,len) as two 32-bit integers
–  This equates to 8 bytes per phrase
–  If we assume each character of the input needs 1 byte...
–  ...it’s only worth encoding a phrase as (pos,len) if its “fairly” long

Variations: encode short strings as literals

… (14,3),(4,12),(19,3),(14,26),(26,18),(22,2)…

•  Naive encoding: store (pos,len) as two 32-bit integers
–  This equates to 8 bytes per phrase
–  If we assume each character of the input needs 1 byte...
–  ...it’s only worth encoding a phrase as (pos,len) if its “fairly” long

Variations: encode short strings as literals

… (14,3),(4,12),(19,3),(14,26),(5,18),(22,2)…

… (-3, ktt),(12,4),(-3, vav),(26,14),(18,5),(-2, nc)…

•  Often in practice, a long match is broken by a single mismatching
character
–  In the parsing we’ve discussed, this will produce three phrases

actcgcagagcgcgcagagccctac ….... actcgcagagcgcacagagccctat

Variations: encode triples rather than pairs

•  Often in practice, a long match is broken by a single mismatching
character
–  In the parsing we’ve discussed, this will produce three phrases

actcgcagagcgcgcagagccctac ….... actcgcagagcgcacagagccctat

Variations: encode triples rather than pairs

 (1,13),(1, 2),(12,10)

•  Often in practice, a long match is broken by a single mismatching
character
–  In the parsing we’ve discussed, this will produce three phrases

actcgcagagcgcgcagagccctac ….... actcgcagagcgcacagagccctat

Variations: encode triples rather than pairs

 (1,13),(1, 2),(12,10)

 (1,13,a), (12,10,t) …

•  Many more tricks used in actual compressors…

•  E.g., store distance to previous match rather than position of
previous match
–  Numbers tend to be smaller, so use less bits

•  E.g., store positions relative to the previous phrase’s position
–  These tend to be correlated

Variations…

•  Many more tricks used in actual compressors…

•  E.g., store distance to previous match rather than position of
previous match
–  Numbers tend to be smaller, so use less bits

•  E.g., store positions relative to the previous phrase’s position
–  These tend to be correlated

•  Whatever the output of the parsing algorithm
(some stream of integers and chars) it needs to
be coded efficiently…

Variations…

