Complexity, Information, and Noise: Denoising signals by the MDL principle

Teemu Roos

Complex Systems Computation Group
Department of Computer Science
University of Helsinki

Denoising

Removing noise from signals

- Not obvious how to formalize.
- Given for 1 ≤ t ≤ n

unobserved

observed
$$z(t) = x(t) + y(t)$$

observation = signal + noise

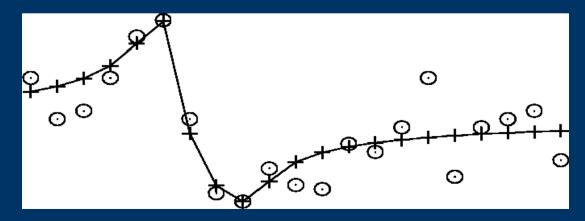
is it possible to recover x(t)?

Approaches: I. Statistical Estimation

- Signal = Parameter
- Denoising = Estimation

$$z(t) = \Theta(t) + \varepsilon(t)$$

- Assume: ε(t) i.i.d. Gaussian
- Estimate mean of multivariate Gaussian density
- Regression



Approaches: I. Statistical Estimation (contd.)

- Signal = Parameter
- Denoising = Estimation

$$z(t) = \Theta(t) + \varepsilon(t)$$

- Only one observation of Θ(t)!
- Stein's paradox: z(t) is not an admissible estimator of θ(t)
 (Stein, 1956)
- Minimax approach:
 - θ smooth (e.g. bounded Sobolev norm)
 - minimize estimator's worst-case risk

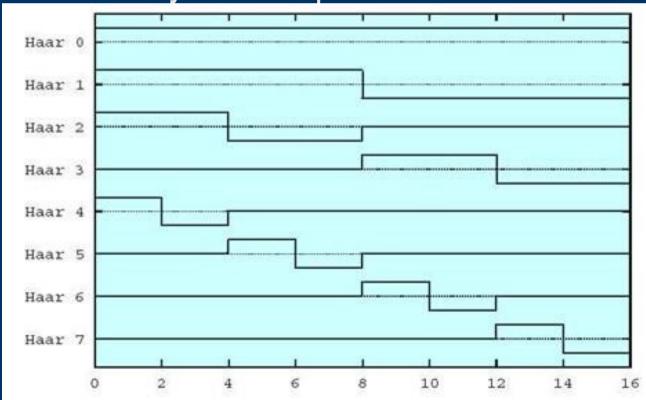
Approaches: II. Bayes

- Prior distribution for Θ(t)
 - restricted: find estimator of $\theta(t)$ with small *expected* risk
 - full Bayesian: find posterior of $\Theta(t)$
- Good performance
- Full Bayes computationally demanding

Wavelets

- Wavelet transformations
 - both time and frequency resolution
- Similar to Fourier which only has frequencies
- Example:

Haar basis



Wavelet Denoising

- Wavelet transforms concentrate the 'energy' of most natural signals
 - Many coefficients near zero, few very large ones
 - Does not happen with noise
- Idea: Identify coefficients that are negligible in the original signal and set them to zero
- Should retain most of the signal
- Removes a lot of noise

MDL

 Minimum Description Length (MDL) principle: minimize

L(model) + L(x | model)

MDL

 Minimum Description Length (MDL) principle: minimize

L(model) + L(x | model)

codelength of model

MDL

 Minimum Description Length (MDL) principle: minimize

L(model) + L(x | model)

codelength of model

code-length of data *given* model

- 'Model' gives the regular features in the data
- 'Regular' = 'compressible'

- Kolmogorov complexity K(x)
 - length of the shortest program to output x
- Kolmogorov sufficient statistic
 - finite set S such that $K(S) + \log |S| \le K(x) + O(1)$

complexity of S

log of size

complexity of x

- Kolmogorov complexity K(x)
 - length of the shortest program to output x
- Kolmogorov sufficient statistic

```
- finite set S such that K(S) + \log |S| \le K(x) + O(1)
```

complexity of S

log of size

complexity of x

 $x \in S$

- Kolmogorov complexity K(x)
 - length of the shortest program to output x
- Kolmogorov sufficient statistic
 - finite set S such that $K(S) + \log |S| \le K(x) + O(1)$

log of

size

complexity of S is minimum code-length

complexity of x

of x using S as a model

log |S| is the best achievable code-length of x given S
 (for almost all x ∈ S)

- Kolmogorov complexity K(x)
 - length of the shortest program to output x
- Kolmogorov sufficient statistic

let's drop these

- finite set S such that $K(S) + \log |S| \le K(x) + O(1)$

complexity of S

log of size

minimum code-length of x using S as a model

complexity of x

log ISI is the best achievable code-length of x given S
 (for almost all x ∈ S)

- Kolmogorov complexity K(x)
 - length of the shortest program to output x
- Kolmogorov sufficient statistic
 - finite set S such that $K(S) + \log |S| \le K(x)$

complexity of S log of size minimum code-length

of x using S as a model

complexity of x

• log ISI is the best achievable code-length of x given S (for almost all $x \in S$)

- Kolmogorov minimal sufficient statistic (KMSS)
 - the least complex Kolmogorov sufficient statistic
- Includes all regular features of the object but not more
- Example: given a random string r = 0 1 1 0 0 0 1 0 1 1...
 duplicate all bits: x = 00 11 11 00 00 00 11 00 11 11...

- Kolmogorov minimal sufficient statistic (KMSS)
 - the least complex Kolmogorov sufficient statistic
- Includes all regular features of the object but not more
- Example: given a random string r = 0 1 1 0 0 0 1 0 1 1...
 duplicate all bits: x = 00 11 11 00 00 00 11 00 11 11...
 - $-S_1 = \{x\}$ is a sufficient statistic because

$$K(S_1) + \log |S_1| = K(x) + 0 \le K(x)$$

- Kolmogorov minimal sufficient statistic (KMSS)
 - the least complex Kolmogorov sufficient statistic
- Includes all regular features of the object but not more
- Example: given a random string r = 0 1 1 0 0 0 1 0 1 1...
 duplicate all bits: x = 00 11 11 00 00 00 11 00 11 11...
 - $S_1 = \{x\}$ is a sufficient statistic because $K(S_1) + \log |S_1| = K(x) + 0 \le K(x)$
 - $-S_2 = \{\text{duplicated strings}\}\$ is the KMSS because

$$K(S_2) + \log |S_2| = \log(2^{n/2}) = n/2 = K(x)$$

Ideal MDL vs Practical MDL

- Ideal MDL: Choose the KMSS model¹
- Problems with Kolmogorov complexity
 - not computable
 - depends on the universal language (Turing machine)
- Practical MDL
 - Kolmogorov complexity replaced by computable codes
 - probabilistic models: $L(x) = -\log p(x)$
- Same idea: Identify regular features in data

¹under certain conditions

MDL & Denoising

- Identify regular features in data
- Naturally applicable to denoising

```
K(x) = K(S) + log |S|

code-length = L(model) + L(x | model)

complexity = information + noise
```

- Not always clear how to interpret model as a (denoised) signal
- Rissanen (2000): subset selection in wavelet regression

MDL Denoising I

- Select a subset of wavelet basis functions
 - MDL gives a criterion: minimize

L(subset) + L(x | subset)

- How to evaluate L(x | subset)?
- Rissanen (2000): Renormalized NML
- Difficulties in interpreting
- Works well in some cases, fails in others

MDL Denoising II

- Roos, Myllymäki, Tirri (2005): Standard NML with same behavior as renormalized NML
- Roos, Myllymäki, Rissanen (submitted):
 - encoding of L(subset) huge space: cannot be ignored
 - model (some) coefficient dependencies / subband adaptation
 - predictive mixture codes
- Earlier problems explained by omission of L(subset)
- Improved performance

