
Python-ohjelmointia
Biotieteilijöille Avoimessa

2019
Janne Ravantti & Heidi Hulkko

janne.ravantti@helsinki.fi

Luennot suomeksi ja materiaali
englanniksi

=>
"Python's documentation, tutorials, and guides are constantly evolving."
(https://www.python.org/doc/)

https://jakevdp.github.io/PythonDataScienceHandbook/

https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

https://stackoverflow.com/questions/40557910/plt-plot-meaning-of-0-and-1

Slides & example data in Moodle

Schedule & places
https://courses.helsinki.fi/fi/ay930101/128314088

Ask questions!

https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=a
nnouncement-banner&utm_campaign=dev-survey-2019

& use search engines + stackoverflow, but be careful out there!

Goals for the course:

1) Tools to do bioinformatics with Python on your own!

2) Pointers to some useful libraries

3) Practise Python programming

Outline

1. Python-programming warm up
2. Anaconda Distribution
3. Python as an Integration language
4. Libraries...

4.1. Numpy & Scipy
4.2. Matplotlib
4.3. Pandas
4.4. Biopython
4.5. ...

5. Recap

Programming 1/2

Programming requires peculiar way of thinking
(but it can be learned!)

Programming 2/2

Good* way to learn programming is to program!

*The Best?

Bioinformatics & Python?

--- Python ---

Comp.sci
Statistics
Mathematics

BiologyBioinformatics’
methods
development

Processing
biological
data

Programming & bioinformatics

Goodness of your program is (mostly) defined by
the biological question

Opinionated tips for programming

● Start small (e.g. not aligning 1000-genomes humans!) and one step at a time

● Don’t worry (about errors) (too much - testing is important, but...)

● Think! What...:

○ is the biological question?

○ is the data?

○ the program is supposed to do (methods, algorithms, ...)?

○ input (DNA-sequence? Set of RNA-seq data, names of plants, …)

○ can go wrong => then what (disk full, memory full, bad methods, too little data, ...)?

● Learn to save your code (naming, locations, even something like git)

Caveats

● Everything changes...

○ Data (WXS => WGS => WGBS; RNA-seq, …; HG37 vs. HG38...)
○ Methods (bowtie => bowtie2 => bwa mem => minimap2 => …)
○ Links go stale (404 Not Found)

○ Python 2.7 => 3.7+
○ Python-libraries (Standard library, Numpy, Biopython, ...)

○ Operating systems / platforms
○ System libraries

=> Do not get stuck with the old unless absolutely necessary, but don’t worry
too much about newest trends!

Warmups...

More handy commands & constructs in Python

● Python core language has a lot of useful commands to make programming
easier and simpler

● Same is true with libraries (this course)

● Beginner’s class did not have time to go to many of the commands /
constructs

● Thus, few more for your toolbox (read the documentation!)

List comprehensions

● “List comprehensions provide a concise way to create lists. Common
applications are to make new lists where each element is the result of some
operations applied to each member of another sequence or iterable, or to
create a subsequence of those elements that satisfy a certain condition.” (*)

E.g.
mylist = [1, 2, 3, 5, 7, 11]
double = []
for number in mylist:

double.append(2*number)

vs.
double = [2*number for number in mylist]

(*) https://docs.python.org/3/tutorial/datastructures.html (5.1.3.)

with-statement / contex manager(...)

● Opening and especially closing files is a bit laborous in Python

● With-statement creates an “environment” that handles closing automatically

E.g:
file_handle = open(“expression_data.csv”, “r”)
… work with the file
file_handle.close()
print(“All done!”)

vs.
with open(“expression_data.csv”, “r”) as file_handle:

… work with the file
print(“All done!”)

Errors and Exceptions 1/2

● Three(?) kinds of errrors:
○ syntax error (e.g. missing end parenthesis => program does not even start
○ runtime error (e.g. division by zero) => program crashes unintentionally
○ logical error (e.g. program calculates wrong thing) => bad science

● Which is the worst?

● Runtime errors (exceptions) can be handeled programmatically (to an extent)
using try / except-statements (https://docs.python.org/3/tutorial/errors.html)

● Different exceptions can be handled separately
(https://docs.python.org/3/library/exceptions.html#bltin-exceptions)

Errors and Exceptions 2/2

E.g.
mylist = [1,2,3,5,7,0,11]
inverse = [1/item for item in mylist] # you know what will happen…

vs.

mylist = [1,2,3,5,7,0,11]
try:

inverse = [1/item for item in mylist]
except:

print(“Sorry, there was a problem with the list”)

BUT! Be very, very careful when using exceptions! (Why?)

More on loops: break, continue and pass 1/2

● break-, continue- and pass-statements work inside for- and while-loops
for control flow shortcuts (*)

● break will jump out of the innermost loop whereas continue will jump to the
next iteration of the loop immediately

E.g.
for i in range(100):

if i > 50:
print(i)
break

what gets printed?

(*) https://docs.python.org/3/tutorial/controlflow.html (4.4)

More on loops: break, continue and pass 2/2

E.g.
for i in range(100):

if i > 50:
print(i)
continue

print(i*i)
what gets printed?

● Beware! Sometimes break / continue obscures control flow - it is usually
better to rethink why to loop in the first place

● The pass-statement does nothing. It can be used when a statement is
required syntactically (rearly used)

Odds and sods

● There are many, many, many more (smallish and not so smallish) things in
Python that make programmer’s life easier:
○ enumerate-function => returns counter/index for e.g. list items along the item itself
○ zip-function => iterates in lock-step through lists and other iterables
○ print-statement accepts “file=”-argument...
○ set-data structure => supports all mathematical set operations => easy to find e.g. differences
○ …

○ Standard library also provides all kinds of tools like:
■ Data presistence
■ Concurrent execution
■ … (more on libraries later)

=> study Python universe & practise!

Warm-up exercises

1) Get seqence-lenghts from a FASTA(*)-file (use “SH1_prots.fasta” - file) and
print the shortest and the longest lengths.

2) Make file containing protein sequences (e.g. “my_sequences.txt” / one
sequence per line) to be a proper multiFASTA-file.

(*) https://en.wikipedia.org/wiki/FASTA_format

Biology is messy
=>

data is messy
=>

do not panic => think!

https://en.wikipedia.org/wiki/KISS_principle

Exercise / tables => Pure version

Make a pure(*) Python-program(**) to read file
“experiment_table_1_1000_first.csv” and multiply columns “treatment_2” and
“treatment_12” together per value and list then the original columns “treatment_2”
and “treatment_12” and the result in a new file.

(*) pure == just basic Python statements, no libraries needed or used.

(**) let’s call it e.g “column_multiplier_pure_python” for later use

