Valiohjelmistot 2003 15/04/2004

CORBA-komponenttimalli CCM
|
o . = abstrakti komponenttimalli
%%Komponenttlvallohjelmlstot = komponenttien suoritusaikainen ympéristo
— T = Component container programming model
= komponenttien toteutus
CORBA Component Model « Component Implementation Framework CIF +
(CCM) jatkoa... korjatulla Component implementation language CIDL
esitysjarjestyksella = Komponenttien pakkaaminen ja
kayttoonsaatto
| A CORBA Component Component runtime support
Component interface —— Q ' = Component home
\ = Controls a set of components using the component
- Q* D@ equivalent interface
Facets } tacl = Provides component factory facilities
Ia) ~. eceptacles g « Specializations
m O — m
o My D@ Vo) =« Container
E Business ;% = Defines the environment for supporting dynamic collections
LL > — Component of components
o Event/ Dﬂ ™ Event g = The core of the CCM is the container: a running piece of
sinks \ code _that you buy from a vendor and insta!l on your server
D— Dﬂ / sources machine. The container includes an ORB with a POA. Corba
components are server-side objects; your system
N]] / administrator installs components into the container, which
takes charge of them when they run.
“attributes””

‘ A CORBA Component Home Component Home

ome Tnter ace—-Q I

= Is instantiated at deployment time

/ Q MyBusinessHome \ = Manages a unique component type
= More than one home type can manage the same component type
. cl - (= But a component instance is managed by a single home instance

)) —C B Q = Allows life cycle characteristics or key type to vary/evolve

without changing component definition
= Optional use of primarykey for business component
Q identity and persistency primary key
O o < » Standard factory and finder business logic operations
) = Extensible with arbitrary user-defined business logic
1

operations

Lea Kutvonen 1

Valiohjelmistot 2003 15/04/2004

Primary Keys Komponenttien suoritusaikainen ympsto

| |
= Values exposed to clients to create, find, and destroy = component container model
component instances
= Uniquely identifies a component instance within a home

= Framework for component application servers

= Assigned at creation time, or in pre-existing database = Mostly built on the POAs
= Must be a value type derived from = Automatic activation/deactivation
Components::PrimaryKeyBase (empty, abstract)

TP - = Resource usage optimization
= Association between a primary key and a component « Provides simplified interfaces for corba services
is defined and maintained by its home

. ’) = Uses callbacks for instance management
= Different home types may define different key types (or no

key) for the same component type = Container encapsulates 1-N POAs
» Primary key is not necessarily a part of the component’s = References exported thourhg component home
state

finder, naming or trading

The Container Architecture CCM Container model
|
c Home = CORBA Usage Model
| Extended H = Describes the interaction between the container, the POA and
i OMG IDL H the CORBA services, ie reference persistence and servant to
e external P E— ObjectID mapping
n API CORBA CaJ(_I\chk « Types: stateless, conversational, durable
———
t Component «——— = Component categories
| | - = Combination of internal and external APls
I&tern&l . E - -
API IColntalner > usage model | container APl | comp.category | object ref servant/OID
stateless session service transient 1:N
< ORB > conversational | session session transient 1:1
‘ ‘ ‘ ‘ durable entity process persistent 1:1
‘Transaction ‘ ‘ Security ‘ ‘ Persistency ‘ ‘ Notification ‘ durable entity entity persistent 11
CCM Container model CCM container model
| |
= Components define their runtime = component activation and servant lifetime
requirements through (in the deployment management

descriptor)
= Usage model
= Component category

= Each container has a POA and servantLocator
= Policies

L e . = Method: activate/passivate by method-basis
= Activation and servant lifetime management « Transaction: lifetime tied to a transaction

= Transaction policies « Component: component decides itsef on deactivation
Security policies « Container: lifetime tied to container's lifetime

= Events = Depends also on component category
Persistence

Compoent level (basic-ejb-compat, extended)

Lea Kutvonen 2

Valiohjelmistot 2003

15/04/2004

characteristics

property (service)

internal interface

session context (basic) or Session2Context
(extended)

callback interface

session component

usage model stateless
extenral API type keyless
client design pattern factory

servat lifetime mgmt

method (only)

characteristics

property (entity)

internal interface

entitycontext(basic) or entity2context(extended)

callback interface EntityComponent
usage model durable

extenral API type keyfull

client design pattern factory or finder
servat lifetime mgmt any

| The Container Server Architecture

iner M
Entity Sessiof EJB Other
Cantaing Caontaine Cantaing Cantaine
Qoll |Lo]] [©o]] [©o
lront | [| | [pore| || |leons||| ||rone]
< ORB >
H H H H
Vfransaclion# H Security H HPersisIenceH H Events H

Client

CCM (xx) - Container Model

o e

[nvocation example (Service comp.)

omeRegitration

Client ORB Homekinder 7 £_impl

(2N resalve initial refedemnces
(L - -

xivier ot 21 lemch

wmpomentb i

e Fimder find Wowie by ipets umes

ZHome

4]

Zilome.create

Fa

CCM (xxi) - Container Model

T

Invocation example (cont’ed)

;. Servant
foo.Z POA Locator

pre invoke
peull 1%

imvokeffon|

past imy ok
g PUSTRRRY T

+ The same for Session components, but...
+ Repeat (5) - {8) as needed

Component Implementation Framework

Cmponent Implementation Framework

|
» CIF defines a programming model for constructing
component implementations
= How components should be implemented
= Generates executors: implementation of behavioural
elements (homes, containers, ...)
= Facilitates component implementation
= “only” business logic should be implemented
= Not activation, identify, port management and introspection
=> Local server-side OMG IDL mapping
= Interactions between implementations and containers
= Manages segmentation and persistency
=> Component Implementation Definition Language

to Component Skeleton Generation

Extended
OMG IDL

Compiling
for CIF/Java

Component executor

Server-Side Mapping |

Skeletons managing [H
ports, life cycle,

persistency, etc.

+ crop/iiop [H<C

Lea Kutvonen

Valiohjelmistot 2003 15/04/2004

A Monolithic Component Executor CIF

......... Component container . .
....... o oy = implementations can be segmented

) = Segments are physical partitions of

"""" Ng) o Component implementations

O] Monolithic executor m— O specific .
------ context = Can define independent state and can be
...... Ol . independently activated

R —— = Help in managing, partitioning and sharing

a high number of facet implementations
Q Main component executor interface O Component-oriented context interface . : .
Q Container-oriented context interface - Only In process and entlty Categones
~~ Context use

Q SessionComponent or EntityComponent " » Container interposition

(O Facet or event sink executor interface

Building CCM Applications =

| A Segmented Component Executor Assembling CORBA Component Instances
[
Component container \ Q
..... 'Q ‘Q }@ Oﬁ J Q
Main segment Dl%
O
@SegB OSeg4 Cosn;ggzint}@ (} Q Q
- v context
"""""""""""""""""" o) O 7 @—@
"""""""""" I
................ o
...... cgngner context jD O]
Q ExecutorLocator P —
CCM development project stages Esimerkki
[
1. Analysis/design component ShoppingCart {

= UML + business object profiles
2. Component declaration
= Define component’s methods and home with

provides ShoppingCartintf Cartl;
uses Checkoutlntf CheckOutl;

extended IDL and compile to produce }
for clients: Operations, navigation operations, stubs -
for servers: skeletons, IR entries, some code, home ShopplngCartHome manages
packaging and deployment descriptors in XML ShoppingCart{};

Lea Kutvonen 4

Valiohjelmistot 2003

15/04/2004

CCM development project stages

3. component implementation

» declare component’s persisent state in
PSDL and some behaviour aspects in
CIDL

= compile to get skeletons; fill in with
business logic; compile to joint result to
get compiled libraries

Esimerkki

abstract storagetype CustomerState{
state long AcctNum;
state ...
}
storagetype PortableCustomerState implements CustomerState{};
typedef sequence <Customer> CustomerList;
abstract storagehome CustomerStorageHome of Customer {
primary key AcctNum(AcctNum);
factory create(AcctNum, Name, ...);
}

storagehome PortableCustomerStorageHome implements
CustomerStateHome{};

Relations between Component Implementation
OMG Definition Languages Definition Language CIDL
| |
OMG IDL . .
= OMG IDL 2.x 2% = describes component composition
= Object-oriented collaboration = Aggregate artifacts required to implement a
= i.e. data types, interfaces, and value types extends component and its home
= OMG IDL 3.0 = Manages component persistent state
= Component-oriented collaboration extends OMG IDL g P . p
« i.e. component types, homes, and event types 30 . Pgrsnstent state definition language PSDL
. OMG PSDL = Links storage types to segmented exe_cgtors
« Persistent state definition extends = Generates executor skeletons providing
i OoMG .
= i.e. [abstract] storage types and homes PSDL. = Segmentation of component executors
= OMG CIDL = Default implementations of callback operations
= Component implementation description extends - Component‘s state persistency
= i.e. compositions and segments OoMG
CIDL
CCM (xxvi) - CIF Composition
R L 1
* Process: Defined in CIDL = 7 component categories:
o i L, 7 = Category 4 CCM, 2 EJB, 1 clustomizable
ALES " compa Repoumory = FLES = servant lifetime policies:
= s o i = Home executor method, transaction, component,
= = Executor container
ST o g
" ey, n BlndlngS category
e o n State usage container primary
Mgt Ll S St management model APItype key
i i (Storage) service stateless session no
E T session conversational = session no
":1!:?2‘," SR process durable entity no
oL T entity durable entity yes
B rom Wang, Schmidt & O'Ryan

Lea Kutvonen

Valiohjelmistot 2003

15/04/2004

Esimerkki

composition entity Customerlimpl {
implements Customer;
home executor CustomerHomelmpl
delegatesTo abstractstoragehome
CustomerStateStorageHome;

CCM development project stages

4. component packaging

= (use interactive tools to produce)/write
component descriptor (in XML) to tell CCM
runtime how to connect up and manage
the implementation

= package up implementation and
component descriptor into a component
archive file CAR

5. component assembly

= An application or part composed of some
components with predefined interaction
pathways in an assembly archive file AAR

» Customizes configuration, connections,
partitioning to different computers

CCM development project stages

6. component deployment and installation
= Prior to this: system admin has installed and
configured runtime environement
= Installer program for CARs
= Deploy component factories and managers
7. Runtime: component instance activation
= Part of the application logic
= Components are activated by the container POA

Esimerkki

<componentassembly id="374...2304">
<description>Assembly descr for example
</description>

<componentfiles>

<componentfile id="ShoppingChartFlle”>
<fileinarchve name="shoppingchar.car’>
</componentfiles>

<partitioning>

<homeplacement id =“ShoppingCartHome”>
<componentfileref idref="ShoppingCartFile”>
</homeplacement>

</partitioning>

<connections>

<connectinterface>

<usesport>
<usesidentifier>Check1</usesidentifier>
<homeplacementref idref="ShoppingChartHome">

The Client Programming Model

» Component-aware and -unaware clients
= Clients see two design patterns
= Factory — Client finds a home and uses it to create a new
component instance
= Finder - Client searches an existing component instance
through Name Service, Trader Service, or home finder
operations

= Optionally demarcation of transactions
= Could establish initial security credentials

= Invokes operations on component instances
= Those defined by the client-side mapping

Lea Kutvonen

Valiohjelmistot 2003

15/04/2004

Packaging and Deployment

= Packaging and Deployment of Components
= Components are packaged into a self-descriptive
package
» Packages can be assembled
= Assemblies can be deployed

= Helped by XML descriptors

= Packaging and Deployment model Allows
interoperability between deployment tools
and containers

CCM Applications Deployment

= |t is necessary for an application to
= List component instances
= Define logical location and partitioning
= Specify connections between components

= It is necessary for a component to
= Specify its elements
= interfaces, implementations
= Describe system requirements
= OS, ORB, JVM, library releases, ...
= Specify its initial configuration

= |t is necessary for a connection to
= Associate related component ports

Component Packaging Artifacts

Programming

Cangoage
T % Iii jiji
SucL Defaull Fioperties Home Pieperties Compangsf Properties
Compier
AN
Coren
Subs, Skeletons _ Imprementazon Component
Package
—

CORBA

Component
<> Component Assembly

[>~_Package—\ Packagef
—

Component

Descriptor

Softpkg Assembly
Descriptor Descriptor

Packaging Assembly
Tool Taol

—
CORBA
Component

Deployment
Package ool

XML Descriptors Overview

Software Package Descriptor (.csd)
= Describes contents of a component software package
= Lists one or more implementation(s)
CORBA Component Descriptor (.ccd)
= Technical information mainly generated from CIDL
= Some container managed policies filled by user
Component Assembly Descriptor (.cad)
= Describes initial virtual configuration

= homes, component instances, and connections
Component Property File Descriptor (.cpf)
= name/value pairs to configure attributes

Relationship Between
CCM XML Descriptors

Component .| Software .| CORBA
Assembly Package Component
Descriptor Descriptor Descriptor

[['
Component
* Property
File
Descriptor

Component Assembly Package

= Archive (ZIP file) containing
= One or more component packages, either
= Including a package’s contents
= Including the original package
= Referencing the package by URL
= Property File Descriptors defining initial attribute values
= Component Assembly Descriptor (.cad)
= Defines home instances to be created
= Defines component instances to be created
= Defines connections between ports to be made
= Self-contained and self-descriptive unit
= For automatic and easy “one step” deployment

= No programming language experience necessary

Lea Kutvonen

Valiohjelmistot 2003

15/04/2004

Component Assembly Descriptor (.cad)

= References one or more Component Software
Descriptors

= Defines home instances and their collocation and
cardinality constraints

= Defines components to be instantiated

= Defines that homes, components or ports are to
be registered in the ComponentHomeFinder,
Naming or Trading Service

= Defines connections to be made between

component ports, e.g. receptacles to facets and
event sinks to event sources

Software Package Descriptor (.csd)

= Descriptive general elements

= title, description, author, company, webpage, license
= Link to OMG IDL file
= Link to default property file

= Implementation(s)

= Information about Implementation
= Operating System, processor, language, compiler, ORB
= Dependencies on other libraries and deployment requirements
= Customized property and CORBA component descriptor

= Link to implementation file
= Shared library, Java class, executable

= Entry point

CORBA Component Descriptor (.ccd)

= Structural information generated by CIDL
= Component / home types and features
= Ports and supported interfaces
« Component category and segments

= Container policies filled by the packager
Threading

Servant lifetime

Transactions

Security

Events

Persistence

= Extended POA policies

= Link to component and home property files

Property File Descriptor (.cpf)

= Used to set home and component properties
= However, it could be used for anything
= Contains zero or more name/value pairs to
configure attributes
= Referenced by...
= Software Package Descriptors to define default
values for component attributes
= CORBA Component Descriptors to define default
values for component or home attributes
= Assembly Descriptors to configure initial values for
home or component instances

Component Packaging
User >]
IDL Code Compiler
l Generated l
Code Shared
IDL/CIDL Library or
Compiler Executable
Component l
Descriptor
: Component
Paczllf:glmg - Pack_age
Default -ZIp
Properties

Component Assembly

Instance Port
Creation | |Connectiong
Component
Package \ /
Component] Assembly Assembly
Package | % —*| Archive
g Tool
.aar (ZIP)
Component| T
Package
. Deployment
Properties Tool

Lea Kutvonen

Valiohjelmistot 2003 15/04/2004

Deployment

= An Assembly Archive is deployed by a
deployment tool

= The deployment tool might interact with
the user to assign homes and
components to hosts and processes

= The deployment application interacts
with installation objects on each host

Lea Kutvonen 9

