
Mitigation of Unsolicited Traffic Across Domains
with Host Identities and Puzzles

Miika Komu1 and Sasu Tarkoma2 and Andrey Lukyanenko1

1 Aalto University
2 University of Helsinki

Abstract. In this paper, we present a general host identity-based tech-
nique for mitigating unsolicited traffic across different domains. We pro-
pose to tackle unwanted traffic by using a cross-layer technique based
on the Host Identity Protocol (HIP). HIP authenticates traffic between
two communicating end-points and its computational puzzle introduces a
cost to misbehaving hosts. We present a theoretical framework for inves-
tigating scalability and effectiveness of the proposal, and also describe
practical experiences with a HIP implementation. We focus on email
spam prevention as our use case and how to integrate HIP into SMTP
server software. The analytical investigation indicates that this mecha-
nism may be used to effectively throttle spam by selecting a reasonably
complex puzzle.

1 Introduction

One challenge with the current Internet architecture is that it costs very little to
send packets. Indeed, many proposals attempt to introduce a cost to unwanted
messages and sessions in order to cripple spammers’ and malicious entities’ abil-
ity to send unsolicited traffic. From the network administration viewpoint, spam
and DoS traffic comes in two flavors, inbound and outbound traffic. Inbound
traffic originates from a foreign network and outbound traffic is sent to a for-
eign network. Typically, spam and packet floods originate from networks infested
with zombie machines. A zombie machine is a host that has been taken over by
spammers or persons working for spammers, e.g., using Trojans or viruses.

We address the problem of unsolicited network traffic. We use two properties
unique to the Host Identity Protocol (HIP) protocol: First, hosts are authen-
ticated with their public keys which can be used for identifying well-behaving
SMTP servers. Second, a computational puzzle introduces a cost to misbehav-
ing hosts. Our approach has a cross-layer nature because a lower-layer security
protocol is used to the benefit of higher-layer protocols.

2 Host Identity Protocol

The Host Identity Protocol (HIP) [9] addresses mobility, multi-homing, and se-
curity issues in the current Internet architecture. HIP requires a new layer in

2 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

the networking stack, logically located between the network and transport layers,
and provides a new, cryptographic namespace. HIP is based on identifier-locator
split which separates the identifier and locator of an Internet host. The identifier
uniquely names the host in a cryptographic namespace, and the locator defines
a topological location of the node. Communication end points are identified us-
ing public cryptographic keys instead of IP addresses. The public keys used for
HIP are called Host Identifiers (HIs) and each host generates at least one HI for
itself.

The HIs can be published as separate HIP-specific records in the DNS [11].
Legacy applications can use HIP transparently without any changes. Typically,
the application calls the system resolver to query the DNS to map the host
name to its corresponding address. If a HIP record for the host name does
not exist, the resolver returns a routable IPv4 or IPv6 address. Otherwise, the
resolver returns a Host Identifier fitted into an IPv4 or IPv6 address. Local-
Scope Identifier (LSI) is a virtual IPv4 address assigned locally by the host and
it refers to the corresponding HI. Host Identity Tag (HIT) is an IPv6 address
derived directly from the HI by hashing and concatenation. An LSI is valid only
in the local context of the host whereas a HIT is statistically globally unique.

When an application uses HIP-based identifiers for transport-layer communi-
cations, the underlying HIP layer is invoked to authenticate the communication
end-points. This process is called the base exchange, during which the end points
authenticate to each other using their public keys. The host starting the base
exchange, the initiator, is typically a client, and the other host, the responder, is
typically a server. During the base exchange, the initiator has to use a number
of CPU cycles to solve a computational puzzle. The responder can increase the
computational difficulty of the puzzle to throttle new incoming HIP sessions.
Upon successful completion, both end-hosts create a session state called HIP
association.

The base exchange negotiates an end-to-end tunnel to encapsulate the con-
secutive transport-layer traffic between the two communicating end-hosts. The
tunnel is required because routers would otherwise discard traffic using virtual,
non-routable identifiers. Optionally, the tunnel also protects transport-layer traf-
fic using a shared key generated during the base exchange. By default, the tunnel
is based on IPsec [7] but S-RTP [14] can be used as well. It should be noted that
a single tunnel can encompass multiple transport-layer connections.

With HIP, transport-layer connections become more resilient against IP ad-
dress changes because the application and transport layers are bound to the
location-independent virtual identifiers, HITs or LSIs. The HIP layer handles
IP-address changes transparently from the upper layer using the UPDATE pro-
cedure [10]. In the first step of the procedure, the end host sends all of its locators
to its connected peers. Then, the peers initiate so called return routability test
to protect against packet-replay attacks, i.e., to make sure that the peer locator
is correct. In the test, each node sends a nonce addressed to each of the received
peer locators. The peer completes the test by signing each nonce and echoing

Title Suppressed Due to Excessive Length 3

it back to the corresponding peer. Only after the routability test is successfully
completed, the peer can start using the locator for HIP-related communications.

HIP sessions can be closed using the CLOSE [9] mechanism. It is consist
of two packets, in which one of the peer sends a CLOSE message to the other,
which then acknowledges the operation using CLOSE-ACK. After this, all state
is removed and the tunnel is torn down on both sides.

HIP employs rendezvous servers [5] to address the double jump problem.
This occurs when two connected HIP hosts lose contact with each other when
they are relocated simultaneously to new networks. The rendezvous server has
a stable IP address and offers a stable contact point for the end hosts to reach
each other.

The computational puzzles of HIP [1] play a major role in this paper and
have been investigated by others as well. Beal et al. [3] developed a mathemati-
cal model to evaluate the usefulness of the HIP puzzle under steady-state DDoS
attacks. They also stated that the difficulty of the DoS-protection puzzle should
not be too high because otherwise an attacker can just choose a cheaper method
such as simple flooding of the network. Tritilanunt et al. [13] explored HIP puz-
zles further with multiple adversary models and variable difficulties. They also
noticed that solving of HIP puzzles can be distributed and a non-distributable
puzzle algorithm would provide more resilience against DDoS. Our work differs
from Beal et al. and Tritilanunt et al. because our use case is spam rather than
DDoS and our approach is based on cross-layer integration.

3 System Model

The basic idea is to assign each node in the network with an identity based on a
public key. The hosts may generate their private keys by themselves, or a third
party can assign them. Computational puzzles are a well-known technique for
spam prevention [4, 2, 6] but are typically used on a per message basis. In our
case, puzzles are applied to each pair of Host Identifiers. The difficulty of the
puzzle is varied based on the amount of unwanted traffic encountered.

Our example use case for the technique is spam prevention. Typical spam
prevention techniques are applied in a sequence starting from black, white or gray
listing techniques and sender identification, and ending in content filtering. Our
approach involves a similar sequence of spam testing but relies on the identity
of the sender rather than its IP address.

3.1 Basic Architecture for Spam Mitigation

In the email systems deployed in the Internet, there are outbound email servers
which are used for sending email using SMTP. Typically, the users access them
either directly or indirectly with a web-based email client. Usually users are
authenticated to these services with user names and passwords. In many cases,
direct access to outbound SMTP servers is restricted to the local network as a
countermeasure against spam. However, spam is still a nuisance and there are

4 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

networks which still allow sending of spam. In this paper, we use the term spam
relay for a malign or compromised outbound email server that allows sending
spam, and the term legitimate relay for a well-behaving outbound email server.

Correspondingly, inbound email servers process incoming emails arriving
from outbound emails servers. Users access these servers either indirectly via
web interfaces or directly with protocols such as POP or IMAP. Typically, the
inbound email server tags or drops spam messages and also the email client of
the user filters spam messages.

Our idea in a nutshell is to require a HIP session with an SMTP server before
it will deliver any email. The sender has to solve a computational puzzle from
the server to establish the session. If the sender sends spam, the server ends the
HIP session after a certain spam threshold is met. To continue sending spam, the
sender has to create a new session, but this time it will receive a more difficult
puzzle from the server.

The proposed architecture follows the existing SMTP architecture but re-
quires some changes. First, the inbound and outbound SMTP servers have to be
HIP capable. Second, we assume the spam filter of the inbound server is modi-
fied to control the puzzle difficulty. Third, we assume the inbound SMTP servers
publish their Host Identifiers in the DNS.

3.2 Deployment Considerations

A practical limitation in our approach is that HIP itself is not widely deployed.
Even though we compare the HIP-based approach to the current situation later
in this paper, the benefits of our design can be harnessed to their full extent only
when HIP, or a similar protocol, has been deployed more widely in the Internet.
Alternatively, our design could be applied to some other system with built-in
HIP support such as HIP-enabled P2P-SIP [8].

We assume that Host Identities are published in the DNS which requires some
additional configuration of the DNS and also SMTP servers. However, based on
our operational experience with HIP, this can be accomplished in a backward-
compatible way and also deployed incrementally. First, the DNS records do not
interfere with HIP-incapable legacy hosts because the records are new records
and thus not utilized by the legacy hosts at all. Second, bind, a popular DNS
server software, does not require any modifications to its sources in order to
support DNS records for HIP. Third, SMTP servers can utilize a local DNS
proxy [12] to support transparent lookup of HIP records from the DNS.

3.3 Pushing Puzzles to Spam Relays

We considered two implementation alternatives for pushing puzzle computation
cost to spam relays. In the first alternative, the UPDATE messages could be
used to request a solution to a new puzzle. However, this is unsupported by
the current HIP standards at the moment. In the second alternative, which
was chosen for the implementation, inbound servers emulate puzzle renewal by
terminating the underlying HIP session. The termination is necessary because

Title Suppressed Due to Excessive Length 5

current HIP specifications allow puzzles only in the initial handshake. When the
spam relay reconnects using HIP, a more difficult puzzle will be issued by the
server.

3.4 Re-generating a Host Identity

One obvious way to circumvent the proposed mechanism is to change to a new
Host Identity after the server closes the connection and increases the puzzle
difficulty. Fortunately, creating Host Identities is comparable in cost to solving
puzzles, which can discourage rapid identity changes. In addition, non-zero puz-
zle computation time in the initial session further discourages creation of new
identities.

3.5 Switching Identities

It is reasonable to expect that a server relaying spam is able to generate new host
identities. Let CK denote a key-pair generation time and CN the cost of making
the public key and the corresponding IP address available in a lookup service.
We expect a spam relay to reuse its current identity as long as the following
equation holds:

Cj < CK + CN + C0, (1)

where Cj is the puzzle computation time of the jth connection attempt. In other
words, the spam relay continuously evaluates whether or not to switch to a new
identity. If the next puzzle cost is greater than the initial cost, the spam relay
has motivation to switch the identity. We note that the spam relay may devise
an optimal strategy if the cost distribution is known.

When the puzzle cost is static, there is no incentive for the spam relay to
change its identity unless blacklisted because the cost would be greater due
to the CK and CN terms. For a dynamic cost, the spam relay is expected to
change identities when the cost of a new identity and a new connection is less
than maintaining the current identity and existing connection. For a DNS-based
solution, the CN term has a high value because DNS updates are slow to take
effect.

Our proposed approach addresses identity-switching attacks using three basic
mechanisms. First, a node must authenticate itself. This means that the node
must be able to verify its identity using the corresponding private key. This does
not prevent the node from using multiple identities or changing its identity, but
ensures that the key pair exists. Second, a node must solve a computational
puzzle before any messages are transported.

Third, a level of control is introduced by the logically centralized lookup
service. The DNS maps host names to identities and IP addresses. A node must
have a record in the lookup service. The limitation of this approach that control
is introduced after something bad (e.g. spam) has already happened. The bad
reputation of malicious nodes can be spread with, for example, DNSBL lookups
performed by SMTP servers.

6 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

Nevertheless, identity switching could used to reduce the proposed system
and, therefore, we have taken it into account in the cost model analysis of the
next section.

4 Cost Model

In this section, we present an analytical cost model for the proposed identity-
based unsolicited traffic prevention mechanism. We analyze the performance of
the proposed mechanism when a number of legitimate senders and spam relays
send email to an inbound SMTP server. It should be noted that our model
excludes puzzle delegation in the case of multiple consecutive relays because it
is not advocated by the HIP specifications.

4.1 Preliminaries

Let us consider a set of NL legitimate email relays and NS spam relays. Each
legitimate relay sends messages at the rate of λL messages per second and each
spam relay at λS . We assume that the inbound email server has a spam filtering
component. It has a false negative of probability α, which refers to undetected
spam. Thus, (1−α) gives the probability for detecting a spam message. The filter
has also a false positive of probability β, which denotes good emails classified
as spam. Even though the inbound server could reject or contain the spam, we
assume the server just tags the message as spam and passes it forward.

An inbound SMTP server has a spam threshold κ given as the number of
forwarded spam messages before it closes the corresponding HIP session. After
the session is closed, the outbound email relay has to reopen it. Let the number
of reopened sessions be ξ in case of spam relays, and η in case of legitimate
email relays. The base exchange has an associated processing cost for the SMTP
source, TBE , given in seconds. This processing cost includes also the time spent
in solving the puzzle. Let TM denote the forwarding cost of a message. The finite
time interval T , for which we inspect the system, is expressed in seconds.

4.2 Cost Model

To demonstrate scalability, we derive the equation for the load of the inbound
SMTP server with and without HIP. The server load is determined by the number
of HIP sessions at the server and the number of email messages forwarded.
Without HIP, the email processing cost in seconds at the server is

RN = T · TM · (NL · λL +NS · λS). (2)

In case of HIP, let us define the accumulated puzzle computation time func-
tion G(ξ) =

∑ξ
i=0 Ci. First, we consider the case with constant puzzle com-

putation time that is independent of number of session resets, i.e. C1 = C2 =
. . . CN = TBE , and G(ξ) = ξ · TBE .

Title Suppressed Due to Excessive Length 7

C
1

C C C
2 3 40

T

1st puzzle 2
nd

puzzle
computed

Mail sending time

until spam threshold

puzzle computation timeth
4

comp. started

Fig. 1. Division of system inspection time (T) into puzzle re-computation and mail
delivery stages with different puzzle computation times ci, where i is the number of
session resets. All Ci = TBE if the puzzle computation time is constant.

Next, we derive the number of HIP sessions due to session resets caused by
spam under the condition of identical puzzle computation time. The following
equation presents the number of session resets for a single spam relay:

ξ =
(T − TBE · ξ)λS(1− α)

κ
(3)

From equation 3, we can deduce that

ξ =
T · λS · (1− α)

κ+ λS · (1− α) · TBE
. (4)

The equation for the number of HIP sessions η needed by the legitimate
SMTP relays is similar to equation 4, but the false positive rate β is used in-
stead of (1− α), and correspondingly λL is used instead of λS . We assume that
legitimate relays do not send significant amount of spam so that only false pos-
itives need to be considered. The cost to a paying customer is given by η, and ξ
is the cost to a spam relay. Given a small false positive probability, η is small.
Therefore, the mechanism is not harmful to paying customers.

Next, we derive the equation describing the HIP load of the inbound server
RH consisting of both legitimate and spam messages:

RH = NL · (η · TBE + T · λL · TM) +NS · (ξ · TBE + TS · λS · TM), (5)

The equation can be simplified by substituting the total time used for sending
spam messages TS with T − TBE · ξ and by applying equation 2:

RH = RN − TM · TBE · (λS ·NS · ξ) + TBE · (NL · η +NS · ξ) (6)

We assume β is small and, therefore, we used T instead of T − TBE · η (with
η denoting the number of session resets for a legitimate host). To evaluate the
effectiveness of the HIP-based solution against a solution without HIP, we define
ratio ϕ as:

ϕ =
RH
RN

. (7)

Now, consider the case when puzzle computation time is not constant, but
rather a function of the number of session attempts. This has to be reflected in
equation 4, which becomes

κ · ξ +G(ξ)λS(1− α)− T · λS(1− α) = 0. (8)

8 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

The equation can be solved using numerical iteration.

4.3 A Comparison of HIP with Constant Puzzle Cost to the
Scenario without HIP

For numerical examples, we use HIP base exchange measurements obtained from
an experimental setup described further in Section 5. We plot the ratio of non-
HIP versus HIP approaches ϕ shown in equation 7. The HIP base exchange with
a 10-bit puzzle was measured to take 0.215 s of HIP responder’s time and 0.216
s for the initiator. We note that our analysis excludes the impact of parallel
network and host processing. The email forwarding overhead without HIP is set
to 0.01 seconds. We assume that the false negative probability of the server is 1/3
and the false positive probability is 1/104. In other words, 2/3 of spam messages
will be correctly detected as spam, and good messages are rarely classified as
spam. Let NL be 104, NS be 100, λL = 1/360, and λS = 10. The time-period T
for the analysis is 24 hours.

Figure 2 presents the ratio of HIP versus non-HIP computational cost as a
function of the puzzle computation time. Both x and y axes are logarithmic.
Ratio in the figures denotes ϕ, the ratio of the HIP and non-HIP capable mecha-
nisms. The point at which the HIP mechanism has less overhead is approximately
at 2 seconds. This means that the proposed HIP mechanism becomes superior
to the constant non-HIP benchmark case with an 2-second or greater puzzle
computation time. Naturally, this point depends on the selection of the values
for the parameters.

As the spam relay sending rate increases, the HIP spam prevention mecha-
nism becomes considerably better than the non-HIP benchmark case. With low
spam rates, HIP sessions are reset seldomly and spam flows mostly through.
When the spam rate increases, the spam relay spends more time on puzzle com-
putation and the spam forwarding rate decreases. Then, the performance of the
proposed HIP mechanism improves in comparison to the non-HIP benchmark
case.

4.4 A Comparison of HIP with Exponential Puzzle Cost the
Scenario without HIP

We also analyze the scenario where the puzzle cost grows exponentially for each
new session. The parameters are the same as before, but the computation time of
the puzzle grows exponentially with the puzzle difficulty. Moreover, we introduce
a cut-off point after which the puzzle difficulty does not increase anymore. After
the number of sessions reaches the cut-off point, the computation time of the
puzzle (and the number of bits) remains at the current level. As an example,
given a cut-off point of 23 and an initial puzzle size of 20 bits for the first
throttled session, spam relays experience puzzle sizes {20, 21, 22, 23, 23, . . . } as
they reconnect.

Title Suppressed Due to Excessive Length 9

Figure 3 presents the effect of the exponential base exchange time with a
varying cut-off point. The y axis is logarithmic. The figure shows that the pro-
posed mechanism performs considerably better than the non-HIP benchmark
with a cut-off point of 22 or greater.

 0.1

 1

 1 2 4 8 16 32 64

Lo
ad

 r
at

io
 (

H
IP

 /
w

ith
ou

t H
IP

)

Puzzle cost in seconds

Puzzle cost

Threshold of 1
Threshold of 2
Threshold of 4

Threshold of 8
Threshold of 16
Threshold of 32

Threshold of 64
Threshold of 128
Threshold of 256

Fig. 2. Fixed-cost puzzles with different spam threshold κ

Now, we have compared HIP with both constant and variable-sized puzzles
to the benchmark scenario without HIP. In the next sections, we focus on the
identity-switching attacks (without cut-off points) against the proposed HIP-
based architecture.

4.5 Optimal Strategies for a Spam Relay

Directly from equation 8, we know that

ξ · κ

λS · (1− α)
+G(ξ) = T. (9)

This means that, for the entire time during which a server relays spam, it splits its
performance into ξ steps (one step is one session reset). To contact the inbound
server, the spam relay spends G(ξ) time for all puzzle computations, and during
every step it sends exactly κ messages and each step consumes κ

λS(1−α) time.

The inbound server chooses the form of the function G, while a spam relay
selects the number of session resets to tolerate, ξ. Here, we consider first a naive
strategy for the spam relay. It chooses G based on the number of messages to
send and does not try to whitewash its own history at the inbound server (i.e.

10 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

 0.01

 0.1

 1

 10

 21 22 23 24 25 26 27 28

Lo
ad

 r
at

io
 (

H
IP

 /
w

ith
ou

t H
IP

)

Cutoff threshold

Puzzle cost

Threshold of 1
Threshold of 2
Threshold of 4

Threshold of 8
Threshold of 16
Threshold of 32

Threshold of 64
Threshold of 128
Threshold of 256

Fig. 3. Variable-sized puzzles with initial puzzle size of 20 and different cut-off points

by changing its identity according to equation 1). Under such an assumption,
the spam relay has to optimize (maximize) a function of the following form:

pZ · κ · ξ − cZ ·G(ξ), (10)

where pZ is the profit for one delivered message and cZ is the payment for the
puzzle computation time. The strategy for the spam relay is to select the number
of rounds for which it would like to send κ-sets of messages and the number of
rounds to recompute puzzles. Let this value be ξ.

Note that if puzzle difficulty is constant (i.e. G(ξ) = TBE · ξ), then solution
is one of the boundary cases

ξ =

{
0, if pZκ ≤ cZ · TBE ,
∞, if pZκ > cZ · TBE ,

(11)

More important is the case when the puzzle computation time is changing.
Let the puzzle complexity growth be exponential compared to the increase of
puzzle difficulty. Consider that the puzzle computation time on every reset has
an exponential form of Ci = aqi + b, then by definition

G(ξ) =

ξ∑
i=0

(aqi + b) = a
qξ+1 − 1

q − 1
+ b =

aq

q − 1
qξ + b− a

q − 1
. (12)

Let us generalize this function as G(ξ) = kgξ + s, where g is an exponential
growth parameter, s is initial shift, and k is the coefficient.

Title Suppressed Due to Excessive Length 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12P
uz

zl
e

co
m

pu
ta

tio
n

pr
op

or
tio

n
Puzzle computation time base (g)

γC=0.5

γZ=0.98

g=5.5

Spam relay rate
Legitimate relay rate

Fig. 4. An example plot to illustrate the proportion of time used by a legitimate and
spam relay for puzzle computation.

Now, a spam relay has to maximize the function

pZ · ξ · κ− cZ · (k · gξ + s). (13)

Let us find the points where the derivative of this function with respect to ξ is
zero:

pZ · κ− cZ · k · ln g · gξ = 0. (14)

Thus, the maximum point is

ξ∗ = logg
pZ · κ

cZ · k · ln g
. (15)

4.6 Optimal Strategies for an Inbound Server

The previous section suggests an optimal strategy for a spam relay under the
assumption that there is a payment involved in sending of spam. Otherwise,
infinite number of messages would be the optimal strategy for the spam relay. In
this section, we have a look at the situation from the view point of an inbound
server.

First of all, the main goal for the inbound server is to slow down the flood of
spam. It may be formulated in terms of the portion of time which spam relays
spend for the puzzle computation time, compared to the overall time. Here, we
assume that the inbound relay knows the number of HIP session resets during
which spammer reuses its current identity according to equation 1. As previously,
let it be ξ. To process ξ resets, a spam relay has to waste G(ξ) of its own time
for puzzle computation. The overall time, which it may use for message delivery,
we also define as a function of ξ. Thus, the definition of the overall time follows
from equation 9

T (ξ) = ξ
κ

d
+G(ξ), (16)

where d is equal to λZ(1 − α) in case of a spam relay, and is equal to λCβ in
case of a legitimate email relay. We assume that an inbound server classifies

12 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

(or receives classification) with relatively good accuracy and, hence, 1 − α is
considerably higher than β.

Then, the proportion of time used for puzzle computation by spam relays
(on left side) and legitimate email relays (on the right side) can be calculated as

G(ξ)

G(ξ) + κ·ξ
λZ ·(1−α)

,
G(ξ)

G(ξ) + κ·ξ
λC ·β

. (17)

The inbound server has control over variables k, g, s of function G(ξ) = kgξ+
s. For simplicity, let k and s be constants because the most relevant variable is
the growth base g for the puzzle computation time. The values grow as a function
of the parameter g. The function results in values ranging from 0 to 1, where
0 means that the time spent for the puzzle computation is negligible, while 1
means that the puzzle computation takes all of the time.

For the functions (17), the objective of the inbound server is to maximize the
time spam relays spend on computing puzzles. Correspondingly, the inbound
server should minimize this time for legitimate relays. These are somewhat con-
tradictory conditions because α < 1 and β > 0. Therefore, punishment for
possible spam relays affects also legitimate relays.

To overcome this dilemma, we introduce a new constant γ: 0 ≤ γ ≤ 1, which
we select as the maximum value for the possibly legitimate client computation
rate, i.e.

G(ξ)

G(ξ) + κ·ξ
λC ·β

≤ γ, (18)

where γ defines the portion of the overall time which a possibly legitimate client
spends for puzzle computations. From the inequality 18 it follows, that

g ≤
(
γ · (κ · ξ + s · λC · β)

k · λC · β · (1− γ)

) 1
ξ

. (19)

On the other hand, the inbound server should maximize puzzle computation
rate for possible spam relays (the left function in equation 17, which grows
exponentially towards 1 as a function of g). The optimal strategy for the server
is

g∗ =

(
γ · (κ · ξ + s · λC · β)

k · λC · β · (1− γ)

) 1
ξ

. (20)

The optimal strategy both for a spam relay, ξ∗(g), as shown in equation 15,
and for an inbound server, g∗(ξ), as shown in equation 20, results in an equilib-
rium point (ξ∗, g∗) in terms of game theory.

The optimal strategies are illustrated in figure 4. For the legitimate relay,
the bound for the computation rate is fixed as γC = 0.5 The set of parameters
is assigned as α = 0.5, β = 0.01, κ = 100, λC = λZ = 10, and we assume that
the number of session resets is 5 (ξ = 5). Under such parameters, the legitimate
relay has g ≈ 5.5. The resulting puzzle computation for a possible spam relay
is γZ = 0.98. In other words, the spam relay spends 0.98 of its time for puzzle

Title Suppressed Due to Excessive Length 13

computations whereas the legitimate relay spends half of its time. As g grows,
both parties are eventually spending all of their time for puzzle computation.
Thus, it is a local policy for the inbound server to decide a “good” value for g
in terms of how much legitimate servers can be throttled with puzzles. For low
spam rates, the value can be small but, with high spam rates, the server may
increase the value at the cost of throttling also legitimate relay servers.

5 Experimental Evaluation

In this section, we describe how we integrated puzzle control to an inbound
SMTP server and its spam filtering system. We show some measurements with
variable-sized puzzles and compare this against identity-generation costs to give
some engineering guidance against identity-switching attacks. The source code
for HIP for Linux and the spam extensions are available as open source 3. It
should be noted that evaluation the mathematical models presented in section
4 e.g. with network simulators is future work.

5.1 Setup

The experimented environment consisted of two low-end commodity computers
with the Linux Debian distribution and HIP for Linux (HIPL) [12] implemen-
tation. One computer served as a sending SMTP relay (1.60GHz Pentium M)
and the other represented a receiving SMTP server (Pentium 4 CPU 3.00GHz).
The receiving server detects the spam messages and closes the HIP session when
a threshold is reached for the session. The inbound server was configured not
to reject any email. We were mostly interested in software changes required to
deploy HIP in SMTP servers and in the effects of increasing the puzzle size.

5.2 Results

We implemented the spam throttling mechanism successfully by using unmodi-
fied sendmail. We turned on the IPv6 option in the configuration of sendmail in
order to use HITs.

The receiving SMTP server was equipped with a modified version of Spa-
mAssassin Milter. The changes were straightforward to implement. The milter
increased the puzzle size by one for every κ spam message detected and closed
the HIP session to induce a new base exchange. The puzzle computation time
grew exponentially with the size of the puzzle and the spam sender was throttled,
as expected, by the mechanism.

We faced some implementation challenges during the experimentation. Firstly,
sendmail queues the email messages and this makes it difficult to provide mea-
surements from the spam filtering process itself. Secondly, if the session with the
SMTP server is lost temporary, for example, because the HIP association are is

3 https://launchpad.net/hipl/

14 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

closed, e-mails can accumulate in the queue for an extended time. Thirdly, when
sending excessive amounts of email, the built-in connection throttling mecha-
nism in sendmail takes over and queues the emails for long periods. However,
sendmail’s queuing process was robust and eventually emptied the queue suc-
cessfully.

One challenge with proof-of-work techniques is that there are many different
devices on the network and their computing capabilities vary. By default, the
puzzle difficulty is zero in HIPL. A puzzle with difficulty of 25 bits took 12.4 s on
average on the low-end machine used in the performance tests. The time was 4.4
seconds on a more recent CPU (Intel Core 2, 2.3 Mhz) on a single CPU core. The
puzzle algorithm used in HIP does not prevent parallel computation. Thus, the
computation time could be decreased by fully utilizing multi-core architectures.

For identity changing attacks, the strategy should also take into account
the public key algorithm. RSA keys can be created faster than DSA keys with
a corresponding size. As a consequence, the responder should give initiators
that use RSA public keys more difficult puzzles than initiators with DSA keys.
Further, it should be noted that creation of insecure, albeit perfectly valid keys,
can be faster than creation of secure ones.

Figures 5(a) and 5(b) contrast secure key-pair generation time (horizontal
lines) with puzzle solving time (vertical lines). It should be noticed that the
y-axis is logarithmic. From the figures, it can be observed that the puzzling
solving time is, as expected, exponential with the number of bits used in the
puzzle difficulty. The standard deviation grows as puzzle difficulty is increased.
In addition, the time to generate DSA key-pairs is considerably higher than
RSA. On the average, the creation of a 2048-bit DSA key pair took 6.46 seconds
and this was equal to the solving time of a 24-bit puzzle. With RSA, creation
of a 2048-bit key pair took 0.72 seconds which corresponded to a 21-bit puzzle.
This indicates that the key-generation algorithm and key length need to be taken
into account when deciding the initial puzzle size to discourage identity-switching
attacks.

 69.81

 25.61

 6.46

 2.03

 0.79

 0.13

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

ti
m

e/
s

puzzle difficulty K

puzzle(K)
DSA 512

DSA 1024
DSA 1536
DSA 2048
DSA 3078
DSA 4096

(a) Puzzle solving vs. DSA key generation

 8.8

 2.51

 0.72

 0.3

 0.09

 0.03

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

ti
m

e/
s

puzzle difficulty K

puzzle(K)
RSA 512

RSA 1024
RSA 1536
RSA 2048
RSA 3078
RSA 4096

(b) Puzzle solving vs. RSA key generation

Fig. 5. Puzzle computation time results.

Title Suppressed Due to Excessive Length 15

6 Conclusions

In this paper, we proposed a cross-layer identity solution for mitigating unso-
licited traffic between administrative domains. The proposed architecture pri-
marily concentrates on inbound session control but is applicable also to the
outbound direction as well. As an example application of the system, we focused
on email spam prevention.

The Host Identity Protocol introduces a public key for the hosts. They key
can be used for identifying well-behaving SMTP servers. The proposed approach
introduces a cost to sending spam using the computational puzzles in HIP. Large-
scale changes to the SMTP architecture are not required because HIP is back-
wards compatible. However, a practical limitation of the approach is that it
requires wide-scale adoption of HIP as a signaling protocol and requires integra-
tion of HIP puzzle control to inbound email servers.

We presented a formal cost model that considered static and exponential base
exchange puzzle costs. The analytical investigation indicates that the proposed
spam prevention mechanism is able to mitigate unwanted traffic given a set of
reasonable parameters. We used parameter values based on experimental results
for server-side cost of HIP and the puzzle computation time. A spam mitigation
approach based on HIP puzzles caused less load at the email server than an
approach that was not using HIP.

The exponential cost of the puzzle introduces more work for email servers
relaying spam. However, it also results in an incentive for the spammer to switch
its identity when it is throttled with more difficult computational puzzles. We
identified this as a potential weakness of the proposed system and analyzed
this from the viewpoint of the spammer and the email server. As a theoretical
result, we provided a method for the server to choose an optimal strategy against
identity switching. When choosing a strategy, it should be noted that increasing
puzzle costs for spammers also increase costs for legitimate hosts.

We implemented a simple prototype of the system based on a popular email
server, sendmail. We integrated throttling support for HIP puzzles with mini-
mal changes to SpamAssassin, a popular spam filtering software. We reported
the practical experiences of running such a system and showed real-world mea-
surements with HIP puzzles.

While the simple prototype was a success, we observed that the use of compu-
tational puzzles with email relays is challenging. Malicious hosts can overwhelm
and exhaust the resources of a relay unless preventive measures are taken. Po-
tential solutions to this include refusal to solve large puzzles for hosts, message
rejection, and blacklisting. More work with simulation or larger test beds is
needed to establish the efficacy of the proposed cross-layer system and to vali-
date our mathematical models.

Acknowledgements

We would like to thank the following people for providing valuable feedback
for this paper: Jaakko Kangasharju, Teemu Koponen, Kristian Slavov, Antti

16 Miika Komu and Sasu Tarkoma and Andrey Lukyanenko

Järvinen, Oleg Ponomarev, Andrei Gurtov and Tuomas Aura. This work was
supported by Tekes InfraHIP project and the Academy of Finland, grant num-
bers 135230, 122329 and 135230.

References

1. Aura, T., Nikander, P., Leiwo, J.: Dos-resistant authentication with client puz-
zles. In: Christianson, B., Crispo, B., Roe, M. (eds.) Security Protocols Workshop.
Lecture Notes in Computer Science, vol. 2133, pp. 170–177. Springer (2000)

2. Back, A.: Hashcash (May 1997), http://www.cypherspace.org/hashcash/
3. Beal, J., Shepard, T.: Deamplification of DoS Attacks via Puzzles (Oct 2004),

http://web.mit.edu/jakebeal/www/Unpublished/puzzle.pdf

4. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: CRYPTO
’92: Proceedings of the 12th Annual International Cryptology Conference on Ad-
vances in Cryptology. pp. 139–147. Springer-Verlag, London, UK (1993)

5. Eggert, L., Laganier, J.: Host Identity Protocol (HIP) Rendezvous Extension. IETF
(Apr 2008), Experimental RFC

6. Goodman, J., Rounthwaite, R.: SmartProof. Microsoft (2005), http://research.
microsoft.com/en-us/um/people/joshuago/smartproof.pdf

7. Jokela, P., Moskowitz, R., Nikander, P.: RFC5202: Using the Encapsulating Secu-
rity Payload (ESP) Transport Format with the Host Identity Protocol (HIP). Inter-
net Engineering Task Force (Apr 2008), http://www.ietf.org/rfc/rfc5202.txt

8. Keränen, A., Camarillo, G., Mäenpää, J.: Host Identity Protocol-Based Overlay
Networking Environment (HIP BONE) Instance Specification for REsource LO-
cation And Discovery (RELOAD). Internet Engineering Task Force (Jul 2010),
internet draft, work in progress

9. Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.: RFC5201: Host Identity
Protocol. Internet Engineering Task Force (Apr 2008), Experimental RFC

10. Nikander, P., Henderson, T., Vogt, C., Arkko, J.: End-Host Mobility and Multi-
homing with the Host Identity Protocol. Internet Engineering Task Force (Apr
2008), Experimental RFC

11. Nikander, P., Laganier, J.: Host Identity Protocol (HIP) Domain Name System
(DNS) Extension. IETF (Apr 2008), Experimental RFC

12. Pathak, A., Komu, M., Gurtov, A.: Host Identity Protocol for Linux. In: Linux
Journal (Nov 2009), http://www.linuxjournal.com/article/9129

13. Tritilanunt, S., Boyd, C., Foo, E., Nieto, J.M.G.: Examining the dos resistance of
hip. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM Workshops (1). Lecture
Notes in Computer Science, vol. 4277, pp. 616–625. Springer (2006)

14. Tschofenig, H., Shanmugam, M., Muenz, F.: Using SRTP transport format with
HIP. Internet Engineering Task Force (Aug 2006), expired Internet draft

