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5G Mobile Core) 

Streaming 

Mobile Edge Computing 

Current research topics include: 
Digital services, IoT security and privacy, software-defined 
networks, Data Science, ... 
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Mobile Research: Carat 
 
Carat team (carat.cs.helsinki.fi) 
 



Motivation 

Many heterogeneous, active devices and 
many users with different intents.  – What 
kind of behavior is normal or typical? 

Battery 
lifetime? 
 
Risk level? 



Introducing Carat  

Carat is the first system to use the mobile 
device community to detect and correct 
energy problems 

 
Our method for diagnosing energy 

anomalies uses the community to infer a 
specification (expected energy use), and 
we call deviation from that inferred 
specification an anomaly 

 



Carat 
●  Originated in UC Berkeley, in collaboration with 

University of Helsinki 
●  Mobile app for Android and iOS 
●  Currently over 850 000 users 
●  >2.5 TB of data, > 250 million measurements 
●  Research project with many directions 
●  http://carat.cs.helsinki.fi 



What is Carat?  

●  Mobile app shows users 
advice: 
“Kill Facebook for 16m ± 41s 
battery life” 

●  Energy hogs and bugs 
●  Tracks user's battery life 

average since installation 
●  Places users within 

community with a ranking 
called J-Score 















What is Carat?  

●  Users see Hogs, high energy use apps 
●  And Bugs that use energy faster on THEIR 

device than on others 
●  Users with these 

issues quickly see 
battery life benefits 
once they are 
addressed 

●  Average improvement 20% 
●  Those with energy anomalies can improve 

41% 

Group receiving 
recommendations 
improved battery life 
by 41% 
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The Carat project: System 



The Data Analysis 

●  Samples are combined to obtain energy drain 
probability distributions (with features) 

●  Users, Apps, App and User pairs, OS versions, 
Device models 

●  Distributions are compared using the distance 
between their 95% confidence interval error bars 

– If a distribution has a positive distance from 
another and a higher mean, it is a: 

– Hog (for an app 
vs the distribution for other apps) 

– Bug (for app & user combination 
vs other users of the same app) 



Hogs and Bugs 

Devices running X Devices not running X 

HOGS 

… 



Hogs and Bugs 

My device running X Other devices running X 

BUGS 

… 



Example: The Kindle WhisperSync bug 

The decision tree allows “what-if” analysis and the generation 
of recommendations 



The PADS project will develop new privacy enhancing 
algorithms and methods for Data Science 

 
Two methodological goals 
•  Develop the algorithmic framework for privacy-aware 

predictive modelling, and 
•  Scalable implementation of the framework 
Two key use cases 
•  Large-scale genome data processing and sharing for 

personalized medicine, and  
•  Mobile and environmental sensing 

The PADS Project 



PADS Sensing SDK Overview 

Carat Data

Carat users

Developers
Researchers

Data Privacy
Module
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models, settings

App 
name

Data share:
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σ, Ν(μ, σ²), ...

System settings,
energy plans

Carat 
id

1.5TB 100MB 200KB

Fig. 3. Carat data sharing model for researchers, developers, and users.

IV. DATA SHARING CHALLENGES

One of the challenges of sharing large datasets is their sheer
size. Multiple terabytes of data can take days to download even
when the data provider has invested in the network capacity
necessary. As datasets become more popular, more network
resources are needed. One possibility with our dataset is sharing
it through Amazon’s S3 storage service. This allows sharing
arbitrarily large datasets, and enables network transfer costs
to be paid by the downloader so that the data provider does
not receive an overwhelming bill simply because they chose to
share data free of charge. However, using Amazon S3 requires
both the data provider and all interested parties to have Amazon
accounts, which locks the data behind a single cloud vendor.

Raw data collected the wild can contain errors, such as
failure to obtain a measurement, erroneous measurement values,
missing values, and meaningless default values. Some errors
may even be used to identify individual devices [7]. Effective
data cleaning procedures should be applied to any data before
publication.

Sharing the privacy-sensitive data can cause a multiple
problems, for example, users might be identified from the
data against their will, their location might be discovered,
and application ideas under development revealed prematurely.
Therefore, sharing raw data includes risks for both users
participating in the data collection and the authors entrusted
with managing the data. Hashing user identifiers, or application
names may help in certain situations but also limits the value
of the information and precludes some high utility use cases.

Most shared datasets come with licenses and agreements
how they can be used and in which conditions. Even with
proper licensing policy, any opportunities for misuses should
be reduced to minimum. If these challenges preclude sharing
the raw data, we plan to open access to the results of the
analysis as well as statistics found in the data.

V. PLANNED SOLUTIONS

For the Carat users, our application presents a simple
statistical analysis of their devices performance compared to

the others (so called J-Score). Some statistics are also provided
from the whole community, for example, distribution of well-
behaved and energy-hungry applications, and popular device
models. In the Carat website, we also provide a view into the
top two hundred most energy-intensive applications on both
iOS and Android, searchable by date. As further data sharing
towards the users of Carat, we are planning to add system
settings recommendations, and ”energy planning”, allowing
users to create energy management plans for a day, a week, or
a longer period of time.

For developers who want to utilize the battery information,
we can make available an API providing an ever-growing
set of statistical values. Thus, without sharing the raw data
or user identifiers we can offer a view into real-time energy
consumption in the Carat community. Based on a search by the
application process name, the API could return, for example:

• Number of users in the community, without specifying
user identifiers

• Energy estimate as the expected average consumption %/s,
with estimated error

• Energy estimates and corresponding error estimates in
certain system setting combinations, if enough data is
available, for example with different screen brightness
levels (automatic, or manual between 0 to 255), network
type (Wi-Fi or mobile network), Wi-Fi signal strength
(one to four bars), CPU usage (high, medium, or low),
and battery temperature.

• Distribution of models and operating systems
• Energy estimates of different models and operating sys-

tems, if enough data is available (e.g. 100 users per model)
• Package signing identities, for malware detection purposes

(whether the developers recognize their key)
Fig. 4 gives an example of the developer API. Firstly, the

developer downloads the Carat SDK and signs it by the same
developer key they use for the applications they want to
monitor. If the key matches to ones seen in the Carat data,
access is granted. Secondly, the developer sets the criteria
for the query and gets back the application’s average energy
consumption where the condition holds, e.g. screen brightness
is 255. The tasks of the data privacy module are to control
access of the developers, protect the privacy of individual users
and applications with very small user bases, and to compute
the anonymized, differentially private data set for research
purposes.

For researcher community, the benefit of datasets are many.
We can use datasets from other researchers to obtain statistical
facts and to verify our findings with reference data. To obtain
the utility of a dataset while maintaining user privacy, we can
remove or anonymize privacy sensitive elements of the data.
Firstly, any kind of user or device identifier uniquely identifies
an individual inside the data, even if it cannot be associated
to personal information such as an email or phone number.
Using the device model or the application as an identifier can
be sufficient in some cases. However, it may be necessary to
tell apart the devices in the data.

Some previous mobile application data sets remove or hash



  An Early Warning System for Malware  
A lightweight technique for identifying devices at risk 
By looking at applications that occur with malware, it 
is possible to predict infection 5x better than 
choosing devices at random 

–  Useful for administrators, organisations (Bring Your Own 
Device scenario) 



MDoctor: Increasing Awareness of 
Infection Vulnerability   

MDoctor shows status of 
applications according to a 
malware dataset 

 
Infection vulnerability can be seen 

from device health  
 
Three metrics for application 

analysis: malware correlation, key 
rarity, and market vulnerability  

Department of Computer Science / Eemil Lagerspetz /
 MDoctor

1406/27/14www.helsinki.fi/yliopisto

MDoctor: Increasing awareness 
of infection vulnerability

● MDoctor shows status of applications 
according to a malware dataset (User 
chooses)

● Infection vulnerability can be seen from 
device health

● We use three metrics, malware 
correlation, key rarity, and market 
vulnerability

● http://is.gd/mdoctor

● Will be on Google Play later



5G Research 



NOKIA	CENTER	FOR	ADVANCED	RESEARCH	(NCAR)	

NCAR	was	launched	in	April	2016	and	is	a	joint	research	center	with	
University	of	Helsinki,	Aalto	University,	and	Nokia.	

	
To	foster	wider	coopera;on	between	the	universiDes	and	Nokia	to	enable	cross-unit	research	

delivering	high	quality	results:	thesis,	publicaDons,	holisDc	concepts	and	demos.	
	



5G Test Network Finland 

	
	

5gtnf.fi	



Starting point in 2014:  
LTE RAN and EPC with SDN and Cloud 
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SGW PGW 

PCRF MME 

HSS 

eNodeB UE 
UE 

UE 

Internet 
Controller 

Switch Switch 

Virt. 

Virt. Virt. 

Virt. 

Virt. 

Virt. 

5G elements as 
services/
applications 
running in 
virtualized 
environment 

Virt. 

Local and centralized 
coordination of radio 
resources 

VMs 

Virtualization 
aims for elasticity 
and runtime 
configuration 
support 

Mobile Edge Computing 

Network Slicing and 
Network Service Chains 

Multi-Access Mobile 
Edge Computing 



5G is expected to support diverse use cases 
Why current LTE networks cannot meet these demands?  

 Telephony Centric – IP traffic an afterthought  
 Convoluted Control and Data Plane  

Solutions 
 Move functionality to the Edge 
 Move functionality to the Cloud (NFV)  
 Network slicing 

 
How do we modularize and refactor the network to meet the 

use case specific requirements? 
 

Scaling Mobile Networks 



Three steps: 
 1. Identifying the roles of the network functions  
 2. Splitting each network function into modules, creating one module 
for each role of the network function. For each module, we identify 
the requirements of a physical device instantiating that module.  
 3. Changing the mapping between physical devices and modules 
depending on the requirements  (cost, latency, security, ...) from the 
network.  

 
LTE control plane example: 

 Modularize architecture 
 Identify state variables 
 Study signals between functions 

    Combine modules    

Network Refactoring 

Fig. 2. Three-layers abstraction. An LTE network can be abstracted into a
Storage layer for database-like services, a Control layer for network manage-
ment, and a Forwarding layer for data flows handling. The Storage layer and
Control Layer match the control and management plane of LTE networks while
the Forwarding layer corresponds to the data plane.

forwarding elements, and c) the Forwarding layer for handling
data flows according to the rules imposed by the Control
layer. The Forwarding layer acts as the data bridge between
the UE and the Internet. It also forwards the control plane
traffic from the UE to the Control layer (e.g., signals during
authentication). The Control layer takes decisions based on the
statistics coming from the data plane (e.g., bandwidth, queue
length in the gateways, etc.) and the policies generated using
the information in the Storage layer. Consequently, it instructs
the forwarding devices on how to serve the packets.

B. Abstract the Roles of Network Functions

The aim of this step is to map the network functions to the
previously identified roles: Storage, Control, and Forwarding.
For network functions that participate in more than one role,
we split each network function into modules such that we get
a module for each role. These splits are useful to untangle the
intrinsic convolution of the current network functions.

As shown in Figure 2, the MME and PCRF serve the control
plane because they take only network control decisions. Sim-
ilarly, the HSS and SPR belong to the Storage layer because
they provide subscribers’ data. In contrast, the eNB, the S-
GW, and the P-GW serve both the control plane and the data
plane. We therefore split each one of these network functions
into two modules, one for the Forwarding layer and the other
for the Control layer. We also explicitly add communication
interfaces between these modules, resulting in a modularized
architecture which is presented in Figure 3.

We now define the requirements associated with each mod-
ule. The modules in the Storage layer require a database
platform such as NoSQL or relational databases. Similarly,
the Control layer modules need a computing platform for their
software because all control tasks are software programs which
can be executed on commodity hardware. In contrast, the For-
warding layer modules have more specific requirements. All
of them need hardware for enforcing QoS rules received from
the Control layer. Moreover, the eNB Data module requires a
radio interface to communicate with UEs. Finally, S-GW Data
and P-GW Data require switching/routing capabilities.

Fig. 3. Modularized Architecture. The eNB, S-GW, and P-GW are split as
Control layer and Forwarding layer modules with interfaces added to connect
these modules. This step allows us to study the interaction between the modules
and explore the impact of combining them.

C. Map Modules to Physical Devices

The last step is the association between the identified
modules and the physical devices we have. Indeed, once the
requirements of each module have been defined, we just have
to provide a hardware device (or a set of hardware devices)
which is able to meet them. Furthermore, multiple modules can
be instantiated on the same physical device. As an example,
consider the Control layer modules. The only requirement of
these modules is a computing platform. As a consequence, we
can run all the Control layer modules in a single server, or we
can run part of them in a cloud environment, or we can assign
a dedicated physical device for each module. This decision is
driven by the objectives for which the network is deployed.
If we need to scale our control plane with the number of
connected subscribers, then we map the Control layer modules
to a cloud environment. If we need an emergency network for
the organization of rescue operations instead, then we put all
the modules in a single, portable device.

We argue that this association can be tailored to satisfy the
specific needs coming from different use cases. In this way,
we obtain the flexibility that is needed by mobile networks in
order to meet the requirements of current and future verticals.
For example, in the context of signaling storms, we can
instantiate the modules with the aim of reducing the number
of signals exchanged between the devices in the network.

IV. USE CASE: REDUCING THE SIGNALING LOAD

We now show a practical example of how to use our
approach. We focus on the requirements that have recently
arisen in LTE networks, i.e. the need of serving an increasing
number of UEs and the ability to deal with short and fre-
quent connections. Current LTE networks are unable to meet
these requirements because they experience signaling storms,
i.e. excessive signaling loads that compromise the network
performance. Therefore, we leverage our approach to reduce
the number of signals required by the procedures executed
in LTE networks. A decrease in the number of signals also
has a direct impact on the latency experienced by the mobile
devices. We restrict our analysis to the procedures triggered by
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Control

Example 1: Thin Edge

Radio Access 

Network (RAN)

GW

S-GW(C) P-GW(C)

MME PCRF

e
N

B
(C

)

S-GW(D) P-GW(D)

Storage

HSS SPR

eNB(D)

Refactoring: Thin Edge 
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Control

Ex2: Intelligent Edge

Radio Access Network (RAN)

GW
S-GW(C) P-GW(C)

MME PCRF

e
N

B
(C

)

S-GW(D)

P-GW(D)

Storage

HSS

SPR

eNB(D)

Refactoring: Intelligent Edge 



A Refactoring Approach for Optimizing Mobile Networks. Matteo Pozza, Ashwin 
Rao, Armir Bujari, Claudio Palazzi, Hannu Flinck, and Sasu Tarkoma. In the 
Proceedings of IEEE ICC 2017  

 

Refactoring Approach for Optimizing 
Mobile Networks  
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Implementation

Total number of signals per event

Initial 

Attach

Active 

to Idle

Idle to 

Active 

(UE)

Idle to

Active 

(Net)

Handover 

(S1H)

LTE 

(Baseline)

35 6 13 17 22

Thin Edge 24 6 13 16 16

Intelligent Edge 17 3 10 12 12

Impact of Coalescing Modules
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Approach for Building a Box

Features Verticals /  

Use cases

Requirements

Past Approaches Proposed Approach

Network in a Box 
Create, scale, upgrade networks 



Coreless Mobile Networks: A state 
management perspective  

Frans Ojala, 2016 



Implications 

In theory, if the data store is the bottleneck, our results indicate 
the following numbers for a simulation of 15 eNB with Apache 
Geode: 

 
Current deployments are seeing a maximum of 1000 UE / eNB 
UE per area increases depending on configuration: ~84 - 740 x        
 
5G prospects for the control plane scalability: 100 - 1000 x 



Matemaattis-luonnontieteellinen tiedekunta /               
 Seppo Hätönen

804/21/16www.helsinki.fi/yliopisto

SDN Enabled AP

● Switch ports separated to their own VLANs

● WiFi interfaces and switch ports are added 
separately to the OVS bridge

● Wireless Isolation enabled

wlan0

eth0.1 eth0.2 eth0.3 eth0.4 eth0.5

Switch

SoC

wlan1

kernel

Eth0

OVS
br

Seppo Hätönen, Petri Savolainen, Ashwin 
Rao, Hannu Flinck, and Sasu Tarkoma.  
ACM SIGCOMM 2016 demo. 
 
Instructions:   
https://wiki.helsinki.fi/display/WiFiSDN/ 
 

Open vSwitch (OVS) in base station 
Use Wireless Isolation to force flows to 
OVS 
 
Two approaches, Intelligent and Thin AP 
 
Thin AP: Traffic is forced to flow through 
external host 
 
Intelligent AP: OVS in base station 

Off-the-Shelf Software-defined Wireless Networks  



Deployable on Off-the-Shelf Devices 

Intelligent Edge Thin Edge 



WiFi interface eth0 interface

Device 
monitoring

Fingerprinting

Device type 
Identification

Vulnerability 
assessment

Enforcement

IoT Security Service

Security Gateway

Open vSwitch

SDN Controller

CPU

Cache

Wired IoT
devices

Wireless IoT
devices

Adversary

Remote attacks

Local attacks

IoT Sentinel: Automated Device-Type Identification 
for Security Enforcement in IoT (ICDCS, 2017) 



Unified Mobile Edge for IoT Devices 

Programmatically manage and compose IoT devices and services 
 

IoT hub running at the edge as an Service Function Chain (SFC) service 
Intelligent AP, Philips Hue bridge and a light, Chromecast, connected curtain 



Summary 
Carat is a crowdsourced system that provides 

personalized advice and recommendations to 
users. The dataset is growing and the project 
has many directions.  

Network Refactoring methodology for analysis and 
runtime network generation supported by network 
slicing 

Wireless SDN for secure and stratified wireless 
networks 

Wireless SDN and multi-access edge computing for 
IoT management and traffic offloading 

5G Test Network Finland 
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