
Chained Forests for Fast Subsumption Matching

Overview
• Content is defined using profiles. Queries select a 

subset of profiles.
• Assumption: There are subsumption relations in the 

input sets.
• Idea: build forests of each set (profiles/queries) and 

maintain mappings between these sets that determines 
subsumption between sets. 

• Essentially chain two forests with the mappings. The 
mechanism generalizes to a chain of forests.

• Research question: How to minimize the number of 
subsumption test operations when inserting/deleting a 
profile or a query?

• Generalizes to multiple sets, each corresponding to a 
forest in a chain of forests.

• Separates mappings from the forests.

• Improved insertion and lookup cost. Improved or 
degraded deletion cost and structure size depending 
on the workload. Sparse bitstrings may be used to 
alleviate space concerns.

• Nature of optimizations suggest that copes well with 
self-similar workload. 

• Future work investigates how to compact mappings.

Results

Introduction

Adj. Prof. Sasu Tarkoma
Helsinki University of Technology

Telecommunications Software and Multimedia Laboratory
sasu.tarkoma@tml.hut.fi

• Content provisioning and delivery are becoming
increasingly popular and important.

• We present a novel scheme for the maintenance and 
matching of partial orders.

• Partial order derives from the subsumption relation
inherent the collection of objects being matched.

• The proposed chaining technique has applications in 
information routing, collection tracking, and peer-to-peer
information exchange.

• Track result set of a continuous query with insertions and 
deletions.

Algorithm and Optimizations

Upper bound mapping
(candidates)

Lower bound mapping

Actual mapping (grey circles)

1

32

4

5

Queries Q = {1,2,3,4,5,6}

6

b

d e

a

p

Upper bound mapping (candidates)

Actual mapping (grey circles)

1

2

4

5

Queries Q = {1,2,q,4,5,6}

6

Goal: Find all p’ ∈ P such that q subsumes p’

b

d
x

e

Profiles P = { a,b,c,d,e }

a

cq

Lower bound mapping

• Add profile: All elements that subsume the input 
profile are found by traversing the query forest 
towards subsuming elements.

• Add query: All subsumed elements are found by 
traversing the profile forest. All matching elements and 
their children all added to the result set.

• Optimizations: Find candidate set for testing inclusion 
into the result set. Determine upper and lower bounds 
for the result set and inspect their intersection.

• Experimental results suggest significant improvement 
with the optimization.

Optimizing computation of the mappings for p:

MPQ(childrenP(p)) subsumes MPQ(p)

MPQ(p) subsumes MPQ(parentP(p))

Optimizing computation of the mappings for q:

MQP(parentQ(q)) subsumes MQP(q)

MQP(q) subsumes MQP(childrenQ(q))

Profiles P = { a,b,p,d,e }
Add profile p Add query q

Goal: Find all q’ ∈ Q such that q’ subsumes p

Insertion and deletion (6000 elements)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Add DF Add poset Add unopt
DF

Del DF Del Poset Del unopt
DF

O
ps

1AF
2AF
3varAF
3AF

 DF Poset Forest 
1AF 1760497 14023 3484 
2AF 544265 243826 5998 
3varAF 779112 185338 5852 
3AF 87026 208447 6000 

Size after inserting 6000 elements 

 
 DF Poset Forest 
1AF 655 5724 317695
2AF 675 3066 637056
3varAF 667 3200 406348
3AF 719 673 937292

Time (ms) for 30 000 lookups for 
3000 elements 


