

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Receiver Driven Content Routing for the Internet

20.10.2010

Prof. Sasu Tarkoma

Introduction

Network endpoints are more and more interested in content

Publish/subscribe is a candidate paradigm for content distribution Many-to-many, control distributed between subscribers (receivers) and publishers (senders)

Inherently receiver driven

A content distribution system needs to know about packet replication points and policy-compliant paths

Background

Related systems include NIRA, DONA, ROFL, CCN, PSIRP, and PURSUIT

PSIRP includes a 2-tier system where a hierarchical DHT based rendezvous interconnect network joins multiple rendezvous networks together for global reachability

Publications are identified by scopes and flat identifiers

Typically only scopes are advertised in the interconnect

Hierarchical structure guarantees locality for the communication

	Layer	Underlying transport	ΑΡΙ	Namespace	Self- certification	Receiver driven	Key application
DONA	L4-L7	TCP/IP	Anycast	Flat	Yes	Yes, fetch operation	Content discovery and delivery
CCN	L3	Unreliable data transport, flow control	Name-based (with leases)	Hierarchical	Yes	Yes	Content delivery, voice
PSIRP	L2-L7, layerless	Ethernet, TCP/IP and PLA	Pub/sub and metadata- based	Various, recursive	Yes	Yes	Content delivery
Internet Indirection Infrastructu- re (i3)	L7	TCP/IP	Trigger- based	Flat	Yes	Yes (also sender driven)	Various
Haggle	Layerless	Packet- based	Metadata- based	ADU, user level names	Possible	Receiver/ sender	Mobile environment
Siena	L7	TCP/IP	Pub/sub	Content- based	No	Yes	Content delivery

PSIRP Architecture

The NIRA system used upgraphs for Allowing more control for receiver Finding best paths for unicast **Canopy** uses upgraphs for pub/sub Upgraphs combined at publisher-side rendezvous point Can take both subscriber & publisher policies into account Supports multi-path routing Result is a policy-compliant multicast structure Can be used for both overlays and on the network layer Works with in-packet Bloom filter-based forwarding

Reference: S.Tarkoma, M. Antikainen. Canopy: Publish/Subscribe with Upgraph Combination. Global Internet Symposium 2010.

An **upgraph** is a dag that contains all the possible paths from a given node to the tier-1 networks Publisher upgraph roots from the publisher and contains all possible uphill and peer-to-peer paths Subscriber upgraph does not contain peer-to-peer links, but only all possible uphill paths

Receiver driven communications has favourable properties Pub/sub is inherently receiver driven

Research question: How to make content supply and demand meet in the network and how to make it scale?

Canopy uses upgraphs for determining policy-compliant multicast structures for publish/subscribe

- Representing packet replication points and network paths in upgraphs
- Combining subscriber and publisher upgraphs at designated rendezvous points in order to determine policy-compliant data distribution strategies