
www.cs.helsinki.fi

Overview of the CS
Department and NODES:
Mobile and 5G Research

Professor Sasu Tarkoma, Head of Department
NODES Research Group

22 March 2017

University of Helsinki

§  The largest and the oldest
university in Finland

§  Key data for 2015
§  32 000 students
§  7 900 employees
§  300 subjects
§  6 100 degrees/year
§  530 PhDs/year

§  Founded in Turku 1640
§  Moved to Helsinki 1828

Faculty of Science at Kumpula Campus

Departments
§  Chemistry

§  Computer science
§  Geosciences and Geography

§  Mathematics and Statistics

§  Physics

50 Years of Excellence

§  Department of Computer Science
§  Leading institution in Computer Science

in Finland
§  #1 in Finland in QS Ranking 2017
§  #1 in Nordic Countries and overall #69 in

Times Higher Education 2017

§  Core CS and Data Science
§  Algorithms, Data Analytics and Machine

Learning
§  Software Systems
§  Networking and Services (NODES)
§  Bioinformatics

Data processing in
the network (4G/
5G Mobile Core)

Streaming

Mobile Edge Computing

Current research topics include:
Digital services, IoT security and privacy, software-defined
networks, Data Science, ...

Data gathering,
processing, and

control at the edge

Streaming

Data processing in the
computing cluster

(cloud)

Streaming Batch
processes

Big Data Frameworks

carat.cs.helsinki.fi

Mobile Research: Carat

Carat team (carat.cs.helsinki.fi)

Motivation

Many heterogeneous, active devices and
many users with different intents. – What
kind of behavior is normal or typical?

Battery
lifetime?

Risk level?

Introducing Carat

Carat is the first system to use the mobile
device community to detect and correct
energy problems

Our method for diagnosing energy

anomalies uses the community to infer a
specification (expected energy use), and
we call deviation from that inferred
specification an anomaly

Carat
●  Originated in UC Berkeley, in collaboration with

University of Helsinki
●  Mobile app for Android and iOS
●  Currently over 850 000 users
●  >2.5 TB of data, > 250 million measurements
●  Research project with many directions
●  http://carat.cs.helsinki.fi

What is Carat?

●  Mobile app shows users
advice:
“Kill Facebook for 16m ± 41s
battery life”

●  Energy hogs and bugs
●  Tracks user's battery life

average since installation
●  Places users within

community with a ranking
called J-Score

New UI

Statistics (October 2016)

Carat

Carat Project Statistics

This page shows some statistics for the Carat community. All the numbers shown here are across the entire Carat
community and may differ from suggestions and numbers displayed by Carat for any individual user.

Get Carat!
These statistics were generated from data gathered by the Carat project. All numbers are estimates generated by a
computer program.

Currently, this page works best with recent versions of Chrome.

General statistics
These statistics use two terms, energy-intensive applications (or Hogs) and energy anomalies (or Bugs). Energy-intensive
applications use more of your battery than average applications. Typical energy-intensive applications include Internet
radio, watching movies, voice communications, and 3D games. Energy anomalies are applications that behave normally
for most users, but use more than average energy for a particular user or users. These can be caused by user settings,
application configurations, or programming errors in the application.

Out of 340,102 installed applications, 8% are energy-intensive (Hogs in the Carat App) and 4% are energy anomalies
(Bugs).

Out of 209,824 installed Android applications, 12% are energy-intensive and 4% are energy anomalies.

Out of 130,278 installed iOS applications, 2% are energy-intensive and 4% are energy anomalies.

Out of 614,385 users, 48% have at least a single energy anomaly.

Popular Device Models

471 645 Android and iOS apps
10% energy hogs, 4% energy bugs

Carat

Carat Project Statistics

This page shows some statistics for the Carat community. All the numbers shown here are across the entire Carat
community and may differ from suggestions and numbers displayed by Carat for any individual user.

Get Carat!
These statistics were generated from data gathered by the Carat project. All numbers are estimates generated by a
computer program.

Currently, this page works best with recent versions of Chrome.

General statistics
These statistics use two terms, energy-intensive applications (or Hogs) and energy anomalies (or Bugs). Energy-intensive
applications use more of your battery than average applications. Typical energy-intensive applications include Internet
radio, watching movies, voice communications, and 3D games. Energy anomalies are applications that behave normally
for most users, but use more than average energy for a particular user or users. These can be caused by user settings,
application configurations, or programming errors in the application.

Out of 340,102 installed applications, 8% are energy-intensive (Hogs in the Carat App) and 4% are energy anomalies
(Bugs).

Out of 209,824 installed Android applications, 12% are energy-intensive and 4% are energy anomalies.

Out of 130,278 installed iOS applications, 2% are energy-intensive and 4% are energy anomalies.

Out of 614,385 users, 48% have at least a single energy anomaly.

Popular Device Models

50% of devices have at least one energy bug

Android has a long tail of different device types.

Top 200 Energy-Intensive Applications
The bubble chart below shows the evolution of the top 200 most energy-intensive applications on Android or iOS. Click
your platform, then click Play. Area of the circle indicates the number of users of the application and the color indicates
how much battery life would be gained if a user would stop using that application. Note that color and size are not
comparable between platforms.

carat.cs.helsinki.fi/statistics

19 27/04/17

The Carat project: System

What is Carat?

●  Users see Hogs, high energy use apps
●  And Bugs that use energy faster on THEIR

device than on others
●  Users with these

issues quickly see
battery life benefits
once they are
addressed

●  Average improvement 20%
●  Those with energy anomalies can improve

41%

Group receiving
recommendations
improved battery life
by 41%

The Data Analysis

●  Samples are combined to obtain energy drain
probability distributions (with features)

●  Users, Apps, App and User pairs, OS versions,
Device models

●  Distributions are compared using the distance
between their 95% confidence interval error bars

– If a distribution has a positive distance from
another and a higher mean, it is a:

– Hog (for an app
vs the distribution for other apps)

– Bug (for app & user combination
vs other users of the same app)

Hogs and Bugs

Devices running X Devices not running X

HOGS

…

Hogs and Bugs

My device running
X

Other devices running
X

BUGS

…

Collaborative Data Gathering
Each device collects: Battery life, timestamp, running

apps, context/system settings
The data is combined and the results for your apps

and your device are sent back to you
Context feature analysis: how various context

features affect the energy consumption of the
device

Collaborative aspect: We observe trends in the
community, as well as how your device is different

The method can be used for phones, sensors,

houses, base stations, servers, laptops, …
anything that generates measurements

Example: The Kindle WhisperSync bug

The decision tree allows “what-if” analysis and the generation
of recommendations

Project Infrastructure

●  Data Analysis: Amazon EC2
– 10 x X-Large VM (4 cores, 15G memory)

●  Server facing mobile devices: Amazon EC2
– 4 x medium VM (1 core, 4G memory)
– Load balancer, independent DNS name

for easy changing of infrastructure when
required

●  Amazon S3
– Storage of data (incoming 0.5-1.0 GB /

week)

Lessons learned

•  Research prototype != product
•  It is not easy to scale

•  100 000 users in one day when we launched
•  Scaling will cost, cloud is not free
•  Managing clusters is not easy

•  Design system so that it can evolve (no hardcoding, extensible
formats)

•  Validation is not easy
•  Ground truth
•  Injected bugs, validated bugs

Figure 11: Close-up of the wiring rig that connects our iPhone
4S test phone with the Monsoon Power Monitor.

medium Amazon EC2 instances behind an Elastic Load Balancer
(ELB) has been handling our userbase of half a million devices.

Our current implementation of the analysis backend (see Sec-
tion 3.3) uses the Spark cluster computing framework. The com-
putation is massively parallel, as every distribution and comparison
can be computed independently. Figure 10 compares the runtime
for an optimized serial implementation of the analysis algorithm
compared to a parallel implementation in Spark for increasing num-
ber of samples. The results underline the need for parallelization.
As our userbase grew, we made numerous optimizations. The anal-
ysis program now computes all reports for all our users (24 million
samples) from scratch in approximately 45 minutes.

4 Ground Truth and Overhead
For Carat to accurately account for when energy is being used, it
must convert intermittent (low precision) battery level samples into
energy drain rates in a way that is faithful to the ground truth. Fur-
thermore, the practicality of our method relies on sampling that is
sufficiently low-overhead that it does not have a significant impact
on the energy use, itself. In this section, we attach mobile devices to
power metering hardware: an iPhone 4S to a Monsoon Power Mon-
itor2 (see Figure 11) and a Galaxy Tab 2 10.1 to Leyden Energy’s3

battery-testing equipment. Our results confirm that Carat generates
accurate energy distributions while consuming few resources (i.e.,
almost no battery).

To test the fidelity and cost of our sampling, we ran the devices
through a script of varied activities. The script is not intended to
be a representative workload, but to repeatably exercise the device
features and drain the battery at different rates. It includes such
behaviors as downloading and running an app, browsing the web,
playing a game, and idle periods. The WiFi was turned on for some
periods and off for others.

On each device, we ran through the script under three different
arrangements: (1) hooked up to the power meter with and (2) with-
out Carat running and (3) not hooked up to the power meter with
Carat running. We compare the data from (1) and (2) to quantify
the overhead of running Carat; we compare the data from (1) and
(3) to ensure the meter was not influencing Carat’s measurements
and to assess the fidelity of our sampling and rate estimation. For
the runs performed without Carat, where our app appears in the
script, we substituted the standard Weather app.

The battery levels reported by the OS, both through the API (Ca-
rat samples) and the on-screen indicator, track the actual use of
power by the device. Figure 12 shows the iOS data. Between 00:30
and 1:30, Carat took no samples and conflated a higher-rate period
with a lower-rate period. Higher frequency sampling would have
avoided this error.

The expected energy discharge rates computed from the Carat
samples approximate the values computed using power metering
hardware. During the 9-hour iOS experiment, Carat took 9 sam-

Figure 12: The battery levels during our iOS power metering
experiments, either taken directly from the on-screen battery
indicator, the Carat samples, or computed from the meter’s
readings.

0.000 0.005 0.010 0.015

0
50

15
0

Energy Discharge Rate (%/s)

D
en
si
ty

Power Monitor (w/ Carat)
Power Monitor (w/out Carat)
Carat

Figure 13: The energy rate distributions from our iOS power
metering experiments, smoothed with a Gaussian kernel esti-
mator for visibility. Using the a priori, Carat is able to faithfully
estimate the distribution with sparse sampling, overestimating
the mean energy drain rate by only 0.00088% from 9 samples.

ples at 5% granularity; the power meter took 13,549 samples at ef-
fectively 0.0001% resolution. Carat overestimates the average dis-
charge rate by only 0.00088%/sec (see Figure 13). On the Galaxy
Tab, where Carat took twice as many samples as on iOS (19), the er-
ror is an order of magnitude less (0.00015%/sec). This accuracy is
possible thanks to the a priori distribution, which uses knowledge
of community behavior to refine noisy and incomplete measure-
ments; imprecision in per-client measurements is further mitigated
by the statistical backend analysis.

Carat imposes negligible energy overhead. Our power metering
hardware indicates that running through our iOS script with Ca-
rat running used less energy (53.691 mAh or ⇠3.5% of the battery
less) than executing that same script with the Weather app running
in its place (i.e., 54 minutes less battery life running Weather in-
stead of Carat). We also ran the script without substituting another
app but found battery life with Carat running was slightly higher
than without; Carat’s energy use is less than the experimental pre-
cision. Similar results held on Android. We can afford to perform
sparse, low-overhead sampling on individual clients because we
aggregate such data from many clients.

5 Deployment Evaluation
Carat became available as a free download on Apple’s App Store
and on Google’s Play Store in mid-June of 2012. Days later, it
was featured on the popular TechCrunch blog4; the story was soon
picked up by dozens of other news sources. Within 24 hours of the
article’s publication, we went from a few hundred users to more
than 100,000. This doubled in the subsequent 24 hours. Carat has
been installed more than 560,000 times; of those, 475,041 clients
reported data (some never ran the app or never when connected to
the internet); 409,867 reported enough data to yield diagnoses.

Our salient results (see Sections 5.4–5.7) are that we found no in-
stances of false positives among the reported anomalies; after two
weeks, users who received Carat recommendations improved bat-
tery life by 13% (c.f. 3% for those who did not); and 95.2% of the
predicted battery life improvements fell within the predicted 95%
confidence bounds.

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.0002 0.0004 0.0008 0.0016 0.0032 0.0064 0.0128 0.0256

Pr
ob

ab
ilit

y

Battery drain % / s

CPU Bug
GPS Bug

Radio Bug
No Bug

Figure 15: The reference (anomaly-free) and anomalous rate
distributions for the modified Wikipedia Mobile, using only the
a priori from the private deployment. Carat successfully de-
tects all of the injected bugs.

5.4 Wild Anomalies

Carat detected 10,110 hogs and 233,258 buggy app instances among
the 102,421 apps run by the 409,867 users for whom we had suf-
ficient data to generate reports. We ranked the hogs and bugs by
a function of severity (predicted battery impact) and popularity
(number of users than ran the hog or had a buggy instance), re-
sulting in one list for each kind of anomaly. Although our manual
validation process prevented us from checking the entire list, we did
check the first two dozen from each list using a combination of user
complaints, news coverage, analysis tools (see Section 5.4.1), or
experimental results in the literature (e.g., [32, 33]). Among these
anomalies, there were no false positives. Later in this section, we
describe a subset of these manually-checked anomalies that we feel
highlight interesting circumstances or salient aspects of our analy-
sis (see Sections 5.4.2–5.4.3). Note that the number of apps for
which we performed manual validation (⇠50) already makes this
paper a high-water mark for evaluating energy diagnosis on mo-
bile devices, even without considering the other 100,00+ apps that
Carat analyzed or the many thousands of diagnoses it generated.

Our attempts to acquire the tools used in prior work to validate
our results were unsuccessful; the authors either did not respond,
told us the tools were not in a state to be used by people other than
themselves and they didn’t have time to help us, or they simply
refused to furnish the tool. Regardless, no existing tool that we
know of would have allowed us to validate all tens of thousands of
anomalous apps and app instances that Carat discovered.

5.4.1 External Validation with ARO

AT&T provides a tool called the Application Resource Optimizer
(ARO) that uses network traces to identify communication-related
misbehavior. We selected the four most severe hogs (GO SMS Pro,
Advanced Task Killer, Line: free calls and messages, and Chant
for Twitter) and four non-anomalies (Lookout Antivirus, Facebook,
Gachinko Tennis, and Dropbox) on Android that showed a strong
correlation between increased energy use and network connectivity.

The tool indicated that all four hogs had bursts of network com-
munication that could be more tightly grouped. Three were missing
cache headers that might have reduced retransmission; the fourth,
Advanced Task Killer, was implicated for wasting energy by not
closing network connections. Although half the non-anomalies
also lacked cache headers, they did not perform redundant down-
loads like some of the hogs. ARO corroborated these hogs, but also
gave some indications of misbehavior by the non-anomalies; only
the accompanying energy measurements separated the misbehav-
ior that hurts battery life from that which doesn’t. Furthermore,
without a collaborative method like Carat that collects data from
multiple devices, it is hard to say whether any of this behavior is
intrinsic to the app or a function of device- or user-specific factors.

5.4.2 Hogs
Of the 102,421 apps seen during our deployment, 10,110 (9.9%)
were categorized as hogs. (Before checking for statistical signifi-
cance, there were 15,038 (14.7%).) Recall that an app is a hog if
the community-wide average discharge rate while running the app
is significantly greater than the average rate while not running it
(see Section 2.1) and that we can compute the expected improve-
ment in battery life by killing a hog (see Section 2.4). Hogs may be
caused by an oft-triggered code bug or may be simply intrinsic to
the app. Users concerned about battery life are advised by the Ac-
tion list to kill hogs; the user is not concerned about the intention,
or lack thereof, behind the energy use.

While some hogs were unsurprising to us (e.g., Pandora and
Skype), others were (e.g., some Android themes and wallpapers).
For instance, while most apps for searching airline fares and book-
ing flights are not among the hogs—they use the network but not
heavily and do not use many other resources—there were a handful
of such apps that appeared among the top hogs. We discovered that
all those airline apps were written by the same developer and were
suffering from a systematic programming inefficiency.

The top ten hogs (by severity) on iOS all fall into the category of
utilities, including iDesp Money (for budget management), Ushahidi
(for sharing stories within a community), and the Citi Mobile bank-
ing app. There were no games; despite being typically resource-
intensive, they did not use energy as anomalously as other kinds of
apps. Similarly, the top hogs on Android were primarily utilities,
but there were also several wallpaper apps (e.g., Beach at Night
and Heart and Love) and one game (which has since been removed
from the app store).

We now describe a couple of hogs from among those we manu-
ally checked (again, there were no false positives) and cite corrobo-
rating evidence that the app does, indeed, consume an anomalously
large amount of energy.

Pandora Radio: Carat classifies Pandora Radio, which 7116
iOS users ran, as a hog and says killing it will increase an client’s
average battery life by 50m 43s. This is corroborated by user re-
ports, one of which claimed Pandora drained the battery to 30% in
a few hours even with the screen off5. To improve battery life while
using Pandora, the MCAD suggests using WiFi for connectivity (an
additional 25–35m). Pandora is an example of an intuitive hog, as it
uses several energy-hungry resources, but Carat quantifies the cost.

Skype: 27,741 iOS clients were running the Skype VoIP app,
which was also reported as a hog. This is also confirmed by the fo-
rums; one user even used the term “power hog” to describe Skype6.
Skype’s energy use is driven by network connectivity; when no
network connection is available, expected battery life is about 6.5h
above average.

Go launcher exe new theme. . . : (sic) Is an unlikely hog on
the Android platform that costs most users between 2h 1m and 2h
53m of battery life. Experiences with Go Launcher and its variants,
which change the UI of the device, vary among users7, but gener-
ally “fancier” themes and widgets cause higher battery drain8.

Live wallpapers: Carat identifies several Android Live Wallpa-
pers as energy hogs. Two that rank among the top 10 most severe
hogs on the Android platform are Beach at Night9 and Heart and
Love10. They cost most users 2h 33m–2h 49m and 2h 37m–2h
51m battery life, respectively. Both are ad-supported; the detri-
mental effects of adware are known [32]. Both live11 wallpapers12

and adware13 have been blamed for abnormally fast battery drain.

5.4.3 Bugs
Recall that a bug is an app that is not a hog (it usually consumes
below-average energy) but consumes far more energy on some clients

Energy efficient configuration?

Energy efficient configuration?

Network type

Energy efficient configuration?

Network type

Mobile settings

Energy efficient configuration?

Network type

Mobile settings

Screen
Brightness

Energy efficient configuration?

Network type

Mobile settings

Screen
Brightness

Moving or not?

Selected findings

l  Wi-Fi signal strength dropping one bar can result in
over 13% battery loss

l  High temperature can cause 50% battery loss, and
high temperature is not always related to high CPU
load

l  Automatic screen brightness is, in the most cases,
better than manual setting

l  In addition to CPU, battery temperature and
distance traveled are useful in predicting battery
lifetime

Battery lifetime – an example

Just want to play a game?

High CPU use?

[2] Ella Peltonen, Eemil Lagerspetz, Petteri Nurmi, and Sasu Tarkoma. Energy Modeling of System
Settings: A Crowdsourced Approach. PerCom '15. Best Paper Award.

Battery lifetime → 98% better expected
battery life

[2] Ella Peltonen, Eemil Lagerspetz, Petteri Nurmi, and Sasu Tarkoma. Energy Modeling of System
Settings: A Crowdsourced Approach. PerCom '15. Best Paper Award.

The PADS project will develop new privacy enhancing
algorithms and methods for Data Science

Two methodological goals
•  Develop the algorithmic framework for privacy-aware

predictive modelling, and
•  Scalable implementation of the framework
Two key use cases
•  Large-scale genome data processing and sharing for

personalized medicine, and
•  Mobile and environmental sensing

The PADS Project

Mobile sensing data analysis in progress
Full paper prepared based on questionnaire study
Privacy SDK outlined in the recent Big Data workshop paper.

Research status

Carat Data

Carat users

Developers
Researchers

Data Privacy
Module

Energy estimates,
models, settings

App
name

Data share:
sha256, DP(x),
σ, Ν(μ, σ²), ...

System settings,
energy plans

Carat
id

1.5TB 100MB 200KB

Fig. 3. Carat data sharing model for researchers, developers, and users.

IV. DATA SHARING CHALLENGES

One of the challenges of sharing large datasets is their sheer
size. Multiple terabytes of data can take days to download even
when the data provider has invested in the network capacity
necessary. As datasets become more popular, more network
resources are needed. One possibility with our dataset is sharing
it through Amazon’s S3 storage service. This allows sharing
arbitrarily large datasets, and enables network transfer costs
to be paid by the downloader so that the data provider does
not receive an overwhelming bill simply because they chose to
share data free of charge. However, using Amazon S3 requires
both the data provider and all interested parties to have Amazon
accounts, which locks the data behind a single cloud vendor.

Raw data collected the wild can contain errors, such as
failure to obtain a measurement, erroneous measurement values,
missing values, and meaningless default values. Some errors
may even be used to identify individual devices [7]. Effective
data cleaning procedures should be applied to any data before
publication.

Sharing the privacy-sensitive data can cause a multiple
problems, for example, users might be identified from the
data against their will, their location might be discovered,
and application ideas under development revealed prematurely.
Therefore, sharing raw data includes risks for both users
participating in the data collection and the authors entrusted
with managing the data. Hashing user identifiers, or application
names may help in certain situations but also limits the value
of the information and precludes some high utility use cases.

Most shared datasets come with licenses and agreements
how they can be used and in which conditions. Even with
proper licensing policy, any opportunities for misuses should
be reduced to minimum. If these challenges preclude sharing
the raw data, we plan to open access to the results of the
analysis as well as statistics found in the data.

V. PLANNED SOLUTIONS

For the Carat users, our application presents a simple
statistical analysis of their devices performance compared to

the others (so called J-Score). Some statistics are also provided
from the whole community, for example, distribution of well-
behaved and energy-hungry applications, and popular device
models. In the Carat website, we also provide a view into the
top two hundred most energy-intensive applications on both
iOS and Android, searchable by date. As further data sharing
towards the users of Carat, we are planning to add system
settings recommendations, and ”energy planning”, allowing
users to create energy management plans for a day, a week, or
a longer period of time.

For developers who want to utilize the battery information,
we can make available an API providing an ever-growing
set of statistical values. Thus, without sharing the raw data
or user identifiers we can offer a view into real-time energy
consumption in the Carat community. Based on a search by the
application process name, the API could return, for example:

• Number of users in the community, without specifying
user identifiers

• Energy estimate as the expected average consumption %/s,
with estimated error

• Energy estimates and corresponding error estimates in
certain system setting combinations, if enough data is
available, for example with different screen brightness
levels (automatic, or manual between 0 to 255), network
type (Wi-Fi or mobile network), Wi-Fi signal strength
(one to four bars), CPU usage (high, medium, or low),
and battery temperature.

• Distribution of models and operating systems
• Energy estimates of different models and operating sys-

tems, if enough data is available (e.g. 100 users per model)
• Package signing identities, for malware detection purposes

(whether the developers recognize their key)
Fig. 4 gives an example of the developer API. Firstly, the

developer downloads the Carat SDK and signs it by the same
developer key they use for the applications they want to
monitor. If the key matches to ones seen in the Carat data,
access is granted. Secondly, the developer sets the criteria
for the query and gets back the application’s average energy
consumption where the condition holds, e.g. screen brightness
is 255. The tasks of the data privacy module are to control
access of the developers, protect the privacy of individual users
and applications with very small user bases, and to compute
the anonymized, differentially private data set for research
purposes.

For researcher community, the benefit of datasets are many.
We can use datasets from other researchers to obtain statistical
facts and to verify our findings with reference data. To obtain
the utility of a dataset while maintaining user privacy, we can
remove or anonymize privacy sensitive elements of the data.
Firstly, any kind of user or device identifier uniquely identifies
an individual inside the data, even if it cannot be associated
to personal information such as an email or phone number.
Using the device model or the application as an identifier can
be sufficient in some cases. However, it may be necessary to
tell apart the devices in the data.

Some previous mobile application data sets remove or hash

Malware Infection Rates

Stopped using applications,

Replaced with similar ones

Kill running applications

More often

Use hogs and bugs less

Stopped using applications,

Did not replace functionality

Restart applications

More often

Did not change behavior

0 10 20 30 40

Changes in Behavior

Beginners

Advanced users

0

50

100

150

200

250

Top Games

M
in

u
te

s

Carat: Collaborative Energy

and Malware Diagnosis

Eemil Lagerspetz, Ella Peltonen,
Sasu Tarkoma

Department of Computer Science,
University of Helsinki

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI

MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN

FACULTY OF SCIENCE

Mobile Applications
Take samples and show personal reports

 Android and iOS

 J-Score lets users compare with others

 Recommended Actions

 Bugs

 Hogs

Carat Data Analysis [1]
Scalable machine learning and data mining methods

 Carat anomaly detection uses basic statistics and the
community defines what is normal

 We investigate distributed machine learning
techniques to improve the accuracy and give more
detailed recommendations

Mobile Malware Prognosis [2]
We detected infected devices in the Carat dataset using Android package name,
developer certificate hash, and version code.

 0.26% - 0.28% of Android devices are infected with known malware

 Prediction technique that can identify vulnerable devices to be
scanned with more
expensive techniques

 We can reduce the set of
devices for deep scanning
by a factor of 5

Carat Core
Receives data from 700,000 users

 Collaborative energy anomaly detection

 Computes personalized reports

 Over 50M data items

 240K Bugs, 16K Hogs

 124 device models

 500 GB of data

 10-node Spark cluster in EC2

 4 cores, 15-32 GB RAM

Carat Core
Receives data from 700,000 users

 Collaborative energy anomaly detection

 Computes personalized reports

 Over 50M data items

 240K Bugs, 16K Hogs

 124 device models

 500 GB of data

 10-node Spark cluster in EC2

 4 cores, 15-32 GB RAM

Energy Hogs
Use more energy than the average app

 Defined by crowdsourced data

 Users that stopped using hogs
and bugs gained up to 41%
more battery life

 Hogs can be caused by an app's
normal behavior, such as video
and games

 They can be caused by excessive
use of network, screen,
advertising, or programming
errors (not releasing a lock)

Sizes of the three

malware datasets and

the extent of overlaps

among them.

The MDoctor app shows

infection status as an

intuitive traffic signal. The

app predicts infection and

shows a list of risky apps.

Our infection estimate is

higher than previous

research, but lower than

some AV vendors.

[1] Oliner, Iyer, Stoica, Lagerspetz, and Tarkoma. Carat: Collaborative Energy Diagnosis for
Mobile Devices. ACM SenSys 2013.

[2] Truong, Lagerspetz, Nurmi, Oliner, Tarkoma, Asokan, and Bhattacharya. The Company You
Keep: Mobile Malware Infection Rates and Inexpensive Risk Indicators. WWW 2014.

[3] Athukorala, Jylhä, Lagerspetz, von Kügelgen, Oliner, Tarkoma, and Jacucci. How Carat
Affects User Behavior: Implications for Mobile Battery Awareness Applications. ACM CHI 2014.

with SwiftKey
Upgrade OS
+30 ± 2 min

Downgrade OS
-14 ± 2 min

No Movement
+10 ± 3 min

Move around
-24 ± 4 min

Use WIFI
+30 ± 5 min

SK

UG DG

MNM

W NW
Disable WIFI

-14 ± 4 min
Carat aims

to diagnose

energy anomalies and their root causes, such as OS

version, connectivity type, and user mobility.

Human Factors [3]

We conducted a survey of 1,000 Carat users

 The results show that long-term Carat
users save more battery

 charge their devices less often

 learn to manage their battery with less
help from Carat

 We studied malware based on the dataset
 McAfee, Mobile Sandbox, MalGenome, …

 Malware infection rates are higher than
conservative estimates (0.26% of devices)

 Google says 0.12% of manually installed
packages are malware, not very far from this
number

 Lookout Antivirus predicts >1%

 An Early Warning System for Malware
A lightweight technique for identifying devices at risk
By looking at applications that occur with malware, it
is possible to predict infection 5x better than
choosing devices at random

–  Useful for administrators, organisations (Bring Your Own
Device scenario)

MDoctor: Increasing Awareness of
Infection Vulnerability

MDoctor shows status of
applications according to a
malware dataset

Infection vulnerability can be seen

from device health

Three metrics for application

analysis: malware correlation, key
rarity, and market vulnerability

Department of Computer Science / Eemil Lagerspetz /
 MDoctor

1406/27/14www.helsinki.fi/yliopisto

MDoctor: Increasing awareness
of infection vulnerability

● MDoctor shows status of applications
according to a malware dataset (User
chooses)

● Infection vulnerability can be seen from
device health

● We use three metrics, malware
correlation, key rarity, and market
vulnerability

● http://is.gd/mdoctor

● Will be on Google Play later

5G Research

Starting point in 2014:
LTE RAN and EPC with SDN and Cloud

42

SGW PGW

PCRF MME

HSS

eNodeB UE
UE

UE

Internet
Controller

Switch Switch

Virt.

Virt. Virt.

Virt.

Virt.

Virt.

5G elements as
services/
applications
running in
virtualized
environment

Virt.

Local and centralized
coordination of radio
resources

VMs

Virtualization
aims for elasticity
and runtime
configuration
support

NOKIA	CENTER	FOR	ADVANCED	RESEARCH	(NCAR)	

NCAR	was	launched	in	April	2016	and	is	a	joint	research	center	with	
University	of	Helsinki,	Aalto	University,	and	Nokia.	

	
To	foster	wider	coopera;on	between	the	universiDes	and	Nokia	to	enable	cross-unit	research	

delivering	high	quality	results:	thesis,	publicaDons,	holisDc	concepts	and	demos.	
	

Refactoring Approach for Optimizing Mobile Networks

Coreless Mobile Networks: A state management

perspective

Off-the-Shelf Software-defined Wireless Networks

Service Function Chaining: Enabling Technologies and

Protocols

Highlights

53

Control

Example 1: Thin Edge

Radio Access

Network (RAN)

GW

S-GW(C) P-GW(C)

MME PCRF

e
N

B
(C

)

S-GW(D) P-GW(D)

Storage

HSS SPR

eNB(D)

Refactoring: Thin Edge

59

Control

Ex2: Intelligent Edge

Radio Access Network (RAN)

GW
S-GW(C) P-GW(C)

MME PCRF

e
N

B
(C

)

S-GW(D)

P-GW(D)

Storage

HSS

SPR

eNB(D)

Refactoring: Intelligent Edge

A Refactoring Approach for Optimizing Mobile Networks. Matteo
Pozza, Ashwin Rao, Armir Abujari, Claudio Pallazi, Hannu Flinck,
and Sasu Tarkoma. Paper in IEEE ICC 2017

Refactoring Approach for Optimizing
Mobile Networks

60

Implementation

Total number of signals per event

Initial

Attach

Active

to Idle

Idle to

Active

(UE)

Idle to

Active

(Net)

Handover

(S1H)

LTE

(Baseline)

35 6 13 17 22

Thin Edge 24 6 13 16 16

Intelligent Edge 17 3 10 12 12

Impact of Coalescing Modules

Coreless Mobile Networks: A state
management perspective

Frans Ojala, 2016

Implications

In theory, if the data store is the bottleneck, our results indicate the
following numbers for a simulation of 15 eNB:

Current deployments are seeing a maximum of 1000 UE / eNB
UE per area increases depending on configuration: ~84 - 740 x

5G prospects 100 - 1000 x

Off-the-Shelf Software-defined
Wireless Networks

●  OVS in base station
●  Use Wireless Isolation to

force flows to OVS.
●  Either all packets or just

ARP queries depening
on implementation.

●  Can be used with OpenWrt
capable APs or with (at least
some) enterprise APs

●  Two approaches, Intelligent
and Thin Edge

●  Thin edge:
●  Traffic is forced to flow

through external host.

Matemaattis-luonnontieteellinen tiedekunta /
 Seppo Hätönen

804/21/16www.helsinki.fi/yliopisto

SDN Enabled AP

● Switch ports separated to their own VLANs

● WiFi interfaces and switch ports are added
separately to the OVS bridge

● Wireless Isolation enabled

wlan0

eth0.1 eth0.2 eth0.3 eth0.4 eth0.5

Switch

SoC

wlan1

kernel

Eth0

OVS
br

Seppo Hätönen, Petri Savolainen, Ashwin Rao, Hannu Flinck, and Sasu Tarkoma.
SIGCOMM 2016 demo.

Deployable on Off-the-Shelf Devices

Intelligent Edge Thin Edge

Unified Mobile Edge for IoT Devices

IoT hub running at the edge as an SFC service

www.cs.helsinki.fi

Thank You!

www.cs.helsinki.fi
carat.cs.helsinki.fi
ncar.cs.helsinki.fi

