5G Architecture, Mobile Edge Computing and IoT

Professor Sasu Tarkoma, Head of Department 18 April 2017

www.cs.helsinki.fi

50 Years of Excellence

- Department of Computer Science
- Leading institution in Computer Science in Finland
 - #1 in Finland in QS Ranking 2017
 - #1 in Nordic Countries in Times Higher Education 2017
 - Core Computer Science and Data Science
 - 17 professors and over 200 employees

Industry Research Centers:

- Nokia Center for Advanced Research (NCAR)
- Intel CRI-SC

5G Research Architecture Mobile Edge Computing IoT

Current research topics include:

Digital services, IoT security and privacy, software-defined networks, Data Science, ...

Starting point in 2014: LTE RAN and EPC with SDN and Cloud

5G Test Network Finland

5gtnf.fi

Scaling Mobile Networks

5G is expected to support diverse use cases

Why current LTE networks cannot meet these demands?

Telephony Centric – IP traffic an afterthought

Convoluted Control and Data Plane

Solutions

Move functionality to the Edge Move functionality to the Cloud (NFV) Network slicing

How do we modularize and refactor the network to meet the use case specific requirements?

Network Refactoring

Three steps:

1. Identifying the **roles** of the network functions

2. Splitting each network function into **modules**, creating one module for each role of the network function. For each module, we identify the requirements of a physical device instantiating that module.

3. Changing the **mapping** between physical devices and modules depending on the requirements (cost, latency, security, ...) from the network.

Refactoring: Thin Edge

Refactoring: Intelligent Edge

Refactoring Approach for Optimizing Mobile Networks

	Total number of signals per event				
	Initial Attach	Active to Idle	Idle to Active (UE)	Idle to Active (Net)	Handover (S1H)
Implementation					
LTE (Baseline)	35	6	13	17	22
Thin Edge	24	6	13	16	16
Intelligent Edge	17	3	10	12	12

A Refactoring Approach for Optimizing Mobile Networks. Matteo Pozza, Ashwin Rao, Armir Abujari, Claudio Pallazi, Hannu Flinck, and Sasu Tarkoma. In the Proceedings of IEEE ICC 2017

Network in a Box Create, scale, upgrade networks

Coreless Mobile Networks A state management perspective

Frans Ojala, 2016

Implications

In theory, if the **data store** is the bottleneck, our results indicate the following numbers for a simulation of 15 eNB with Apache Geode:

Current deployments are seeing a maximum of 1000 UE / eNB UE per area increases depending on configuration: ~84 - 740 x

5G prospects for the control plane scalability: 100 - 1000 x

Off-the-Shelf Software-defined Wireless Networks

Open vSwitch (OVS) in base station Use **Wireless Isolation** to force flows to OVS

Two approaches, Intelligent and Thin AP

Thin AP: Traffic is forced to flow through external host

Intelligent AP: OVS in base station

Seppo Hätönen, Petri Savolainen, Ashwin Rao, Hannu Flinck, and Sasu Tarkoma. ACM SIGCOMM 2016 demo.

Instructions: https://wiki.helsinki.fi/display/WiFiSDN/

Deployable on Off-the-Shelf Devices

Unified Mobile Edge for IoT Devices

Programmatically manage and compose IoT devices and services

IoT hub running at the edge as an SFC service Intelligent AP, Philips Hue bridge and a light, Chromecast, connected curtain

Summary

Network Refactoring methodology for analysis and runtime network generation supported by network slicing

Wireless SDN for secure and stratified wireless networks

Wireless SDN and **multi-access edge computing** for **IoT** management and traffic offloading

5G Test Network Finland

Thank You!

www.cs.helsinki.fi

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.cs.helsinki.fi

Additional slides

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.cs.helsinki.fi

Securebox is a novel cloud-driven, low cost Security-as-a-Service solution that applies Software-Defined Networking (SDN) to improve network monitoring, security and management for smart IoT environment.

- **SoftOffload** is an open-source software defined platform for achieving intelligent mobile traffic offloading.
- It collects various traffic context from both end-users and network operators, and performs optimal mobile offloading to increase userside throughput and reduce network congestion.
- Code and demo:

www.cs.helsinki.fi/group/eitsdn/softoffload.html

