
Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 1

Komponenttiväliohjelmistot

Teemat

Järjestelmämallin tarpeet
Palvelut ja rajapinnat
Sisärakenteet

networking and interoperability
server control
system administration infrastructure

Sovellustilanteen arkkitehtuurimallikkeita
Realisaatioita
Laajennustrendit

Components
Components are entities running in a
standardized environment that provides

transactions, security, event-handling, persistence,
and
component model services (horizontal and vertical
infrastructure services)

COTS: Operating systems, compilers, network managers,
database systems, CASE tools; aircraft navigation
algorithms, banking transaction handlers

Examples in CCM, EJB, DCOM

Komponenttijärjestelmät

General component model +
services

horizontal infrastructures+
services

vertical
infra-
structure

Interoperablity
Metadata

Compound documents
System management

Simulation
Telecommunication
Process Automation
Financial
Healthcare

Generality

D
om

ai
n

sp
ec

ifi
c

Heineman, Councill 2001

Components
Independently deployed; Component transfer
and deployment is standardized.
Subject to third-party composition
In the global software component markets;
packaging and licencing

Downloadable packages
Deployment descriptor provides information about the contents
of the package; used for installing and configuring the
component properly

Components are produced using declarative
languages.

Component system production

Tranditionally coordination among
components by a skeletal software
infrastructure

Invokes each component
Handles communication
Handles coordination -> architectural styles

Set of component types
Topological layout of components indicating their
interealtionships
Set of interaction mechanims

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 2

Component system production

software component
infrastructure

final
appli-
cation

infrastructure
designer

application
producer

Product
line ?

Mismatch of architectural styles

layered
abstract
machine

buss

shared repository

Tuumaustauko …
Object factory and product line (Oliver Simms)
Product line: set of products that share reqs and reused plans
Business object: composed object across EAI n-tier model tiers
Availability of different kind of middleware at each tier (GUI mw, J2EE,
.NET, database mw) + ”standard” deployment model and object
architecture

applications

middleware
service APIs

middleware
configuration
languages

3GL languages
-editors
-interfaces to compilers

middleware implementations 3GL languages
compiler implementations

CORBA-komponenttimalli CCM

abstrakti komponenttimalli
komponenttien suoritusaikainen ympäristö

Component container programming model
komponenttien toteutus

Component Implementation Framework CIF +
Component implementation language CIDL

Komponenttien pakkaaminen ja
käyttöönsaatto

The Abstract Component Model
Allows component designers to capture how CORBA
components are viewed by other components and
clients

What a component offers to other components
What a component requires from other components
What collaboration modes are used between components

Synchronous via operation invocation
Asynchronous via event notification

Which component properties are configurable
What the business life cycle operations are (i.e. home)

Expressed via OMG IDL 3.0 extensions
Syntactic construction for well known design patterns
Mapped to OMG IDL interfaces for clients and implementers

What is a CORBA Component?
component is a new CORBA meta-type

Extension of Object (with some constraints)
Has an interface, and an object reference
Also, a stylized use of CORBA interfaces/objects

Provides component features (also named ports)

Could inherit from a single component type

Could supports multiple interfaces

Each component instance is created and managed by
a unique component home

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 3

CORBA components
extends and specializes object type (server side!)
ports

Facets – interfaces provided to clients
Receptacles – named connection points, required operation
interfaces
Event sources – named points that send events
Event sinks – named points to which events are pushed
Attributes – named values with set/get, for configuration;
can raise exceptions

Equivalent interface
Navigation
Modifying port states

A CORBA Component

My
Business

Component

Component interface

Facets

Event
sources

Event
sinks

Attributes

Receptacles

O
FF

ER
ED

R
EQ

U
IR

ED

Component runtime support
Component home

Controls a set of components using the component
equivalent interface
Provides component factory facilities

Specializations

Container
Defines the environment for supporting dynamic collections
of components
The core of the CCM is the container: a running piece of
code that you buy from a vendor and install on your server
machine. The container includes an ORB with a POA. Corba
components are server-side objects; your system
administrator installs components into the container, which
takes charge of them when they run.

Component Facets
Distinct named interfaces that provide the
component’s application functionality to
clients

Each facet embodies a view of the
component, corresponds to a role in which a
client may act relatively to the component

A facet represents the component itself, not a
separate thing contained by the component

Facets have independent object references

Component Receptacles
Distinct named connection points for potential
connectivity

Ability to specialize by delegation, compose functions
The bottom of the Lego, if you will

Store a simple reference or multiple references
But not intended as a relationship service

Configuration
Statically during initialization stage or assembly stage
Dynamically managed at runtime to offer interactions with
clients or other components (e.g. callback)

Component Events
Simple publish / subscribe event model

“push” mode only
Sources (2 kinds) and sinks

Events are value types
Defined with the new eventtype meta-type
valuetype specialization for component events

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 4

Component Event Sources
Named connection points for event production

Push a specified eventtype

Two kinds: Publisher & Emitter
publishes = multiple client subscribers
emits = only one client connected

Client subscribes or connects to directly component
event source

Container mediates access to CosNotification
channels

scalability, quality of service, transactional, etc.

Component Event Sinks
Named connection points into which events
of a specific type may be pushed

Subscription to event sources
Potentially multiple (n to 1)

No distinction between emitter and publisher
Both push in event sinks

Component Attributes
Named configurable properties

Vital key for successful re-usability
Intended for component configuration

e.g., optional behaviors, modality, resource hints, etc.
Could raise exceptions
Exposed through accessors and mutators

Could be configured
By visual property sheet mechanisms in assembly or
deployment environments
By homes or during implementation initialization
Potentially readonly thereafter

Navigation and Introspection
Navigation from any facet to component base
reference with CORBA::Object::get_component()

Returns nil if target isn’t a component facet
Returns component reference otherwise

Navigation from component base reference to any
facet via generated facet-specific operations

Navigation and introspection capabilities provided by
CCMObject

Via the Navigation interface for facets
Via the Receptacles interface for receptacles
Via the Events interface for event ports

A CORBA Component Home

MyBusinessHome

c1

…

cN

Home interface
Component Home

Is instantiated at deployment time
Manages a unique component type

More than one home type can manage the same component type
But a component instance is managed by a single home instance

Allows life cycle characteristics or key type to vary/evolve
without changing component definition
Optional use of primarykey for business component
identity and persistency primary key
Standard factory and finder business logic operations
Extensible with arbitrary user-defined business logic
operations

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 5

Primary Keys
Values exposed to clients to create, find, and destroy
component instances

Uniquely identifies a component instance within a home
Assigned at creation time, or in pre-existing database
Must be a value type derived from
Components::PrimaryKeyBase (empty, abstract)

Association between a primary key and a component
is defined and maintained by its home

Different home types may define different key types (or no
key) for the same component type
Primary key is not necessarily a part of the component’s
state

CCM development project stages

1. Analysis/design
UML + business object profiles

2. Component declaration
Define component’s methods and home with
extended IDL and compile to produce

for clients: Operations, navigation operations, stubs
for servers: skeletons, IR entries, some code,
packaging and deployment descriptors in XML

Esimerkki
component ShoppingCart {

provides ShoppingCartIntf Cart1;
uses CheckoutIntf CheckOut1;

}
home ShoppingCartHome manages

ShoppingCart{};

CCM development project stages

3. component implementation
declare component’s persisent state in
PSDL and some behaviour aspects in
CIDL
compile to get skeletons; fill in with
business logic; compile to joint result to
get compiled libraries

Esimerkki
abstract storagetype CustomerState{

state long AcctNum;
state ...

}
storagetype PortableCustomerState implements CustomerState{};
typedef sequence <Customer> CustomerList;
abstract storagehome CustomerStorageHome of Customer {

primary key AcctNum(AcctNum);
factory create(AcctNum, Name, ...);

}
storagehome PortableCustomerStorageHome implements

CustomerStateHome{};

Relations between
OMG Definition Languages

OMG IDL 2.x
Object-oriented collaboration
i.e. data types, interfaces, and value types

OMG IDL 3.0
Component-oriented collaboration
i.e. component types, homes, and event types

OMG PSDL
Persistent state definition
i.e. [abstract] storage types and homes

OMG CIDL
Component implementation description
i.e. compositions and segments

OMG IDL
2.x

OMG
PSDL

OMG IDL
3.0

OMG
CIDL

extends

extends

extends

extends

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 6

Component usage patterns
7 component categories: 4 CCM, 2 EJB, 1
clustomizable
servant lifetime policies: method, transaction,
component, container

category usage container primary
model API type key

--
service stateless session no
session conversational session no
process durable entity no
entity durable entity yes

Composition
Defined in CIDL

Category
Home executor
Executor
Bindings
State management (storage)

Esimerkki
composition entity CustomerImpl {

implements Customer;
home executor CustomerHomeImpl

delegatesTo abstractstoragehome
CustomerStateStorageHome;

}

CCM development project stages
4. component packaging

(use interactive tools to produce)/write
component descriptor (in XML) to tell CCM
runtime how to connect up and manage the
implementation
package up implementation and component
descriptor into a component archive file CAR

5. component assembly
An application or part composed of some
components with predefined interaction
pathways in an assembly archive file AAR
Customizes configuration, connections,
partitioning to different computers

Building CCM Applications =
Assembling CORBA Component Instances CCM development project stages

6. component deployment and installation
Prior to this: system admin has installed and
configured runtime environement

Installer program for CARs

Deploy component factories and managers

7. Runtime: component instance activation
Part of the application logic
Components are activated by the container POA

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 7

Esimerkki
<componentassembly id=”374...2304”>
<description>Assembly descr for example
</description>
<componentfiles>
<componentfile id=“ShoppingChartFIle”>
<fileinarchve name=“shoppingchar.car”>
</componentfiles>
<partitioning>
<homeplacement id =“ShoppingCartHome”>
<componentfileref idref=“ShoppingCartFIle”>
</homeplacement>
…
</partitioning>
<connections>
<connectinterface>
<usesport>
<usesidentifier>Check1</usesidentifier>
<homeplacementref idref=“ShoppingChartHome”>
…

Komponenttien suoritusaikainen ympstö

component container model
Framework for component application servers
Mostly built on the POAs

Automatic activation/deactivation
Resource usage optimization
Provides simplified interfaces for corba services
Uses callbacks for instance management

Container encapsulates 1-N POAs
References exported thourhg component home
finder, naming or trading

The Container Architecture

Container

ORB

SecurityTransaction NotificationPersistency

CORBA
Component

Home

PO
A

C
l
i
e
n
t

Extended
OMG IDL
external

API

Internal
API

Callback
API

CCM Container model
CORBA Usage Model

Describes the interaction between the container, the POA and
the CORBA services, ie reference persistence and servant to
ObjectID mapping
Types: stateless, conversational, durable

Component categories
Combination of internal and external APIs

1:1persistententityentitydurable

1:1persistentprocessentitydurable

1:1transientsessionsessionconversational

1:Ntransientservicesessionstateless

servant/OIDobject refcomp.categorycontainer APIusage model

CCM Container model
Components define their runtime
requirements through (in the deployment
descriptor)

Usage model
Component category
Activation and servant lifetime management
Transaction policies
Security policies
Events
Persistence
Compoent level (basic-ejb-compat, extended)

CCM container model
component activation and servant lifetime
management

Each container has a POA and servantLocator
Policies

Method: activate/passivate by method-basis
Transaction: lifetime tied to a transaction
Component: component decides itsef on deactivation
Container: lifetime tied to container’s lifetime

Depends also on component category

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 8

method (only)servat lifetime mgmt

factoryclient design pattern

keylessextenral API type

statelessusage model

session componentcallback interface

session context (basic) or Session2Context
(extended)

internal interface

property (service)characteristics

servat lifetime mgmt

client design pattern

extenral API type

usage model

callback interface

internal interface

characteristics

any

factory or finder

keyfull

durable

EntityComponent

entitycontext(basic) or entity2context(extended)

property (entity)

The Container Server Architecture

Container Manager
Session

Container
EJB

Container
Other

Container
Entity

Container

POA1 POA2 POA3 POA4

ORB

Transactions Security Persistence Events

The Client Programming Model
Component-aware and -unaware clients
Clients see two design patterns

Factory – Client finds a home and uses it to create a new
component instance

Finder - Client searches an existing component instance
through Name Service, Trader Service, or home finder
operations

Optionally demarcation of transactions

Could establish initial security credentials

Invokes operations on component instances
Those defined by the client-side mapping

Cmponent Implementation Framework

CIF defines a programming model for constructing
component implementations

How components should be implemented
Generates executors: implementation of behavioural
elements (homes, containers, …)

Facilitates component implementation
“only” business logic should be implemented

Not activation, identify, port management and introspection
=> Local server-side OMG IDL mapping

Interactions between implementations and containers

Manages segmentation and persistency
=> Component Implementation Definition Language

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 9

Server-Side Mapping

Component Implementation Framework
to Component Skeleton Generation

Component executor

Skeletons managing
ports, life cycle,
persistency, etc.

+ GIOP/IIOP

Extended
OMG IDL

file
+

CIDL

Compiling
for CIF/Java

Component Implementation
Definition Language CIDL

describes component composition
Aggregate artifacts required to implement a
component and its home

Manages component persistent state
Persistent state definition language PSDL
Links storage types to segmented executors

Generates executor skeletons providing
Segmentation of component executors
Default implementations of callback operations
Component’s state persistency

A Monolithic Component Executor

Monolithic executor

Container context

Component
specific
context

Component container

Main component executor interface

Facet or event sink executor interface

SessionComponent or EntityComponent

Component-oriented context interface
Container-oriented context interface

Container interposition
Context use

CIF
implementations can be segmented

Segments are physical partitions of
implementations
Can define independent state and can be
independently activated
Help in managing, partitioning and sharing
a high number of facet implementations
Only in process and entity categories

A Segmented Component Executor

Main segment

Container context

Component
specific
context

Component container

Seg2 Seg4Seg3

ExecutorLocator

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 10

Packaging and Deployment
Packaging and Deployment of Components

Components are packaged into a self-descriptive
package
Packages can be assembled
Assemblies can be deployed

Helped by XML descriptors
Packaging and Deployment model Allows
interoperability between deployment tools
and containers

CCM Applications Deployment
It is necessary for an application to

List component instances
Define logical location and partitioning
Specify connections between components

It is necessary for a component to
Specify its elements

interfaces, implementations
Describe system requirements

OS, ORB, JVM, library releases, …
Specify its initial configuration

It is necessary for a connection to
Associate related component ports

Component Packaging Artifacts

IDL/CIDL
Compiler

IDL/CIDL File

Stubs, Skeletons

Packaging
Tool

Implementation

Programming
Language

Tools

User's Code

Component
Descriptor

Default Properties

Assembly
Tool

Component
Assembly
Package

Home Properties Component Properties

Deployment
Tool

CORBA
Component

Package

CORBA
Component

Package

Assembly
Descriptor

CORBA
Component

Package

softpkg
Descriptor

XML Descriptors Overview
Software Package Descriptor (.csd)

Describes contents of a component software package
Lists one or more implementation(s)

CORBA Component Descriptor (.ccd)
Technical information mainly generated from CIDL
Some container managed policies filled by user

Component Assembly Descriptor (.cad)
Describes initial virtual configuration

homes, component instances, and connections

Component Property File Descriptor (.cpf)
name/value pairs to configure attributes

Relationship Between
CCM XML Descriptors

CORBA
Component
Descriptor

Component
Property

File
Descriptor

Software
Package

Descriptor

Component
Assembly
Descriptor

* *

*

Component Assembly Package
Archive (ZIP file) containing

One or more component packages, either
Including a package’s contents
Including the original package
Referencing the package by URL

Property File Descriptors defining initial attribute values
Component Assembly Descriptor (.cad)

Defines home instances to be created
Defines component instances to be created
Defines connections between ports to be made

Self-contained and self-descriptive unit
For automatic and easy “one step” deployment
No programming language experience necessary

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 11

Component Assembly Descriptor (.cad)
References one or more Component Software
Descriptors
Defines home instances and their collocation and
cardinality constraints
Defines components to be instantiated
Defines that homes, components or ports are to
be registered in the ComponentHomeFinder,
Naming or Trading Service
Defines connections to be made between
component ports, e.g. receptacles to facets and
event sinks to event sources

Software Package Descriptor (.csd)
Descriptive general elements

title, description, author, company, webpage, license

Link to OMG IDL file
Link to default property file
Implementation(s)

Information about Implementation
Operating System, processor, language, compiler, ORB
Dependencies on other libraries and deployment requirements
Customized property and CORBA component descriptor

Link to implementation file
Shared library, Java class, executable

Entry point

CORBA Component Descriptor (.ccd)

Structural information generated by CIDL
Component / home types and features
Ports and supported interfaces
Component category and segments

Container policies filled by the packager
Threading
Servant lifetime
Transactions
Security
Events
Persistence
Extended POA policies

Link to component and home property files

Property File Descriptor (.cpf)
Used to set home and component properties

However, it could be used for anything
Contains zero or more name/value pairs to
configure attributes
Referenced by...

Software Package Descriptors to define default
values for component attributes
CORBA Component Descriptors to define default
values for component or home attributes
Assembly Descriptors to configure initial values for
home or component instances

Component Packaging

IDL/CIDL
Compiler

User
Code

Generated
Code

IDL

Component
Descriptor

Default
Properties

Compiler

Shared
Library or
Executable

Packaging
Tool

Component
Package

.zip

Component Assembly

Properties
Deployment

Tool

Assembly
Archive

.aar (ZIP)

Assembly
Tool

Component
Package

Component
Package

Component
Package

Port
Connections

Instance
Creation

...

Väliohjelmistot 2003 12/04/2004

Lea Kutvonen 12

Deployment
An Assembly Archive is deployed by a
deployment tool
The deployment tool might interact with
the user to assign homes and
components to hosts and processes
The deployment application interacts
with installation objects on each host

Deployment Objects
ComponentInstallation

Singleton, installs component implementations
AssemblyFactory

Singleton, creates Assembly objects
Assembly

Represents an assembly instantiation
Coordinates the creation and destruction of component
assemblies and components

ServerActivator
Singleton by host, creates ComponentServer objects

ComponentServer
Creates Container objects

Container
Installs CCMHome objects

The Component Deployment Process

Deployment App

Staging Area

Assembly File

Install
Object

Processor

Install
Object

Processor

Install
Object

Processor

Processor

Install

Object

Processor

ZIP

OMG IDL

The Component Deployment Process

Deployment Tool

AssemblyFactory Assembly

